Comparison of tree-ring xylem anatomical parameters of three tree species under different moisture conditions in the Muling area
-
摘要:
目的 明确不同生境下树木木质部的解剖特征差异和暖干化气候条件下树木木质部的生长变化。 方法 在黑龙江省穆棱市针阔叶混交林中设置了水分偏多和偏少2个生境采样点,在2个样点内分别对红松、蒙古栎、紫椴进行取样,使用滑走切片机对所取样芯进行切片,获取木质部解剖参数。 结果 偏干生境下蒙古栎的平均导管面积(MVA)、木质部脆弱性指数(Vx)显著增大,但蒙古栎的水力效率(Ks)在2个生境间差异不显著。从偏湿生境到偏干生境,紫椴的MVA、Vx、Ks显著降低。在3个树种中,只有红松的平均管胞面积(MTA)和Vx在2个生境下差异不显著,同时在偏干生境下Ks显著提高。偏干生境下红松、蒙古栎、紫椴的年轮宽度(RW)均与生长季的帕默尔干旱指数(PDSI)呈显著正相关,且其敏感性随土壤含水量的增加而降低。偏干生境下蒙古栎的Ks与前一年11月―当年10月的PDSI显著负相关,紫椴的RW、MVA与前一年非生长季最低温显著正相关。 结论 生长季初期干旱是制约穆棱地区红松管胞面积和水力效率的重要因素,在未来红松可能会更强烈地感受到东北地区的气候变化。紫椴在偏干生境下降低水力效率以提高水力安全。偏干生境下的蒙古栎生长量和平均导管面积大于偏湿生境,所以未来的暖干化气候条件可能对蒙古栎的生长更有益,但存在空穴化风险。明确全球变暖带来的干旱胁迫是否会改变树种生长状况,对调整当前的造林措施以使针阔混交林更好地应对未来的暖干化气候条件至关重要。 Abstract:Objective To clarify the differences in the anatomical characteristics of the xylem of trees in different habitats and the growth changes of the xylem of trees under warm and dry climate conditions. Method The relatively dry and relatively wet habitat sampling sites were set up in mixed coniferous forests in Muling City, Heilongjiang Province, and Pinus koraiensis, Quercus mongolica, and Tilia amurensis were sampled. Micro-sections were cut with a rotary microtome to obtain the anatomical parameters of the xylem. Result The mean vessel area (MVA) and vulnerability index (Vx) of Quercus mongolica in the relatively dry habitat increased significantly, but the theoretical xylem-specific hydraulic conductivity (Ks) of Quercus mongolica did not differ significantly between the two habitats. From relatively wet habitat to relatively dry habitat, MVA, Vx, and Ks of Tilia amurensis were significantly reduced. Among the three tree species, only the mean tracheid area (MTA) and Vx of Pinus koraiensis did not differ significantly in the two habitats, and at the same time, the Ks was significantly increased in the relatively dry habitat. The tree-ring widths (RW) of Pinus koraiensis, Quercus mongolica, and Tilia amurensis in relatively dry habitat were all significantly positively correlated with the Palmer drought severity index (PDSI) of the growing season, and the sensitivity decreased when the water content of soil rose. The Ks of Quercus mongolica in the relatively dry habitat was significantly negatively correlated with the PDSI from November of the previous year to October of the current year. The RW and MVA of Tilia amurensis in the relatively dry habitat was significantly positively correlated with the lowest temperature in the previous non-growing season (PNG). Conclusion At the beginning of the growing season, drought was an important factor that restricted the tracheid area and hydraulic efficiency of Pinus koraiensis in the Muling area. In the future, Pinus koraiensis may feel the change of climatic conditions in northeast China more strongly. Tilia amurensis reduces hydraulic efficiency in relatively dry habitats to improve hydraulic safety. The growth and MVA of Quercus mongolica in the relatively dry habitat were greater than that in the relatively wet habitat, so future warm and dry climate conditions may be more beneficial to the growth of Quercus mongolica but there was also a risk of cavitation to it. Clarifying whether drought stress due to global warming will alter tree growth is critical to adjusting current silvicultural practices, which is better for mixed coniferous forests to cope with future warming and drying climatic conditions. -
图 1 红松、紫椴、蒙古栎的木质部显微切片图
空心箭头表示生长方向;T. 管胞;V. 导管;红松/紫椴木质部显微切片图的比例尺为100 μm,蒙古栎木质部显微切片图的比例尺为1 mm。Hollow arrows indicate growth direction; T, tracheid; V, vessel; Scale bars are 100 μm in the microsection of xylem of Pinus koraiensis/Tilia amurensis and 1 mm in the microsection of xylem of Quercus mongolica.
