高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行竹集成材复合型断裂性能研究

张涵政 李智 刘问 刘承阳

张涵政, 李智, 刘问, 刘承阳. 平行竹集成材复合型断裂性能研究[J]. 北京林业大学学报, 2022, 44(7): 146-156. doi: 10.12171/j.1000-1522.20220004
引用本文: 张涵政, 李智, 刘问, 刘承阳. 平行竹集成材复合型断裂性能研究[J]. 北京林业大学学报, 2022, 44(7): 146-156. doi: 10.12171/j.1000-1522.20220004
Zhang Hanzheng, Li Zhi, Liu Wen, Liu Chengyang. Mixed-mode fracture properties of parallel laminated bamboo lumber[J]. Journal of Beijing Forestry University, 2022, 44(7): 146-156. doi: 10.12171/j.1000-1522.20220004
Citation: Zhang Hanzheng, Li Zhi, Liu Wen, Liu Chengyang. Mixed-mode fracture properties of parallel laminated bamboo lumber[J]. Journal of Beijing Forestry University, 2022, 44(7): 146-156. doi: 10.12171/j.1000-1522.20220004

平行竹集成材复合型断裂性能研究

doi: 10.12171/j.1000-1522.20220004
基金项目: 中央高校基本科研业务费专项(2021ZY53),浙江大学(宁海)生物质材料与碳中和联合研究中心项目
详细信息
    作者简介:

    张涵政。主要研究方向:竹木结构。Email:zhz3190614@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    刘问,副教授。主要研究方向:断裂力学、竹木结构。Email:liuwen@bjfu.edu.cn 地址:同上

  • 中图分类号: S781.9;TU531.3

Mixed-mode fracture properties of parallel laminated bamboo lumber

  • 摘要:   目的  探究平行竹集成材在复杂应力下沿纤维方向的断裂性能,并根据断裂表面分析其破坏机理,最终得到平行竹集成材复合型断裂基本规律,并建立相应模型。  方法  运用Arcan试验测试平行竹集成材蝶形试件沿纤维方向的断裂性能,通过调整加载角度进行不同形式的测试,从而实现试验材料Ⅰ型、Ⅱ型和复合型断裂。设置不同缝高比研究断裂韧带长度对试件断裂韧性的影响;通过测得的极值荷载计算其断裂韧度,并结合断面分析平行竹集成材不同形式断裂的破坏机理;最终通过复合型断裂包络图分析得到平行竹集成材沿纤维方向复合型断裂准则。  结果  平行竹集成材沿纤维方向Ⅰ型、Ⅱ型和复合型断裂均为脆性断裂,且试件在复杂应力条件下更容易发生破坏。Ⅰ型断裂试验裂缝主要在薄壁细胞层间和纤维/薄壁细胞组织界面沿纤维方向发展。在Ⅱ型断裂试验中,裂缝在纤维/薄壁细胞组织界面发展的同时,也在薄壁细胞组织多层间开展,形成薄壁细胞组织桥连机制,提高试件承载力。Ⅰ型和Ⅱ型断裂试验中竹纤维均基本不参与断裂。随着试件缝高比改变,Ⅰ型断裂韧度变化幅度较小,Ⅱ型断裂韧度在试件缝高比0.5时有最大值。平行竹集成材复合型断裂试验中,随着加载角度的增加,Ⅰ型断裂韧度分量逐渐减小,Ⅱ型断裂韧度分量逐渐增加;当试件缝高比0.3时,等效断裂韧度随加载角度的增加而增加,缝高比0.6时随加载角度的增加而减小。  结论  平行竹集成材试件缝高比为0.3时,复合型断裂准则曲线能够较好描述其复合型断裂特征。

     

  • 图  1  测试试件和试验装置

    a代表预制裂缝长度,mm; $ \alpha $为试件加载角度,(°)。a represents the prefabricated crack length, mm; α is the loading angle of specimen, (°).

