Growth and physiological changes of walnut seedlings under different nutrient deficiency conditions
-
摘要:
目的 研究核桃幼苗在不同缺素条件下的表型特征及生长和生理特性变化,为核桃幼苗的科学高效管理提供理论依据。 [ 方法]采用盆栽试验,设置缺氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)处理及对照,研究不同缺素条件下核桃幼苗的表型特征及生长生理变化。 结果 (1)不同缺素处理的核桃幼苗叶部症状和出现时间不同,其中缺N症状出现最早,缺Mg次之,缺K出现最晚。幼苗的生长明显受阻,其中缺N和缺Mg的地上部分生物量分别较对照组(CK)下降了66.5%和48.6%,根系生物量分别较CK下降了48.0%和55.0%;(2)缺素处理的核桃幼苗叶片光合色素含量、净光合速率、气孔导度较CK均显著降低,其中缺N和缺Mg的幼苗叶片光合色素含量下降幅度最大,缺Ca和缺Mg的净光合速率和气孔导度下降幅度最大;(3)各处理核桃幼苗叶绿素荧光参数表现出明显差异,但总体上各缺素处理的实际光化学效率(ΦPSII)、电子传递速率(ETR)、最大光化学效率(Fv/Fm)、光化学淬灭系数(qP)值均显著低于CK处理,非光化学淬灭系数(NPQ)值显著高于CK处理,其中以缺P处理的变化最为明显;(4)缺素处理的核桃幼苗生长素和脱落酸含量较CK均显著升高,而精胺和亚精胺含量较CK均显著降低,其中以缺N处理的变化最为明显。 结论 缺素对幼苗的光合效率和激素代谢等均有一定影响,以缺N、缺Mg、缺Ca的影响最明显。因此,在核桃幼苗培育中,应加强苗木生长观测,尤其是易发生且症状明显的N、Ca、Mg元素缺乏的诊断,及时进行针对性地补充,以提高核桃的育苗质量。 Abstract:Objective To study the phenotypic characteristics, growth and physiological characteristics of walnut seedlings under different nutrient deficiency conditions, so as to provide a theoretical basis for scientific and efficient management of walnut seedlings. Method Pot experiment was conducted to study the phenotypic characteristics and growth physiological changes of walnut seedlings deficient in N, P, K, Ca and Mg. Result (1) The leaf symptoms and occurrence time of walnut seedlings with different element deficiency treatments were different. Among them, the symptom of N deficiency appeared the earliest, Mg deficiency followed, and K deficiency appeared the latest. The aboveground biomass of seedlings lacking N and Mg decreased by 66.5% and 48.6% respectively compared with CK, and root biomass decreased by 48.0% and 55.0% respectively compared with CK; (2) The photosynthetic pigment content, net photosynthetic rate and stomatal conductance of walnut seedlings treated with element deficiency were significantly lower than those of CK. Among them, the photosynthetic pigment content of seedlings lacking N and Mg decreased the most, and the net photosynthetic rate and stomatal conductance of walnut seedlings lacking Ca and Mg decreased the most; (3) The chlorophyll fluorescence parameters of walnut seedlings treated with element deficiency showed significant differences, but in general, the chlorophyll fluorescence parameters of each element deficiency treatment were different. The values of ΦPSII, ETR, Fv/Fmand qP were significantly lower than those of CK, and the value of NPQ was significantly higher than that of CK, among which the change of P-deficient treatment was the most obvious; (4) The contents of IAA and ABA in walnut seedlings treated with element deficiency were significantly higher than those of CK, while the contents of Spm and Spd were significantly lower than those of CK, especially in N deficiency treatment. Conclusion Element deficiency had certain effects on photosynthetic efficiency and endogenous hormones of seedlings, and the effects of N deficiency, Mg deficiency and Ca deficiency were the most obvious. Therefore, in the management of walnut seedlings, we should pay attention to the observation of seedling growth, diagnose and identify the deficiency of elements as soon as possible, especially N, Ca and Mg elements that are easy to appear and have obvious symptoms, and supplement them in time, so as to improve the seedling quality of walnut. -
Key words:
- walunt /
- nutrient deficiency /
- photosynthetic efficiency /
- hormone metabolism /
- physiological changes
-
图 2 不同处理核桃幼苗的内源激素(a)和多胺(b)含量
IAA. 生长素;CTK. 细胞分裂素;ABA. 脱落酸;ETH. 乙烯;Put. 腐胺;Spm. 精胺;Spd. 亚精胺。IAA, auxin; CTK, cytokinin; ABA, abscisic acid; ETH, ethylene; Put,putrescine; Spm, spermine; Spd, spermidine..