Figure 1. Microsection of xylem of Pinus koraiensis, Tilia amurensis, and Quercus mongolica among sites
图 2 不同生境下红松、蒙古栎、紫椴树轮宽度和木质部解剖参数的主成分分析
RW. 年轮宽度;MVA/MTA. 平均导管/管胞面积;VAmax/TAmax. 最大导管/管胞面积;Vx. 木质部脆弱性指数;Ks. 水力效率;RCTA. 导水面积百分比;CWT. 细胞壁厚度;Dh. 平均水力直径。下同。 RW, ring width; MVA/MTA, mean vessel area/mean tracheid area; VAmax/TAmax, annual ring with largest mean vessel area/annual ring with largest mean tracheid area; Vx, vulnerability index; Ks, theoretical xylem-specific hydraulic conductivity; RCTA, mean percentage of the conductive area within xylem; CWT, overall mean thickness of all cell walls; Dh, overall mean hydraulic diameter. The same below.
Figure 2. Principal component analysis (PCA) of ring width and xylem anatomical parameters of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites
图 3 不同生境下红松、蒙古栎、紫椴树轮宽度和木质部解剖特征的箱线图对比
“*”、“NS”分别表示差异显著(P < 0.05)和无显著差异。*, NS indicate significant difference at P < 0.05 and P > 0.05 levels, respectively.
Figure 3. Boxplots for characteristics of tree-ring width and xylem anatomy features of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites
图 4 不同生境下的红松、蒙古栎、紫椴的木质部解剖特征年表/树轮宽度年表与1951—2019年期间月PDSI数据的相关性
小写字母代表上一年的月份。 “实心”、“空心”分别表示在P < 0.05水平上的显著相关和不显著相。Lower case letters represent months of the previous year. “solid”, “hollow” indicate significant correlations at P < 0.05 and P > 0.05 levels, respectively.
Figure 4. Correlations between xylem anatomy features/ring width chronologies of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites and monthly climate variables, PDSI for the period 1951–2019
图 6 不同生境下的红松、蒙古栎、紫椴的木质部解剖特征年表/树轮宽度年表与1951—2019年期间季节PDSI和季节最低温数据的相关性
PNG. 前一年非生长季(前一年11—当年3月);BGS. 生长季初期(当年4—5月);MGS. 生长季中期(当年6—8月);EGS. 生长季末期(当年9—10)。PNG, Previous non-growing season (previous November to current March); BGS, Beginning of the growing season (current April to May); MGS, Middle of the growing season (current June to August); EGS, End of the growing season (current September to October).