    Figure  1.  Test specimen and apparatus

    图  2  平行竹集成材张开型(Ⅰ型)和滑移型(Ⅱ型)断裂

    Figure  2.  Parallel laminated bamboo lumber open (type-I) and slip (type-II) fractures

    图  3  Ⅰ型断裂试验和荷载−位移曲线

    0°代表试件加载角度,0.3、0.5和0.6代表加载试件的缝高比。0° represents the loading angle of the specimen, and 0.3, 0.5 and 0.6 represent the crack-to-height ratios of the loading specimen.

    Figure  3.  Type-I fracture test and load-displacement curves

    图  4  平行竹集成材Ⅰ型断面

    Figure  4.  Type I section of parallel bamboo laminated timber

    图  5  Ⅱ型断裂试验和荷载−位移曲线

    90°代表试件加载角度,0.3、0.5和0.6代表加载试件的缝高比。90° represents the loading angle of the specimen, and 0.3, 0.5 and 0.6 represent the crack-to-height ratio of the loading specimen.

    Figure  5.  Type-II fracture test and load-displacement curves

    图  6  平行竹集成材Ⅱ型断面

    Figure  6.  Parallel laminated bamboo lumber type-II failure section

    图  7  缝高比0.3和0.6的复合型断裂荷载−位移曲线

    15°、30°、45°、60°、75°代表试件加载角度,0.3和0.6代表加载试件的缝高比。15°, 30°, 45°, 60°, 75° represent the loading angle of the specimen, and 0.3 and 0.6 represent the crack-to-height ratio of the loading specimen.

    Figure  7.  Crack-to-height ratios of 0.3 and 0.6 mixed-mode fracture load-displacement curves

    图  8  缝高比 0.3复合型断裂15° ~ 75°断面

    Figure  8.  Crack-to-height ratio of 0.3 mixed-mode fracture 15°−75° failure section

    图  9  缝高比 0.6复合型断裂15° ~ 75°断面

    Figure  9.  Crack-to-height ratio of 0.6 mixed-mode fracture 15°−75° failure section

    图  10  不同缝高比试件复合型断裂的Ⅰ型和Ⅱ型断裂韧度分量变化趋势

    KIKII为试件Ⅰ型和Ⅱ型断裂韧度分量,MPa·m0.5KI and KII are the fracture toughness components of specimens type-I and type-II, MPa·m0.5.

    Figure  10.  Variation trend of type-I and type-II fracture toughness components of composite fractures of specimens with different crack-to-height ratios

    图  11  缝高比0.3和0.6试件的复合型等效断裂韧度

    Figure  11.  Mixed-mode equivalent fracture toughness of specimens with crack-to-height ratio of 0.3 and 0.6

    图  12  平行竹集成材复合型断裂模型

    曲线为当公式(8)中m = 2,n = 1时,所得到的拟合结果;虚线及其上的数据点表示各个试件在0° ~ 90°不同加载条件下的断裂情况。The curve in the figure is the fitting result when m = 2, n = 1 in formula (8); the dashed line and the data points on it represent the fracture of each specimen under different loading conditions of 0° − 90°.

    Figure  12.  Composite fracture model of parallel laminated bamboo lumber

    表  1  Ⅰ型断裂极值荷载、正应力和断裂韧度

    Table  1.   Extreme load, normal stress and fracture toughness of type-I fracture

    项目 Item缝高比
    Crack-to-height ratio(a/W
    0.30.50.6
    极值荷载 Extreme load/kN 0.91 0.44 0.27
    正应力 Normal stress/MPa 2.72 1.83 1.39
    Ⅰ型断裂韧度
    Fracture toughness of type-I fracture (KIC)/(MPa·m0.5)
    0.66 0.61 0.57
    变异系数 Coefficient of variation/% 8.29 2.27 11.46
    注:变异系数反映每组3个重复试件的离散程度。下同。Notes: coefficient of variation reflects the dispersion of three repeated specimens in each group. The same below.
    下载: 导出CSV

    表  2  Ⅱ型断裂极值荷载、剪应力和断裂韧度

    Table  2.   Extreme load, shear stress and fracture toughness of type-II fracture