Figure 2. Contents of endogenous hormones (a) and polyamines (b) in walnut seedlings under different treatments
表 1 缺素处理营养液配方
Table 1. Nutrient solution formula for nutrient deficiency treatment
营养条件
Nutrient conditions处理 Treatment CK −N −P −K −Ca −Mg 大量元素
Macro element/(mg·L−1)Ca(NO3)2·4H2O 945 − 945 945 945 KNO3 607 − 607 − 607 607 NaNO3 − − − 510.8 979.6 − NH4H2PO4 115 − − 115 115 115 NaH2PO4·H2O − 141.7 − − − − (NH4)2SO4 − − 66 − − − CaCl2 − 444.5 − − − − KCl − 447.3 − − − − MgSO4 493 493 493 493 493 − Na2SO4 − − − − − 583.4 铁盐(pH = 5.5)
Iron salt/(g·L−1)FeSO4·7H2O 5.56 5.56 5.56 5.56 5.56 5.56 Na2EDTA 7.46 7.46 7.46 7.46 7.46 7.46 微量元素(pH = 6.0)
Micro element/(mg·L−1)KI 0.83 0.83 0.83 0.83 0.83 0.83 MnSO4 22.3 22.3 22.3 22.3 22.3 22.3 Na2MoO4 0.25 0.25 0.25 0.25 0.25 0.25 CuSO4 0.025 0.025 0.025 0.025 0.025 0.025 CoCl2 0.025 0.025 0.025 0.025 0.025 0.025 H3BO3 6.2 6.2 6.2 6.2 6.2 6.2 ZnSO4 8.6 8.6 8.6 8.6 8.6 8.6 注:CK. 全素处理;−N. 缺氮处理;−P. 缺磷处理;−K. 缺钾处理;−Ca. 缺钙处理;-Mg. 缺镁处理。下同。Note: CK, all element treatment; −N, nitrogen deficiency treatment; −P, phosphorus deficiency treatment; −K, potassium deficiency treatment; −Ca, calcium deficiency treatment; −Mg, magnesium deficiency treatment. The same below. 表 2 不同处理核桃幼苗地上部分及根系的生长情况
Table 2. Growth of aboveground part and root system of walnut seedlings under different treatments
处理
Treatment株高
Plant height/cm地径
Ground
diameter/mm叶面积
Leaf area/cm2叶片厚度
Leaf
thickness/mm根长
Root length/cm根表面积
Root surface
area/cm2根体积
Root volume/cm3根尖数量
Apical numberCK 68.70 ± 2.45a 11.17 ± 1.10a 119.31 ± 3.82a 0.213 ± 0.003a 1273.3 ± 45.3a 977.2 ± 30.6a 59.73 ± 3.68b 3 370 ± 143a −N 39.37 ± 1.98d 7.87 ± 0.95d 70.90 ± 2.24c 0.130 ± 0.004e 1099.4 ± 32.4b 811.4 ± 35.4b 34.95 ± 3.05c 2 621 ± 101b −P 35.57 ± 2.16d 9.18 ± 0.98b 84.64 ± 3.95b 0.170 ± 0.005b 947.2 ± 47.7d 979.5 ± 39.3a 70.57 ± 4.14a 3 585 ± 135a −K 44.13 ± 2.32bc 8.56 ± 1.05c 73.87 ± 2.43c 0.143 ± 0.006d 1143.6 ± 39.2b 709.8 ± 27.5d 35.06 ± 3.55c 2 331 ± 129c −Ca 46.27 ± 2.01b 8.46 ± 0.85c 61.62 ± 2.78d 0.153 ± 0.004cd 1032.7 ± 32.2bc 843.5 ± 24.1b 35.70 ± 4.04c 2 543 ± 105b −Mg 40.40 ± 1.95cd 6.46 ± 0.80e 65.07 ± 3.83d 0.160 ± 0.005c 955.4 ± 36.4d 774.1 ± 22.2c 30.21 ± 2.89c 1 975 ± 130d 注:同一列中,不同小写字母表示不同处理之间差异显着(P < 0.05)。下同。Note: in the same column, different lowercase letters indicate significant differences between different treatments (P < 0.05). The same below. 表 3 不同处理核桃幼苗的生物量分配
Table 3. Biomass allocation of walnut seedlings under different treatments
处理
Treatment地上部分生物量
Aboveground biomass/g根系生物量
Root biomass/g根冠比
