高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定

张晶星 马彦广 王辉丽 刘红梅 李伟

张晶星, 马彦广, 王辉丽, 刘红梅, 李伟. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220027
引用本文: 张晶星, 马彦广, 王辉丽, 刘红梅, 李伟. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220027
Zhang Jingxing, Ma Yanguang, Wang Huili, Liu Hongmei, Li Wei. Characteristic of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220027
Citation: Zhang Jingxing, Ma Yanguang, Wang Huili, Liu Hongmei, Li Wei. Characteristic of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220027

油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定

doi: 10.12171/j.1000-1522.20220027
基金项目: 国家林草局生物安全与遗传资源管理项目(KJZXSA202030),国家自然科学基金项目(31770713、31860221)
详细信息
    作者简介:

    张晶星。主要研究方向:针叶树遗传改良。Email:199393790@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    李伟,博士,教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.254

Characteristic of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein

  • 摘要:   目的  对油松JAZ基因家族特征及其与赤霉素负调控因子DELLA蛋白互作的功能域深入分析,旨在为解析针叶树以JAZ-DELLA为核心模块、茉莉酸(JA)-赤霉素(GA)介导的生长/防御平衡策略奠定基础。  方法  以油松全基因组数据为基础,筛选鉴定油松全部的JAZ家族基因成员,并分析其基本特征;构建多物种JAZ基因家族系统发育进化树,解析油松JAZ基因家族在系统进化过程中的特点;利用酵母双杂交技术,明确油松中JAZ与DELLA蛋白互作的功能域。  结果  油松中共鉴定得到53个JAZ基因家族成员,均具有TIFY和Jas保守结构,而且在degron序列中进化出了更丰富的变异。多个油松JAZ基因家族成员启动子区域包含响应JA和GA的顺式作用元件,并与模式植物中多个JAZ蛋白有着较近的进化距离。进一步实验发现,油松中5个JAZ蛋白(TIFY 4、TIFY11、TIFY16、TIFY25、TIFY59)的Jas结构域与油松DPL(DELLA-like)蛋白存在相互作用,明确了油松中Jas结构域是JAZ蛋白与DELLA蛋白互作的功能域。  结论  明确了油松JAZ基因家族的基本序列特征,确定了油松中JAZ与DELLA蛋白互作的Jas功能域,为针叶树JAZ基因家族及JA-GA信号转导通路的深入研究提供了重要依据。

     

  • 图  1  油松JAZs蛋白多重比对

    红色框表示TIFY结构域,黄色框表示jas基序区域,橙色框表示degron基序区域,蓝色框表示NLS基序区域,绿色框表示ERA基序。Red box indicates TIFY domain; yellow box indicates jas motif, orange box indicates degron motif; blue box indicatsd NLS motif; green box indicates ERA motif.

    Figure  1.  Multiple alignments of P. tabuliformis JAZs protein

    图  2  油松JAZ基因结构域预测及分析

    A图为MEME结构域预测结果,其中1、2、3基序为JAZ基因家族共有保守结构域;B图为CDD结构域预测结果。Figure A is the predicted result of MEME motif, and the 1, 2 and 3 motifs are the common conserved motifs of JAZ gene family. The prediction results of CDD domain is shown on the figure B.

    Figure  2.  Motif and domain distributions of JAZ genes in P. tabuliformis

    图  3  油松JAZ蛋白系统进化分析

    Figure  3.  Phylogenetic analysis of JAZ protein sequences in P. tabuliformis

    图  4  油松JAZ基因家族启动子顺式作用元件预测分析

    圆圈大小表示顺式作用元件的数量。蓝框表示响应低温反应,灰框表示响应干旱反应,橙色框表示响应损伤反应。红框、黄框、黑框、浅蓝框和绿框分别表示ABA、MeJA、 GA、 SA和IAA的响应。Circle sizes indicate the number of cis-elements. Blue box indicates low-temperature response, gray box indicates drought response and orange box indicates wound response. Red box, yellow box, black box, light blue box and green box indicate ABA, MeJA, GA, SA and IAA response, respectively.

