高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抚育强度对不同林型“栽针保阔”红松林碳源/汇影响

杨智慧 牟长城 王亚辉 李轩男 刘珽

杨智慧, 牟长城, 王亚辉, 李轩男, 刘珽. 抚育强度对不同林型“栽针保阔”红松林碳源/汇影响[J]. 北京林业大学学报, 2023, 45(6): 19-32. doi: 10.12171/j.1000-1522.20220033
引用本文: 杨智慧, 牟长城, 王亚辉, 李轩男, 刘珽. 抚育强度对不同林型“栽针保阔”红松林碳源/汇影响[J]. 北京林业大学学报, 2023, 45(6): 19-32. doi: 10.12171/j.1000-1522.20220033
Yang Zhihui, Mu Changcheng, Wang Yahui, Li Xuannan, Liu Ting. Effects of tending intensity on carbon source/sink of Korean pine forests with different forest types by planting coniferous forest and reserving broadleaved forest[J]. Journal of Beijing Forestry University, 2023, 45(6): 19-32. doi: 10.12171/j.1000-1522.20220033
Citation: Yang Zhihui, Mu Changcheng, Wang Yahui, Li Xuannan, Liu Ting. Effects of tending intensity on carbon source/sink of Korean pine forests with different forest types by planting coniferous forest and reserving broadleaved forest[J]. Journal of Beijing Forestry University, 2023, 45(6): 19-32. doi: 10.12171/j.1000-1522.20220033

抚育强度对不同林型“栽针保阔”红松林碳源/汇影响

doi: 10.12171/j.1000-1522.20220033
基金项目: 国家重点研发计划(2022YFF1300502-1),“十三五”国家重点研发计划(2017YFC0504102)
详细信息
    作者简介:

    杨智慧。主要研究方向:恢复生态学。 Email:1391411623@qq.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:恢复生态学 。Email:muccjs@163.com 地址:同上

  • 中图分类号: S750;S791.247

Effects of tending intensity on carbon source/sink of Korean pine forests with different forest types by planting coniferous forest and reserving broadleaved forest

  • 摘要:   目的  揭示透光抚育对不同林型中期“栽针保阔”红松林碳源/汇影响规律,为恢复地带性顶极植被阔叶红松林提供依据。  方法  运用静态箱−气相色谱分析及相对生长方程法,同步测定小兴安岭3种中期“栽针保阔”红松林(蒙古栎红松林、白桦红松林和山杨红松林冠下栽植红松25 ~ 35年及透光抚育25 ~ 30年)在不同透光抚育强度(对照、轻度透光抚育、强度透光抚育)下的土壤异养呼吸净碳排放量(CO2和CH4)、植被年净固碳量及相关环境因子(温度、土壤含水率、有机碳、全氮等),并依据生态系统净碳收支,确定林型和透光抚育强度对中期“栽针保阔”红松林碳源/汇的影响规律及其机制。  结果  (1)3种林型土壤CO2年均通量(159.94 ~ 207.43 mg/(m2·h))既受透光抚育强度影响(强度透光抚育使蒙古栎红松林显著提高18.9%),也受林型影响(对照林分白桦红松林显著大于蒙古栎红松林和山杨红松林,轻、强度透光抚育下3种林型相近);各透光抚育强度对3者的土壤CH4年均通量(−0.047 ~ −0.028 mg/(m2·h))无显著影响,但白桦红松林和山杨红松林显著高于蒙古栎红松林;(2)轻、强度透光抚育对3种林型的植被年净固碳量(1.66 ~ 3.99 t/(hm2·a))无显著影响,但在各透光抚育强度下白桦红松林显著高于蒙古栎红松林和山杨红松林(105.4% ~ 124.1%和31.0% ~ 32.6%),山杨红松林又显著高于蒙古栎红松林(55.7% ~ 71.1%);(3)轻度透光抚育对蒙古栎红松林(−1.93 ~ −1.12 t/(hm2·a))、白桦红松林(−0.13 ~ 0.46 t/(hm2·a))和山杨红松林(−1.03 ~ −0.65 t/(hm2·a))碳汇已无显著影响,而强度透光抚育的影响程度和方向与林型密切相关(蒙古栎红松林源强显著提高72.3%,白桦红松林由碳汇转化为弱源,山杨红松林源强变大但差异性不显著)。  结论  因此,从中期“栽针保阔”红松林维持森林碳汇方面考虑,对恢复较快的白桦红松林和山杨红松林可以采取强度透光抚育,而对恢复较慢的蒙古栎红松林则适宜采取轻度透光抚育。

     

  • 图  1  小兴安岭不同透光抚育强度白桦红松林、山杨红松林和蒙古栎红松林甲烷、二氧化碳的季节动态

    Figure  1.  Seasonal dynamics of methane and carbon dioxide in white birch-Korean pine forest, aspen-Korean pine forest and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains

    图  2  小兴安岭不同透光抚育强度白桦红松林、山杨红松林和蒙古栎红松林碳源/汇

    Figure  2.  Carbon source/sink in white birch-Korean pine forest, aspen-Korean pine forest and Mongolian oak-Korean pine forestunder different light-felling intensities in Xiaoxing’an Mountains

    表  1  试验地概况

    Table  1.   Overview of test site

    林型
    Forest type
    处理
    Treatment
    郁闭度
    Canopy
    density/%
    树种
    Tree species
    密度/(株·hm−2)
    Density/(plant·ha−1)
    胸高断面积/(m2·hm−2)
    Basal area/(m2·ha−1)
    平均胸径
    Mean DBH/
    cm
    胸径范围
    DBH range/
    cm
    白桦红松林
    White birch-Korean
    pine forest
    C 75 红松 Pinus koraiensis 967 3.32 6.04 2.0 ~ 12.6
    白桦 Betula platyphylla 489 14.17 18.12 7.5 ~ 41.0
    山杨 Populus davidiana 244 5.27 15.97 5.8 ~ 24.2
    其他 Others 483 7.17 14.37 2.7 ~ 32.5
    L 70 红松 Pinus koraiensis 695 4.55 8.00 2.8 ~ 16.9
    白桦 Betula platyphylla 445 12.83 18.34 8.0 ~ 30.7
    山杨 Populus davidiana 317 7.27 16.94 7.5 ~ 25.5
    其他 Others 194 3.99 13.93 2.2 ~ 35.3
    H 65 红松 Pinus koraiensis 650 6.53 9.88 2.8 ~ 29.2
    白桦 Betula platyphylla 467 14.03 18.60 8.3 ~ 32.8
    山杨 Populus davidiana 150 4.29 16.17 7.9 ~ 31.4
    其他 Others 372 4.30 10.02 2.8 ~ 39.7
    山杨红松林
    Aspen-Korean pine
    forest
    C 83 红松 Pinus koraiensis 628 19.04 16.90 4.1 ~ 34.1
    山杨 Populus davidiana 578 11.70 13.93 4.1 ~ 32.0
    其他 Others 889 4.13 7.08 1.1 ~ 19.7
    L 77 红松 Pinus koraiensis 922 14.19 13.76 4.5 ~ 39.5
    山杨 Populus davidiana 572 9.08 11.97 2.7 ~ 32.5
    其他 Others 628 19.04 16.90 4.1 ~ 34.1
    H 63 红松 Pinus koraiensis 711 3.49 7.41 2.0 ~ 13.9
    山杨 Populus davidiana 1 094 14.86 12.90 6.5 ~ 26.2
    其他 Others 311 5.78 14.32 4.3 ~ 26.2
    蒙古栎红松林
    Mongolian oak-Korean
    pine forest
    C 79 红松 Pinus koraiensis 1 967 1.23 2.56 1.0 ~ 5.9
    蒙古栎 Quercus mongolica 672 14.11 14.64 4.0 ~ 34.6
    其他 Others 244 3.88 9.75 1.0 ~ 45.3
    L 72 红松 Pinus koraiensis 2 183 1.92 3.05 1.0 ~ 6.5
    蒙古栎 Quercus mongolica 612 14.36 15.96 4.0 ~ 29.0
    其他 Others 156 1.14 7.01 1.0 ~ 19.6
    H 61 红松 Pinus koraiensis 2 178 1.91 3.18 1.0 ~ 7.8
    蒙古栎 Quercus mongolica 539 14.67 17.31 4.0 ~ 30.5
    其他 Others 150 1.61 7.34 1.2 ~ 24.1
    注:C表示对照;L表示轻度透光抚育(伐除上层蓄积比1/7);H表示强度透光抚育(伐除上层蓄积比1/3)。下同。Notes: C, control; L, light-intensity light-felling (removal of upper layer storage ratio 1/7); H, heavy-intensity light-felling (removal of upper layer storage ratio 1/3). The same below.
    下载: 导出CSV

    表  2  小兴安岭3种林型不同透光抚育强度下环境因子状况

    Table  2.   Environmental factors in the three forest types under different light-felling intensities in Xiaoxing’an Mountains