Root/shoot ratioCK 22.61 ± 1.35a 28.97 ± 0.88a 1.28 ± 0.35e −N 7.57 ± 0.65e 15.05 ± 1.12c 1.99 ± 0.40a −P 11.53 ± 0.87cd 17.47 ± 1.30b 1.52 ± 0.29b −K 13.53 ± 1.23b 18.87 ± 1.25b 1.40 ± 0.37d −Ca 12.89 ± 1.01bc 19.28 ± 1.09b 1.50 ± 0.30bc −Mg 10.98 ± 0.94d 15.93 ± 0.91c 1.45 ± 0.38c 表 4 不同处理核桃幼苗的叶绿素含量
Table 4. Chlorophyll content of walnut seedlings under different treatments
处理
Treatment叶绿素a
Chlorophyll a/(mg·g−1)叶绿素b
Chlorophyll b/( mg·g−1)类胡萝卜
Carotenoids/(mg·g−1)叶绿素a/b
Chlorophyll a/chlorophyll bCK 4.08 ± 0.35a 1.62 ± 0.21a 0.536 ± 0.023a 2.56 ± 0.35b −N 2.99 ± 0.28c 1.15 ± 0.18c 0.391 ± 0.031c 2.61 ± 0.30b −P 3.32 ± 0.22b 1.05 ± 0.20c 0.430 ± 0.021b 3.21 ± 0.28a −K 3.29 ± 0.34b 1.31 ± 0.15b 0.408 ± 0.029bc 2.54 ± 0.27b −Ca 3.49 ± 0.20b 1.43 ± 0.18b 0.432 ± 0.035b 2.45 ± 0.25b −Mg 3.14 ± 0.24bc 1.09 ± 0.11c 0.397 ± 0.025c 2.88 ± 0.30b 表 5 不同处理核桃幼苗的气体交换参数
Table 5. Gas exchange parameters of walnut seedlings under different treatments
处理
TreatmentPn/(μmol·m2·s−1) Gs/(μmol·m2·s−1) Tr/(mmol·m2·s−1) WUE/(μmol·mmol) CK 9.55 ± 0.45a 0.260 ± 0.003a 3.37 ± 0.04a 2.85 ± 0.02c −N 5.22 ± 0.34c 0.165 ± 0.004b 2.74 ± 0.06b 1.92 ± 0.03d −P 7.17 ± 0.43b 0.126 ± 0.004c 2.30 ± 0.06c 3.24 ± 0.02bc −K 9.48 ± 0.50a 0.123 ± 0.002c 1.94 ± 0.04c 4.94 ± 0.03a −Ca 3.36 ± 0.30d 0.037 ± 0.003d 0.87 ± 0.03d 3.66 ± 0.04b −Mg 3.80 ± 0.35d 0.038 ± 0.002d 1.00 ± 0.05d 3.82 ± 0.01b 注:Pn. 净光合速率;Gs. 气孔导度;Tr。 蒸腾速率;WUE. 水分利用效率。Note: Pn, net photosynthetic rate; Gs, stomatal conductivity; Tr, transpiration rate; WUE, water use efficiency. 表 6 不同处理核桃幼苗的叶绿素荧光参数的变化
Table 6. Changes of chlorophyll fluorescence parameters of walnut seedlings under different treatments
处理
TreatmentFo′ Fm′ ΦPSⅡ ETR qP NPQ Fv/Fm CK 137.0 ± 3.59e 440.3 ± 4.52b 0.493 ± 0.015a 39.33 ± 2.34a 0.721 ± 0.02a 0.479 ± 0.03d 0.750 ± 0.04a −N 161.0 ± 4.34b 444.3 ± 3.08b 0.463 ± 0.020b 36.93 ± 2.10b 0.622 ± 0.04c 0.926 ± 0.04a 0.689 ± 0.05c −P 153.3 ± 3.30c 429.0 ± 4.35c 0.448 ± 0.022b 35.63 ± 1.98b 0.608 ± 0.05c 0.770 ± 0.02b 0.717 ± 0.03b −K 178.3 ± 2.20a 427.3 ± 3.87c 0.450 ± 0.018b 35.90 ± 2.57b 0.672 ± 0.03b 0.671 ± 0.04c 0.683 ± 0.03c −Ca 145.6 ± 2.34d 449.6 ± 3.56b 0.484 ± 0.025a 38.60 ± 2.01a 0.680 ± 0.03b 0.708 ± 0.04c 0.748 ± 0.04a −Mg 160.3 ± 3.40b 462.0 ± 4.50a 0.458 ± 0.021b 36.53 ± 1.50b 0.682 ± 0.04b 0.783 ± 0.03b 0.706 ± 0.02b Fo′. 初始荧光;Fm′. 最大荧光;ΦPSⅡ. 实际光化学效率;ETR. 电子传递速率;qP. 光化学淬灭系数;NPQ. 非光化学淬灭系数;Fv/Fm. 最大光化学效率。Fo′, initial fluorescence; Fm′, maximum fluorescence; ΦPSⅡ, actual photochemical efficiency; ETR, electron transfer rate; qP, photochemical quenching coefficient; NPQ, non-photochemical quenching coefficient; Fv/Fm, maximal photochemical efficiency. -