    Figure  4.  Predictive analysis of JAZ gene family promoter cis- element in P. tabuliformis

    图  5  油松JAZs和DPL酵母双杂互作验证结果

    SD/-Leu-Trp和SD/-Leu-Trp-His-Ade培养基用于检测互作验证,AD-T/BD-p53(PC)和AD-T/BD-Lam(NC)为阳性对照和阴性对照。Interaction is detected on SD/-Leu-Trp and SD/-Leu-Trp-His-Ade medium,AD-T/BD-p53 (PC) and AD-T/BD-Lam (NC) are positive and negative controls.

    Figure  5.  Validation results of yeast two-hybrid interaction between JAZs and DPL in P. tabulaeformis

    表  1  油松JAZ基因家族Jas结构域序列克隆引物

    Table  1.   Primers of Jas motif in Pinus tabuliformis JAZ gene family

    引物名称
    Primer name
    引物序列
    Primer sequence
    TIFY4-BD-F GAATTCCCGGGGATCCATTGCTCAGCCGAACCCG
    TIFY4-BD-R GCAGGTCGACGGATCCTAGGATGCTTGCTTCAACTGTGG
    TIFY11-BD-F GAATTCCCGGGGATCCTTCTGGTCTGGAAAGACAGCC
    TIFY11-BD-R GCAGGTCGACGGATCCTTGATCCTTAACAAGACAAGATACC
    TIFY12-BD-F GAATTCCCGGGGATCCGGAAATGTTAATGTCTACGACGATG
    TIFY12-BD-R GCAGGTCGACGGATCCGTTGGAATTATGTAGAGCCTTCCCC
    TIFY16-BD-F GAATTCCCGGGGATCCCAGCGCAGTGGGACTCCT
    TIFY16-BD-R GCAGGTCGACGGATCCGTTTTGGGCTGGCGGGAG
    TIFY20-BD-F GAATTCCCGGGGATCCGCAGATAAGGCAGAAGCCATAATGT
    TIFY20-BD-R GCAGGTCGACGGATCCAAAAAACGGTGATAACGATGGACGT
    TIFY23-BD-F GAATTCCCGGGGATCCTTAATTGCCAGCAGTGGAAAT
    TIFY23-BD-R GCAGGTCGACGGATCCTGACCGGGGTTGAGACCG
    TIFY25-BD-F GAATTCCCGGGGATCCAGGTGAACACAGACCTTCCAATAGC
    TIFY25-BD-R GCAGGTCGACGGATCCCAGAGTGCAGCCATACTGG
    TIFY36-BD-F GAATTCCCGGGGATCCCAAGACATTGTGAAGCTTGCCAG
    TIFY36-BD-R GCAGGTCGACGGATCCTACACAACCCAACGACAGTATG
    TIFY47-BD-F GAATTCCCGGGGATCCGGCTCTATAAGCTCGAACAAGACA
    TIFY47-BD-R GCAGGTCGACGGATCCTTGTGATGAGCAAGCCAACAAGAA
    TIFY59-BD-F GAATTCCCGGGGATCCAAGTCAACGACTGCCCCG
    TIFY59-BD-R GCAGGTCGACGGATCCTTACACCGTCGGAAAAACG
    下载: 导出CSV

    表  2  油松JAZ基因的鉴定及编码蛋白的分子特征

    Table  2.   Identification and encoding protein molecular characteristics of JAZ genes in P. tabuliformis