    项目 Itema/W
    0.30.50.6
    极值荷载 Extreme load/kN 2.66 2.66 1.18
    剪应力 Shear stress/MPa 7.91 11.07 6.15
    Ⅱ型断裂韧度 Fracture toughness of type-II fracture (KIIC)/(MPa·m0.5) 1.12 1.51 0.79
    变异系数 Coefficient of variation/% 29.47 12.58 11.06
    下载: 导出CSV

    表  3  缝高比0.3试件的极值荷载、正应力和剪应力

    Table  3.   Extreme load, normal stress and shear stress of specimens with crack-to-height ratio of 0.3

    项目 Item加载角度 Load angle/(°)
    1530456075
    极值荷载 Extreme load/kN 0.66 0.71 0.82 1.07 2.38
    正应力 Normal stress/MPa 1.89 1.84 1.74 1.60 1.83
    剪应力 Shear stress/MPa 0.51 1.06 1.74 2.77 6.83
    变异系数 Coefficient of variation/% 7.51 7.72 5.04 8.81 3.04
    下载: 导出CSV

    表  4  缝高比0.6试件极值荷载、正应力和剪应力

    Table  4.   Extreme load, normal stress and shear stress of specimens with crack-to-height ratio of 0.6

    项目 Item加载角度 Load angle/(°)
    1530456075
    极值荷载 Extreme load/kN 0.35 0.18 0.15 0.2 0.17
    正应力 Normal stress/MPa 1.74 0.81 0.55 0.52 0.23
    剪应力 Shear stress/MPa 0.47 0.47 0.55 0.90 0.86
    变异系数 Coefficient of variation/% 7.26 5.56 6.67 5.00 5.88
    下载: 导出CSV
  • [1] 李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6): 1−10.

    Li H T, Xuan Y W, Xu B, et al. Bamboo application in civil engineering field[J]. Journal of Forestry Engineering, 2020, 5(6): 1−10.
    [2] 陶慕轩, 聂建国, 樊健生, 等. 中国土木结构工程科技2035发展趋势与路径研究[J]. 中国工程科学, 2017, 19(1): 73−79.

    Tao M X, Nie J G, Fan J S, et al. Development trends and path for China’s civil and structural engineering science and technology to 2035[J]. Strategic Study of CAE, 2017, 19(1): 73−79.
    [3] 李海涛, 张齐生, 吴刚, 等. 竹集成材研究进展[J]. 林业工程学报, 2016, 1(6): 10−16.

    Li H T, Zhang Q S, Wu G, et al. A review on development of laminated bamboo lumber[J]. Journal of Forestry Engineering, 2016, 1(6): 10−16.
    [4] Habibi M K, Lu Y. Crack propagation in bamboo’s hierarchical cellular structure[J]. Scientific Reports, 2014, 4(1): 1−7.
    [5] 冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系[J]. 竹子研究汇刊, 1990(3): 10−23.

    Xian X J, Xian D G. The relationship of microstructure and mechanical properties of bamboo[J]. Journal of Bamboo Research, 1990(3): 10−23.
    [6] Chen Q, Dai C, Fang C, et al. Mode I interlaminar fracture toughness behavior and mechanisms of bamboo[J]. Materials & Design, 2019, 183: 108132.
    [7] Shao Z, Fang C, Tian G. Mode I interlaminar fracture property of moso bamboo (Phyllostachys pubescens)[J]. Wood Science and Technology, 2009, 43(5−6): 527−536. doi: 10.1007/s00226-009-0265-2
    [8] Amada S, Untao S. Fracture properties of bamboo[J]. Composites Part B: Engineering, 2001, 32(5): 451−459. doi: 10.1016/S1359-8368(01)00022-1
    [9] Reynolds T P S, Sharma B, Serrano E, et al. Fracture of laminated bamboo and the influence of preservative treatments[J]. Composites Part B: Engineering, 2019, 174: 107017. doi: 10.1016/j.compositesb.2019.107017
    [10] 李征. 层板胶合木复合型层间断裂特性研究[D]. 大连: 大连理工大学, 2017.