[1] 宫峥嵘, 王一峰, 王瀚, 等. 核桃矿质营养研究进展[J]. 林业科学, 2021, 57(1): 178−190.Gong Z R, Wang Y F, Wang H, et al. Research progress on mineral nutrition of walnut[J]. Scientia Silvae Sinicae, 2021, 57(1): 178−190. [2] 胡阳, 彭海龙, 向轶波, 等. 重庆大巴山贫困地区核桃产业发展对策[J]. 湖北林业科技, 2020, 49(6): 60−62,8.Hu Y, Peng H L, Xiang Y B, et al. Analysis on development countermeasures of walnut industry in poverty areas of Chongqing Daba Mountain[J]. Hubei Forestry Science and Technology, 2020, 49(6): 60−62,8. [3] 潘伟莲. 林业生产中提高苗木质量的实施对策分析[J]. 南方农业, 2021, 15(18): 96−97.Pan W L. Analysis on the implementation countermeasures of improving seedling quality in forestry production[J]. South China Agriculture, 2021, 15(18): 96−97. [4] 焦玲, 赵颖, 李丽萍. 现代苗木质量评价的生理指标[J]. 内蒙古林业科技, 2003(1): 40−44.Jiao L, Zhao Y, Li L P. Physiological indexes of modern seedling quality evaluation[J]. Inner Mongolia Forestry Science and technology, 2003(1): 40−44. [5] 刘彩云. 提取方法、试剂对不同高等植物叶片叶绿素提取效果的比较分析[J]. 潍坊学院学报, 2014, 14(2): 74−76.Liu C Y. Comparative analysis of extraction effects of extraction methods and reagents on Chlorophyll from leaves of different higher plants[J]. Journal of Weifang University, 2014, 14(2): 74−76. [6] 凌喆, 郑淑芳, 吴萍, 等. 植物内源乙烯组织定位测定方法研究[J]. 河南农业科学, 2008(4): 51−52,63.Ling Z, Zheng S F, Wu P, et al. Study on tissue localization method of endogenous ethylene in plants[J]. Journal of Henan Agricultural Sciences, 2008(4): 51−52,63. [7] Hu X, Zhang Y, Shi Y, et al. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress[J]. Plant Physiology and Biochemistry, 2012, 57: 200−209. doi: 10.1016/j.plaphy.2012.05.015 [8] 李清莹, 文珊娜, 姜清彬, 等. 不同营养元素缺乏对火力楠幼苗生长的影响[J]. 生态学杂志, 2017, 36(3): 664−669.Li Q Y, Wen S N, Jiang Q B, et al. Effects of nutrient deficiency on the growth of Michelia macclurei seedlings[J]. Chinese Journal of Ecology, 2017, 36(3): 664−669. [9] 穆俊祥, 曹兴明, 刘拴成. 氮、磷、钾缺素培养对番茄幼苗生长的影响[J]. 北方园艺, 2015(5): 40−42.Mu J X, Cao X M, Liu S C. Effects of nitrogen, phosphorus and potassium deficiency culture on the growth of tomato seedlings[J]. Northern Horticulture, 2015(5): 40−42. [10] 马洪波, 李传哲, 宁运旺, 等. 钙镁缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J]. 中国土壤与肥料, 2015(4): 101−107.Ma H B, Li C Z, Ning Y W, et al. The influence of calcium and magnesium deficiency on growth and mineral elements absorption of different Sweetpota-to varieties[J]. Soils and Fertilizers Sciences in China, 2015(4): 101−107. [11] 吴一群, 林琼, 陈子聪, 等. 钙水平对无限生长型番茄钙吸收利用及果实品质和产量的影响[J]. 水土保持学报, 2019, 33(5): 185−189.Wu Y Q, Lin Q, Chen Z C, et al. Effects of calcium level on calcium absorption, fruit quality and yield of infinite growth tomato[J]. Journal of Soil and Water Conservation, 2019, 33(5): 185−189. [12] Saure M C. Calcium translocation to fleshy fruit: its mechanism and endogenous control[J]. Scientia Horticulturae, 2005, 105(1): 65−89. doi: 10.1016/j.scienta.2004.10.003 [13] Farhat N, Elkhouni A, Zorrig W, et al. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning[J]. Acta Physiologiae Plantarum, 2016, 38(6): 145. doi: 10.1007/s11738-016-2165-z [14] Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass allocation[J]. Trends in Plant Science, 2006, 11(12): 610−617. doi: 10.1016/j.tplants.2006.10.007 [15] 樊勇明, 李伟, 温仲明, 等. 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应[J]. 生态学报, 2021, 41(24): 9824−9835.Fan Y M, Li W, Wen Z M, et al. Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(24): 9824−9835. [16] 冯国华, 冀馨宁, 杨静慧, 等. 不同品种蓝莓植株失绿的叶片和土壤诊断及分析[J]. 北方园艺, 2019(9): 34−41.Feng G H, Ji X N, Yang J H, et al. Diagnosis and analysis of leaves and soils for plant chlorosis of different blueberry varieties[J]. Northern Horticulture, 2019(9): 34−41. [17] Elcio F D S, Nikolas S M, Flávio H S R. Diagnosing early disorders in Jatropha curcas to calcium, magnesium and sulfur deficiency[J]. Journal of Plant Nutrition, 2020, 43(7): 1−13. [18] 周君, 肖伟, 陈修德, 等. 外源钙对‘黄金梨’叶片光合特性及果实品质的影响[J]. 植物生理学报, 2018, 54(3): 449−45.Zhou J, Xiao W, Chen X D, et al. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae’ pear[J]. Plant Physiology Communications, 2018, 54(3): 449−45. [19] Pompelli M F, Barata-Luis R, Vitorino H S, et al. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery[J]. Biomass & Bioenergy, 2010, 34(8): 1207−1215. [20] 王鲲娇, 任涛, 陆志峰, 等. 不同镁供应浓度对油菜苗期生长和生理特性的影响[J]. 中国农业科学, 2021, 54(15): 3198−3206.Wang K J, Ren T, Lu Z F, et al. Effects of different magnesium supplies on the growth and physiological characteristics of oilseed rape in seeding stag[J]. Scientia Agricultura Sinica, 2021, 54(15): 3198−3206. [21] 吴焦焦, 田秋玲, 乐佳兴, 等. 黄栌叶片光合特性对氮磷钾配施的响应[J]. 北京林业大学学报, 2021, 43(2): 63−71.Wu J J, Tian Q L, Yue J X, et al. Response of leaf photosynthetic characteristics of Cotinus coggygria to combined application of mineral nitrogen, phosphorus and potassium[J]. Journal of Beijing Forestry University, 2021, 43(2): 63−71. [22] 贾晓红, 周再知, 马华明, 等. 缺素对土沉香幼苗根系生长和叶绿素荧光参数的影响[J]. 热带作物学报, 2015, 36(4): 660−664.Jia X H, Zhou Z Z, Ma H M, et al. Effects of nutrient deficiency on root growth and chlorophyll fluorescence of Aquilaria sinensis (Lour.) gilg seedlings[J]. Chinese Journal of Tropical Crops, 2015, 36(4): 660−664. [23] 田秋玲, 乐佳兴, 吴焦焦, 等. 西南丘陵地区紫色土酸性对无患子幼树生长和光合特性的影响[J]. 生态学报, 2020, 40(11): 3756−3763.Tian Q L, Yue J X, Wu J J, et al. Effects of southwest hilly areas’s purple soil acidity on the growth and photosynthetic characteristics of Sapindus mukorossi Gaertn saplings[J]. Acta Ecologica Sinica, 2020, 40(11): 3756−3763. [24] 李清雪, 兰岚, 贾志清, 等. 4种锦鸡儿属植物幼苗叶绿素荧光参数对重复低温胁迫的响应[J]. 