    基因名称
    Gene name
    基因号
    Gene ID
    氨基酸长度
    Amino acid length/aa
    蛋白分子量
    Protein molecular mass/kDa
    等电点
    Theoretical PI
    TIFY4 Pt3G61780 404 43.12 6.16
    TIFY5 PtXG10760 528 57.31 8.80
    TIFY7 Pt4G36390 416 46.26 9.21
    TIFY8 Pt4G32610 352 37.09 7.64
    TIFY11 Pt6G61340 382 51.68 8.75
    TIFY12 Pt8G28130 345 37.81 9.69
    TIFY13 PtJG10640 312 345.40 6.85
    TIFY14 PtJG10490 277 30.18 9.30
    TIFY15 PtJG10500 255 27.55 9.10
    TIFY16 PtJG10520 263 28.65 9.37
    TIFY17 Pt4G16690 257 28.03 8.93
    TIFY18 Pt4G16550 227 24.47 6.42
    TIFY20 Pt4G16540 230 25.06 8.74
    TIFY21 Pt4G16520 272 30.10 9.34
    TIFY22 Pt4G16480 306 33.57 6.79
    TIFY23 Pt4G19470 319 35.30 8.65
    TIFY24 Pt4G19530 333 36.70 8.61
    TIFY25 Pt4G16500 355 39.34 7.21
    TIFY26 Pt4G16360 204 21.98 8.98
    TIFY27 Pt4G16330 196 21.04 9.05
    TIFY28 Pt0G19070 209 23.15 9.21
    TIFY30 Pt4G16380 192 21.14 7.72
    TIFY31 Pt4G16460 286 31.38 9.07
    TIFY32 Pt4G16450 296 32.33 9.21
    TIFY33 Pt2G28140 219 24.29 9.21
    TIFY34 Pt2G28160 211 23.16 9.52
    TIFY35 Pt2G28170 249 27.44 9.50
    TIFY36 Pt2G28130 265 29.49 9.55
    TIFY37 Pt2G28020 273 29.60 9.14
    TIFY38 Pt2G28040 227 25.00 9.14
    TIFY39 Pt2G28120 262 28.99 8.83
    TIFY40 Pt2G28090 230 25.23 9.62
    TIFY41 Pt9G14200 223 24.02 8.42
    TIFY42 Pt2G28060 238 25.64 8.53
    TIFY43 Pt2G28030 224 24.47 5.96
    TIFY44 PtJG30870 217 24.44 10.00
    TIFY45 Pt2G53720 216 24.53 9.74
    TIFY46 Pt2G28400 442 48.85 9.98
    TIFY47 Pt2G28380 240 26.71 9.75
    TIFY48 Pt0G11150 240 26.74 9.49
    TIFY49 Pt2G28240 240 26.67 9.75
    TIFY52 Pt2G28270 260 28.61 9.69
    TIFY53 Pt2G28280 272 29.84 9.68
    TIFY54 Pt2G28230 215 23.68 9.32
    TIFY55 Pt2G28300 269 29.81 9.93
    TIFY56 Pt2G28370 291 31.74 7.67
    TIFY57 Pt2G28510 264 29.39 7.65
    TIFY58 Pt2G28440 275 29.46 9.78
    TIFY59 Pt2G28320 311 33.64 9.60
    TIFY63 PtXG46340 361 39.74 6.38
    TIFY64 Pt6G08640 350 38.76 6.09
    TIFY66 Pt4G16310 151 16.52 9.92
    TIFY67 Pt4G16350 149 16.50 9.78
    下载: 导出CSV
  • [1] Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. The Plant Journal, 2010, 46(6): 984−1008.
    [2] Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60(1): 183−205. doi: 10.1146/annurev.arplant.043008.092007
    [3] Zhang H T, Memelink J. Regulation of secondary metabolism by jasmonate hormones[J]. Plant-Derived Natural Products, 2009: 181−194. doi: 10.1007/978-0-387-85498-4_8
    [4] Pauwels L, Morreel K, Witte E D, et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells[J]. PNAS, 2008, 105(4): 1380−1385. doi: 10.1073/pnas.0711203105
    [5] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681−697. doi: 10.1093/aob/mcm079
    [6] Claus W, Miroslav S. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds[J]. International Journal of Molecular Sciences, 2018, 19(9): 2539−2564. doi: 10.3390/ijms19092539
    [7] Sheard L B, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor[J]. Nature, 2010, 468(7322): 400−405. doi: 10.1038/nature09430
    [8] Garrido-Bigotes A, Figueroa N E, Figueroa P M, et al. Jasmonate signaling pathway in strawberry: genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening[J]. PLoS One, 2018, 13(5): e0197118. doi: 10.1371/journal.pone.0197118