Figure 6. Correlations between xylem anatomy features/ring width chronologies of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites and the season climate variables, PDSI and minimum temperature for the period 1951–2019
表 1 不同生境下红松、蒙古栎、紫椴不同土层土壤的含水率
Table 1. Soil moisture content in different soil layers of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites
树种 Tree species 生境 Habitat 土壤含水率 Soil moisture content/% 0 ~ 20 cm 20 ~ 40 cm 40 ~ 60 cm 60 ~ 80 cm 80 ~ 100 cm 红松 Pinus koraiensis 偏干 Relatively dry 10.15a 5.34a 3.54a 3.24a 2.62a 偏湿 Relatively wet 15.78b 12.53b 9.2b 7.62b 4.68a 蒙古栎 Quercus mongolica 偏干 Relatively dry 30.49a 10.55a 5.37a 5.18a 5.16a 偏湿 Relatively wet 42.69b 14.12b 12.84b 12.66b 11.08b 紫椴 Tilia amurensis 偏干 Relatively dry 22.89a 12.19a 5.14a 4.85a 4.54a 偏湿 Relatively wet 30.85b 19.71b 12.31b 11.68b 10.64b 注:同一树种同一土层不同小写字母代表P < 0.05水平的差异显著性。Notes: Different lowercase letters for the same tree species and the same soil layer represent significant differences at the P < 0.05 level. 表 2 不同生境下红松、蒙古栎、紫椴的采样点信息及所取样芯数量
Table 2. The information of the sampling sites and the number of sampled cores of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites
树种
Tree species生境
Habitat坡向
Aspect海拔
Altitude/m土壤有机质
Soil organic matter/(g·kg−1)纬度
Latitude经度
Longitude样芯数量
Core number红松
Pinus koraiensis偏干
Relatively dry南 South 694 109.33a 44°02′N 130°09′E 40 偏湿
Relatively wet西 West 654 162.85b 43°58′N 130°05′E 36 蒙古栎
Quercus mongolica偏干
Relatively dry南 South 708 89.88a 44°02′N 130°08′E 42 偏湿
Relatively wet东北 Northeast 559 120.46b 44°00′N 130°10′E 40 紫椴
Tilia amurensis偏干
Relatively dry东南 Southeast 713 118.32a 43°57′N 130°04′E 36 偏湿
Relatively wet西 West 707 244.5b 44°11′N 130°12′E 40 注:同一树种不同小写字母代表P < 0.05水平的差异显著性。Notes: Different lowercase letters for the same tree species represent significant differences at the P < 0.05 level. 表 3 不同生境下红松、蒙古栎、紫椴标准年表的主要统计特征
Table 3. Major statistic characteristics of the standard chronologies of Pinus koraiensis, Quercus mongolica, and Tilia amurensis among sites
树种
Tree species生境
Habitat时间跨度
Time span标准年表特征值
Eigenvalue of standard chronology公共区间统计量
Common interval analysisMS SD MC AC SNR EPS VF/% 红松
Pinus koraiensis偏干
Relatively dry1890—2019 0.30 0.29 0.69 0.56 26.1 0.96 52.64 偏湿
Relatively wet1922—2019 0.18 0.38 0.52 0.88 14.1 0.93 35.8 蒙古栎
Quercus mongolica偏干
Relatively dry1802—2019 0.24 0.21 0.62 0.42 10.0 0.91 34.1 偏湿
Relatively wet1809—2019 0.28 0.27 0.67 0.47 19.8 0.95 41.8 紫椴
Tilia amurensis偏干
Relatively dry1843—2019 0.31 0.28 0.59 0.53 13.3 0.93 39.2 偏湿
Relatively wet1825—2019 0.30 0.32 0.56 0.70 17.4 0.95 43.2 注:MS. 平均敏感度;SD. 标准偏差;MC. 平均相关系数;AC. 一阶自相关;SNR. 信噪比;EPS. 样本量的总体解释信号;VF. 第一特征根解释量。Notes: MS, mean sensitivity; SD, standard deviation; MC, mean correlation; AC, first order autocorrelation; SNR, signal-to-noise ratio; EPS, expressed population signal; VF, variance in first eigenvector. -