林业科学, 2016, 52(10): 31−37.Li Q X, Lan L, Jia Z Q, et al. Response of chlorophyll fluorescence characteristics of seedlings of four Caragana species to repeated low temperature stresses[J]. Seientia Silvae Sinicae, 2016, 52(10): 31−37. [25] Davis S J. Integrating hormones into the floral-transition pathway of Arabidopsis thaliana[J]. Plant Cell and Environment, 2009, 32(9): 1201−1210. doi: 10.1111/j.1365-3040.2009.01968.x [26] 瞿礼嘉, 钱前, 袁明, 等. 2011年中国植物科学若干领域重要研究进展[J]. 植物学报, 2012, 47(4): 309−356.Ju L J, Qian Q, Yuan M, et al. Research advances on plant science in China in 2011[J]. Bulletin of Botany, 2012, 47(4): 309−356. [27] 曹允馨, 于芳芳, 白梅, 等. 污泥和吲哚丁酸对草地早熟禾的生长和耐旱性的影响研究[J]. 草业学报, 2018, 27(5): 109−119.Cao Y X, Yu F F, Bai M, et al. Impact of sewage sludge and indole butyric acid on growth and drought tolerance of Poa pratensis under drought stress[J]. Acta Prataculturae Sinica, 2018, 27(5): 109−119. [28] 李良勇, 崔国贤. 营养胁迫下植物内源激素变化研究进展[J]. 作物研究, 2002(S1): 240−244.Li L Y, Cui G X. Research progress on changes of plant endogenous hormones under nutritional stress[J]. Crop Research, 2002(S1): 240−244. [29] 曾秀成, 王文明, 罗敏娜, 等. 缺素培养对大豆营养生长和根系形态的影响[J]. 植物营养与肥料学报, 2010, 16(4): 1032−1036.Zeng X C, Wang W M, Luo M N, et al. Effects of different element deficiencies on soybean growth and root morphology[J]. Journal of plant nutrition and fertilizer, 2010, 16(4): 1032−1036. [30] Falasca G, Franceschetti M, Bagni N, et al. Polyamine biosynthesis and control of the development of functional pollen in kiwifruit[J]. Plant Physiology Biochemistry, 2010, 48(7): 565−573. doi: 10.1016/j.plaphy.2010.02.013 [31] 郭盛磊, 阎秀峰, 白冰, 等. 落叶松幼苗光合特性对氮和磷缺乏的响应[J]. 应用生态学报, 2005, 16(4): 589−594. doi: 10.3321/j.issn:1001-9332.2005.04.001Guo S L, Yan X F, Bai B, et al. Responses of larch seedling’s photosynthetic characteristics to nitrogen and phosphorus deficiency[J]. Chinese Journal of Applied Ecology, 2005, 16(4): 589−594. doi: 10.3321/j.issn:1001-9332.2005.04.001 [32] 张青侠, 徐金光, 鲍明月, 等. 水涝胁迫对芍药根系形态及体内多胺含量的影响[J]. 植物生理学报, 2020, 56(7): 1445−1457. doi: 10.13592/j.cnki.ppj.2020.0109Zhang Q X, Xu J G, Bao M Y, et al. Effect of waterlogging stress on root morphology and polyamine content of herbaceous peony (Paeonia lactiflora)[J]. Plant Physiology Communications, 2020, 56(7): 1445−1457. doi: 10.13592/j.cnki.ppj.2020.0109 [33] 施木田, 陈如凯. 锌硼营养对苦瓜产量品质与叶片多胺、激素及衰老的影响[J]. 应用生态学报, 2004, 15(1): 77−80.Shi M T, Chen R K. Effects of zinc and boron nutrition on balsam pear (Momordica charantia) yield and quality, and polyamines, hormone and senescence of its leaves[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 77−80. [34] 邹礼平, 潘铖, 王梦馨, 等. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8): 739−751.Zou L P, Pan C, Wang M X, et al. Progress on the mechanism of hormones regulating plant flower formation[J]. Hereditas, 2020, 42(8): 739−751. -