    Li Z. Study on mixed-mode interlaminar fracture characteristics of glued-laminated timber[D]. Dalian: Dalian University of Technology, 2017.
    [11] Ducept F, Davies P, Gamby D. An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(8): 719−729. doi: 10.1016/S1359-835X(97)00012-2
    [12] Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens[J]. Materials Science and Engineering: A, 2008, 478(1−2): 229−242. doi: 10.1016/j.msea.2007.05.103
    [13] Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439−449. doi: 10.1016/0266-3538(96)00005-X
    [14] Shameli M, Choupani N. Fracture criterion of woven glass-epoxy composite using a new modified mixed-mode loading fixture[J]. International Journal of Applied Mechanics, 2016, 8(2): 1650015. doi: 10.1142/S1758825116500150
    [15] Abu-Okail M, Nafea M, Ghanem M A, et al. Damage mechanism evaluation of polymer matrix composite reinforced with glass fiber via modified Arcan test specimens[J]. Journal of Failure Analysis and Prevention, 2021, 21(2): 451−461. doi: 10.1007/s11668-020-01078-3
    [16] Hasanpour R, Choupani N. Rock fracture characterization using the modified Arcan test specimen[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 346−354. doi: 10.1016/j.ijrmms.2008.07.004
    [17] Rhême M, Botsis J, Cugnoni J, et al. Mixed mode fracture behavior of welded wood joints investigated with the Arcan test[J]. Wood Science and Technology, 2015, 50(1): 53−69.
    [18] Pitti R M, Dubois F, Pop O. A proposed mixed-mode fracture specimen for wood under creep loadings[J]. International Journal of Fracture, 2011, 167(2): 195−209. doi: 10.1007/s10704-010-9544-z
    [19] Méité M, Dubois F, Pop O, et al. Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling[J]. Engineering Fracture Mechanics, 2013, 105: 86−100. doi: 10.1016/j.engfracmech.2013.01.008
    [20] El-Hajjar R F. Experimental study and analytical modeling of translayer fracture in pultruded FRP composites[M]. Atlanta: Georgia Institute of Technology, 2004.
    [21] 邵卓平, 吴贻军, 王福利. 竹材横向断裂的物理模型与能量吸收机制: 基本组织开裂与界面脱粘[J]. 林业科学, 2012, 48(7): 108−113. doi: 10.11707/j.1001-7488.20120718

    Shao Z P, Wu Y J, Wang F L. The physical model and energy absorbing mechanism of bamboo transverse fracture: the cracking of parenchyma tissue and layering of interface[J]. Scientia Silvae Sinicae, 2012, 48(7): 108−113. doi: 10.11707/j.1001-7488.20120718
    [22] 王福利, 王献轲, 周佳硕, 等. 竹材薄壁组织拉伸性能及其变异规律的研究[J]. 北京林业大学学报, 2020, 42(11): 130−137. doi: 10.12171/j.1000-1522.20200203

    Wang F L, Wang X K, Zhou J S, et al. Tensile properties and its variation pattern of bamboo parenchyma[J]. Journal of Beijing Forestry University, 2020, 42(11): 130−137. doi: 10.12171/j.1000-1522.20200203
    [23] Balcıoğlu H E, Yalçın D. The determination of fracture characterization of knitted fabric reinforced composites using Arcan test[J]. Fibers and Polymers, 2020, 21(4): 849−863. doi: 10.1007/s12221-020-9619-z
    [24] Wu E M. Application of fracture mechanics to anisotropic plates[J]. Journal of Applied Mechanics, 1967, 34(4): 967−974. doi: 10.1115/1.3607864
    [25] Jurf R A, Pipes R B. Interlaminar fracture of composite materials[J]. Journal of Composite Materials, 1982, 16(5): 386−394. doi: 10.1177/002199838201600503
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-07-04
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回