    [9] Neale D B, Wegrzyn J L, Stevens K A, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J]. Genome Biology, 2014, 15(3): R59. doi: 10.1186/gb-2014-15-3-r59
    [10] Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2): 128−136. doi: 10.1016/j.ygeno.2011.05.002
    [11] Thireault C, Shyu C, Yoshida Y, et al. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis[J]. The Plant Journal, 2015, 82(4): 669−679. doi: 10.1111/tpj.12841
    [12] Chini A, Fonseca S, Chico J M, et al. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins[J]. The Plant Journal, 2009, 59(1): 77−87. doi: 10.1111/j.1365-313X.2009.03852.x
    [13] Robson F, Costa M M, Hepworth S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants[J]. The Plant Journal, 2002, 28(6): 619−631. doi: 10.1046/j.1365-313x.2001.01163.x
    [14] Staswick P E. JAZing up jasmonate signaling[J]. Trends in Plant Science, 2008, 13(2): 66−71. doi: 10.1016/j.tplants.2007.11.011
    [15] Garrido-Bigotes A, Valenzuela-Riffo F, Figueroa C R. Evolutionary analysis of JAZ proteins in plants: an approach in search of the ancestral sequence[J]. International Journal of Molecular Sciences, 2019, 20(20): 5060−5080. doi: 10.3390/ijms20205060
    [16] Moreno J E, Shyu C, Campos M L, et al. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10[J]. Plant Physiology, 2013, 162(2): 1006−1017. doi: 10.1104/pp.113.218164
    [17] Boter M, Golz J F Giménez-Ibañez S, et al. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate[J]. The Plant Cell, 2015, 27(11): 3160−3174. doi: 10.1105/tpc.15.00220
    [18] Huang Z, Jin S H, Guo H D, et al. Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J]. Peer Journal, 2016, [2016−10−27]. DOI: 10.7717/peerj.2620.
    [19] Huot B, Yao J, Montgomery B L, et al. Growth–defense trade offs in plants: a balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267−1287. doi: 10.1093/mp/ssu049
    [20] Major I T, Yoshida Y, Campos M L, et al. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module[J]. New Phytologist, 2017, 215(4): 1533−1547. doi: 10.1111/nph.14638
    [21] Cheng H, Song S, Xiao L, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genetics, 2009, 5(3): e1000440. doi: 10.1371/journal.pgen.1000440
    [22] Hong G J, Xue X Y, Mao Y B, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. The Plant Cell, 2012, 24(6): 2635−2648. doi: 10.1105/tpc.112.098749
    [23] Song S, Qi T, Huang H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. The Plant Cell, 2011, 23(3): 1000−1013. doi: 10.1105/tpc.111.083089
    [24] Hou X, Lee Y, Xia K, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Developmental Cell, 2010, 19(6): 884−894. doi: 10.1016/j.devcel.2010.10.024
    [25] Yang D L, Yao J, Mei C S, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. Proceedings of the National Academy of Sciences, 2012, 109(19): E1192−E1200.
    [26] Qi T, Huang H, Wu D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. The Plant Cell, 2014, 26(3): 1118−1133. doi: 10.1105/tpc.113.121731
    [27] Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends in Plant Science, 2005, 10(2): 63−70. doi: 10.1016/j.tplants.2004.12.011
    [28] Wagner G J, Wang E, Shepherd R W. New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Annals of Botany, 2004, 93(1): 3−11. doi: 10.1093/aob/mch011
    [29] 钮世辉, 李伟, 李悦. 油松种子园无性系自由授粉子代测定与种子批稳定性分析[J]. 西北林学院学报, 2013, 113(2): 66−69. doi: 10.3969/j.issn.1001-7461.2013.02.12