[1] Pan Y, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988−993. doi: 10.1126/science.1201609 [2] Anderegg W R L, Flint A, Huang C-y, et al. Tree mortality predicted from drought-induced vascular damage[J]. Nature Geoscience, 2015, 8: 367−371. doi: 10.1038/ngeo2400 [3] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660−684. doi: 10.1016/j.foreco.2009.09.001 [4] Kannenberg S A, Maxwell J T, Pederson N, et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US[J]. Ecology Letters, 2019, 22(1): 119−127. doi: 10.1111/ele.13173 [5] Castagneri D, Carrer M, Regev L, et al. Precipitation variability differently affects radial growth, xylem traits and ring porosity of three Mediterranean oak species at xeric and mesic sites[J]. Science of The Total Environment, 2020, 699: 134285. doi: 10.1016/j.scitotenv.2019.134285 [6] Castagneri D, Petit G, Carrer M. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient[J]. Tree Physiology, 2015, 35(12): 1378−1387. doi: 10.1093/treephys/tpv085 [7] Hudson P J, Limousin J M, Krofcheck D J, et al. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA[J]. Plant Cell & Environment, 2017, 41(2): 421−435. [8] Björklund J, Seftigen K, Schweingruber F, et al. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers[J]. New Phytologist, 2017, 216(3): 728−740. doi: 10.1111/nph.14639 [9] Rita A, Cherubini P, Leonardi S, et al. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series[J]. Tree Physiology, 2015, 35(8): 817−828. doi: 10.1093/treephys/tpv055 [10] Brodribb T J. Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity[J]. Plant Science, 2009, 177(4): 245−251. doi: 10.1016/j.plantsci.2009.06.001 [11] Losso A, Anfodillo T, Ganthaler A, et al. Robustness of xylem properties in conifers: analyses of tracheid and pit dimensions along elevational transects[J]. Tree Physiology, 2018, 38(2): 212−222. doi: 10.1093/treephys/tpx168 [12] Khansaritoreh E, Schuldt B, Dulamsuren C. Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe[J]. Annals of Forest Science, 2018, 75: 30. doi: 10.1007/s13595-018-0701-2 [13] Zalloni E, Battipaglia G, Cherubini P, et al. Contrasting physiological responses to Mediterranean climate variability are revealed by intra-annual density fluctuations in tree rings of Quercus ilex L. and Pinus pinea L.[J]. Tree Physiology, 2018, 38(8): 1213−1224. doi: 10.1093/treephys/tpy061 [14] Rubio-Cuadrado Á, Camarero J J, del Río M, et al. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest[J]. Agricultural and Forest Meteorology, 2018, 259: 48−59. doi: 10.1016/j.agrformet.2018.04.015 [15] Carnicer J, Barbeta A, Sperlich D, et al. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale[J]. Frontiers in Plant Science, 2013, 4: 409. [16] Poyatos R, Aguadé D, Galiano L, et al. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine[J]. New Phytologist, 2013, 200(2): 388−401. doi: 10.1111/nph.12278 [17] Barbeta A, Peñuelas J. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests[J]. Global Change Biology, 2017, 23(12): 5054−5068. doi: 10.1111/gcb.13770 [18] Vitasse Y, Bottero A, Cailleret M, et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species[J]. Global Change Biology, 2019, 25(11): 3781−3792. doi: 10.1111/gcb.14803 [19] Willis K J, Jeffers E S, Tovar C. What makes a terrestrial ecosystem resilient?[J]. Science, 2018, 359(6379): 988−989. doi: 10.1126/science.aar5439 [20] Cavin L, Jump A S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge[J]. Global Change Biology, 2017, 23(1): 362−379. doi: 10.1111/gcb.13366 [21] Helman D, Lensky I M, Yakir D, et al. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests[J]. Global Change Biology, 2017, 23(7): 2801−2817. doi: 10.1111/gcb.13551 [22] 韩金生, 赵慧颖, 朱良军, 等. 小兴安岭蒙古栎和黄菠萝径向生长对气候变化的响应比较[J]. 应用生态学报, 2019, 30(7): 2218−2230.Han J S, Zhao Y H, Zhu L J, et al. Comparing the responses of radial growth between Quercus mongolica and Phellodendron amurense to climate change in Xiaoxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2218−2230. [23] 朱良军. 4个温带硬阔导管特征与径向生长对气候变化的响应[D]. 