    Niu S H, Li W, Li Y. Open pollinated progeny test and stability analysis of seedlot from clonal seed orchard of Pinus tabuliformis[J]. Journal of Northwest Forestry University, 2013, 113(2): 66−69. doi: 10.3969/j.issn.1001-7461.2013.02.12
    [30] Ross S D, Pharis R P. Control of sex expression in conifers[J]. Plant Growth Regulation,, 1987, 6(1−2): 37−60. doi: 10.1007/BF00043949
    [31] Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792−1797. doi: 10.1093/nar/gkh340
    [32] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [33] He D H, Lei Z P, Tang B S, et al. Identification and analysis of the TIFY gene family in Gossypium raimondii[J]. Genetics and Molecular Research, 2015, 14(3): 10119−38. doi: 10.4238/2015.August.21.19
    [34] Chao J, Zhao Y, Jin J, et al. Genome-wide identification and characterization of the JAZ gene family in rubber tree (Hevea brasiliensis)[J]. Frontiers in Genetics, 2019, 10(372): 1−11.
    [35] Wang Y, Pan F, Chen D, et al. Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family[J]. Plant Physiology and Biochemistry, 2017, 115(4): 360−371.
    [36] Ye H, Hao D, Tang N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3): 291−305. doi: 10.1007/s11103-009-9524-8
    [37] Bowman J L, Kohchi T, Yamato K T, et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome[J]. Cell, 2017, 171(2): 287−304. doi: 10.1016/j.cell.2017.09.030
    [38] Monte I, Ishida S, Zamarreño A M, et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants[J]. Nature Chemical Biology, 2018, 14(5): 480−488. doi: 10.1038/s41589-018-0033-4
    [39] Howe G A, Koo A J, Major I T,. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69(1): 387−415. doi: 10.1146/annurev-arplant-042817-040047
    [40] Chini A, Gimenez-Ibanez S, Goossens, A, et al. Redundancy and specificity in jasmonate signalling[J]. Current Opinion in Plant Biology, 2016, 33(7): 147−156.
    [41] Zhu T, Herrfurth C, Xin M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications, 2021, 12(1): 1−8. doi: 10.1038/s41467-020-20314-w
    [42] Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154): 666−671. doi: 10.1038/nature06006
    [43] Zhang M, Chen Y, Nie L, et al. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs[J]. Gene, 2017, 620(4): 66−74.
    [44] Shyu C, Figueroa P, Depew C L, et al. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of Jasmonate responses in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 536−550. doi: 10.1105/tpc.111.093005
    [45] Zhang X C, Wang Z, Zhang X, et al. Evolutionary dynamics of protein domain architecture in plants[J]. BMC Evolutionary Biology, 2012, 12(1): 6−18. doi: 10.1186/1471-2148-12-6
    [46] Manfield I W, Devlin P F, Jen C H, et al. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family[J]. Plant Physiology, 2007, 143(2): 941−958. doi: 10.1104/pp.106.090761
    [47] Goossens J, Fernández-Calvo P, Schweizer F, et al. Jasmonates: signal transduction components and their roles in environmental stress responses[J]. Plant Molecular Biology, 2016, 91(6): 673−689. doi: 10.1007/s11103-016-0480-9
    [48] Song S, Qi T, Wasternack C, et al. Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Current Opinion in Plant Biology, 2014, 21(7): 112−119.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  70
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-02-16
  • 网络出版日期:  2022-04-06

目录

    /

    返回文章
    返回