哈尔滨: 东北林业大学, 2019.Zhu L J. Response to climate change of vessel features and radial growth of four hardwood species from temperate forests of Northeast China[D]. Harbin: Northeast Forestry University, 2019. [24] 谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山蒙古栎和紫椴径向生长对气候变化的响应[J]. 西北林学院学报, 2021, 36(3): 1−9.Xie L H, Huang Q Y, Cao H J, et al. Response of radial growth for Quercus mongolica and Tilia amurensis in Wudalianchi Volcano, China to climate changes[J]. Journal of Northwest Forestry University, 2021, 36(3): 1−9. [25] Yu D P, Liu J Q, Lewis B J, et al. Spatial variation and temporal instability in the climate–growth relationship of Korean pine in the Changbai Mountain region of Northeast China[J]. Forest Ecology and Management, 2013, 300: 96−105. doi: 10.1016/j.foreco.2012.06.032 [26] 刘敏, 毛子军, 厉悦, 等. 不同径级红松径向生长对气候变化的响应[J]. 应用生态学报, 2018, 29(11): 3530−3540.Liu M, Mao Z J, Li Y, et al. Response of radial growth to climate change in Pinus koraiensis with different diameter classes[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3530−3540. [27] 陆静梅, 唐家军, 吴伟, 等. 红松根和茎木材解剖研究[J]. 东北师大学报·自然科学版, 1991(3): 73−76.Lu J M, Tang J J, Wu W, et al. The studies between root and trunk wood in Pinus koraiensis Sieb et Zucc[J]. Journal of Northeast Normal University(Natural Science Edition), 1991(3): 73−76. [28] 于健. 长白山阔叶红松林主要树种径向生长对气候变化响应及温度重建[D]. 北京: 北京林业大学, 2019.Yu J. Rosponse of radial growth of main tree species of broad-leaved Korean pine forest to climate change in Changbai Mountain and temperature reconstruction[D]. Beijing: Beijing Forestry University, 2019. [29] Stokes M A, Smiley T L. An introduction to tree-ring dating[M]. Tucson: University of Arizona Press, 1996. [30] Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 44: 69−75. [31] Gärtner H, Lucchinetti S, Schweingruber F H. New perspectives for wood anatomical analysis in dendrosciences: The GSL1-microtome[J]. Dendrochronologia, 2014, 32(1): 47−51. doi: 10.1016/j.dendro.2013.07.002 [32] von Arx G, Crivellaro A, Prendin A L, et al. Quantitative wood anatomy—practical guidelines[J]. Frontiers in Plant Science, 2016, 7: 781. [33] Lewis A M, Boose E R. Estimating volume flow rates through xylem conduits[J]. American Journal of Botany, 1995, 82(9): 1112−1116. doi: 10.1002/j.1537-2197.1995.tb11581.x [34] Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap[M]. New York: Springer, 2002. [35] Carlquist S. Ecological factors in wood evolution: a floristic approach[J]. American Journal of Botany, 1977, 64(7): 887−896. doi: 10.1002/j.1537-2197.1977.tb11932.x [36] Bunn A G. A dendrochronology program library in R (dplR)[J]. Dendrochronologia, 2008, 26(2): 115−124. doi: 10.1016/j.dendro.2008.01.002 [37] Zang C, Biondi F. treeclim: an R package for the numerical calibration of proxy-climate relationships[J]. Ecography, 2015, 38(4): 431−436. doi: 10.1111/ecog.01335 [38] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.Huang C Y. Soil Science[M]. Beijing: China Agriculture Press, 2000. [39] Sperry J S, Meinzer F C, McCulloh K A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees[J]. Plant Cell & Environment, 2008, 31(5): 632−645. [40] Ewers F W. Xylem’ structure and water conduction in conifer trees, dicot trees, and llanas[J]. IAWA Journal, 1985, 6(4): 309−317. doi: 10.1163/22941932-90000959 [41] Pittermann J, Sperry J S. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size[J]. Plant Physiology, 2006, 140(1): 374−382. doi: 10.1104/pp.105.067900 [42] Altman J, Treydte K, Pejcha V, et al. Tree growth response to recent warming of two endemic species in Northeast Asia[J]. Climatic Change, 2020, 162(3): 1345−1364. doi: 10.1007/s10584-020-02718-1 [43] Zweifel R, Steppe K, Sterck F J. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model[J]. Journal of Experimental Botany, 2007, 58(8): 2113−2131. doi: 10.1093/jxb/erm050 [44] 杨青霄, 朱良军, 王晓春. 凉水自然保护区红松树轮年表建立及特征年分析[J]. 植物研究, 2015, 35(3): 418−424.Yang Q X, Zhu L J, Wang X C. Development of Pinus koraiensis tree-ring chronology and master year analysis in Liangshui National Natural Reserve, China[J]. Bulletin of Botanical Research, 2015, 35(3): 418−424. [45] 姚启超, 王晓春. 小兴安岭不同海拔臭冷杉年轮--气候关系及大尺度气候影响[J]. 北京林业大学学报, 2013: 35 (2): 30−38+9.Yao Q C, Wang X C. Climate-growth relationships of Abies nephrolepis and its connection with large-scale climate change in Xiaoxing’an Mountains, northeastern China[J]. Journal of beijing forestry university, 2013, 35(2): 30−38+9. [46] Gea-Izquierdo G, Battipaglia G, Gärtner H, et al. Xylem adjustment in Erica arborea to temperature and moisture availability in contrasting climates[J]. IAWA Journal, 2013, 34(2): 109−126. doi: 10.1163/22941932-00000010 [47] Islam M, Rahman M, Bräuning A. Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate[J]. Frontiers in Plant Science, 2018, 9: 1761. doi: 10.3389/fpls.2018.01761 [48] Mencuccini M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms[J]. Plant Cell & Environment, 2003, 26(1): 163−182. [49] Gea-Izquierdo G, Fonti P, Cherubini P, et al. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability[J]. Tree Physiology, 2012, 32(4): 401−413. doi: 10.1093/treephys/tps026 [50] Zimmermann J, Link R M, Hauck M, et al. 60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring- and diffuse-porous temperate broad-leaved tree species[J]. Trees, 2021, 35: 919−937. doi: 10.1007/s00468-021-02090-2 [51] Rossi L, Sebastiani L, Tognetti R, et al. Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability[J]. Plant and Soil, 2013, 372: 567−579. doi: 10.1007/s11104-013-1759-0 [52] Gleason S M, Westoby M, Jansen S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species[J]. New Phytologist, 2016, 209(1): 123−136. doi: 10.1111/nph.13646 [53] Elliott K J, Miniat C F, Pederson N, et al. Forest tree growth response to hydroclimate variability in the southern Appalachians[J]. Global Change Biology, 2015, 21(12): 4627−4641. doi: 10.1111/gcb.13045 [54] 胡明新, 周广胜, 吕晓敏, 等. 温度和光周期协同作用对蒙古栎幼苗春季物候的影响[J]. 生态学报, 2021, 41(7): 2816−2825.Hu M X, Zhou G S, Lv X M, et al. Interactive effects of different warming and changing photoperiod on spring phenology of Quercus mongolicus seedings[J]. Acta Ecologica Sinica, 2021, 41(7): 2816−2825. [55] Caffarra A, Donnelly A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst[J]. International Journal of Biometeorology, 2011, 55: 711−721. doi: 10.1007/s00484-010-0386-1 [56] Körner C, Basler D. Phenology under global warming[J]. Science, 2010, 327(5972): 1461−1462. doi: 10.1126/science.1186473 [57] Martin-Benito D, Pederson N. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest[J]. Journal of Biogeography, 2015, 42(5): 925−937. doi: 10.1111/jbi.12462 -