    环境因子
    Environmental
    factor
    土壤深度
    Soil depth/
    cm
    白桦红松林
    White birch-Korean pine forest
    山杨红松林
    Aspen-Korean pine forest
    蒙古栎红松林
    Mongolian oak-Korean pine forest
    CLHCLHCLH
    气温
    Air temperature/℃
    3.35 ± 0.55Aa 4.00 ± 0.80Aa 4.90 ± 1.90Aa 3.06 ± 0.44Ba 3.91 ± 0.39ABa 4.52 ± 0.52Aa 2.86 ± 0.60Aa 3.34 ± 0.44Aa 2.85 ± 0.16Aa
    土温
    Soil temperature/℃
    0 7.44 ± 0.36A 6.50 ± 0.51B 7.50 ± 0.30A 6.38 ± 0.33A 6.61 ± 0.50A 6.58 ± 0.39A 5.78 ± 0.33B 7.88 ± 0.39A 7.35 ± 0.56A
    10 6.78 ± 0.23A 6.39 ± 0.61A 6.56 ± 0.54A 5.80 ± 0.40A 6.10 ± 0.40A 6.06 ± 0.46A 5.84 ± 0.84A 6.09 ± 0.01A 6.63 ± 0.97A
    20 6.65 ± 0.26A 6.31 ± 0.42A 6.42 ± 0.48A 5.68 ± 0.48A 5.85 ± 0.35A 6.11 ± 0.89A 6.14 ± 0.16A 6.35 ± 1.75A 6.56 ± 1.77A
    30 5.84 ± 0.06A 5.77 ± 1.01A 5.78 ± 0.53A 5.37 ± 0.53A 5.66 ± 0.47A 5.79 ± 0.30A 6.82 ± 0.90A 6.95 ± 0.75A 7.00 ± 1.31A
    40 5.46 ± 1.04A 4.77 ± 0.54A 5.64 ± 0.45A 4.99 ± 0.49A 5.24 ± 0.45A 4.86 ± 0.34A 6.11 ± 0.66A 6.38 ± 0.48A 6.63 ± 1.68A
    0~40 6.44 ± 0.39Aa 5.95 ± 0.25Ab 6.38 ± 0.16Ab 5.98 ± 0.63Aa 5.89 ± 0.10Ab 5.88 ± 0.02Ac 6.14 ± 0.24Ba 6.73 ± 0.30Aa 6.84 ± 0.20Aa
    含水率
    Water content/%
    0~10 0.91 ± 0.31A 0.92 ± 0.17A 0.89 ± 0.11A 0.78 ± 0.07A 0.82 ± 0.13A 0.77 ± 0.06A 0.34 ± 0.10A 0.36 ± 0.06A 0.45 ± 0.16A
    10~20 0.74 ± 0.19A 0.63 ± 0.26A 0.59 ± 0.17A 0.55 ± 0.11A 0.53 ± 0.11A 0.50 ± 0.08A 0.26 ± 0.04A 0.24 ± 0.03A 0.24 ± 0.10A
    20~30 0.43 ± 0.06A 0.61 ± 0.21A 0.42 ± 0.01A 0.43 ± 0.07A 0.44 ± 0.06A 0.38 ± 0.03A 0.25 ± 0.10A 0.15 ± 0.03A 0.19 ± 0.02A
    0~30 0.69 ± 0.10Aa 0.73 ± 0.15Aa 0.63 ± 0.09Aa 0.59 ± 0.08Aa 0.60 ± 0.09Aa 0.55 ± 0.05Aa 0.28 ± 0.02Ab 0.25 ± 0.01Ab 0.29 ± 0.09Ab
    有机碳
    Organic carbon/
    (g·kg−1)
    0~10 110.78 ± 25.51A 88.99 ± 15.79A 107.95 ± 11.69A 93.73 ± 21.52A 85.26 ± 10.63A 91.27 ± 5.33A 49.98 ± 7.93A 47.94 ± 0.60A 38.65 ± 9.36A
    10~20 67.11 ± 18.05A 58.36 ± 15.70A 55.01 ± 6.17A 51.84 ± 9.18A 46.20 ± 11.35A 47.79 ± 6.88A 27.03 ± 4.69A 22.13 ± 0.59A 20.76 ± 4.81A
    20~30 37.51 ± 8.28A 36.86 ± 10.34A 35.32 ± 6.09A 32.39 ± 7.88A 32.04 ± 7.58A 28.44 ± 2.87A 12.82 ± 1.26A 18.29 ± 7.79A 18.63 ± 4.18A
    0~30 71.80 ± 17.06Aa 61.40 ± 13.13Aa 66.10 ± 7.27Aa 59.32 ± 12.81Aa 54.50 ± 7.00Aa 55.83 ± 3.85Aa 29.94 ± 0.88Ab 27.71 ± 0.41Ab 25.87 ± 3.53Ab
    全氮
    Total nitrogen/
    (g·kg−1)
    0~10 12.13 ± 2.17A 11.89 ± 2.36A 13.08 ± 0.59A 13.27 ± 4.36A 13.57 ± 2.54A 12.78 ± 0.38A 8.70 ± 1.05A 9.32 ± 0.27A 8.61 ± 0.50A
    10~20 10.23 ± 2.45A 11.62 ± 1.56A 12.26 ± 2.22A 13.68 ± 2.46A 10.06 ± 0.10B 9.76 ± 1.33B 5.77 ± 0.68AB 6.33 ± 0.51A 5.05 ± 0.30B
    20~30 9.63 ± 3.18A 10.21 ± 2.15A 11.78 ± 2.83A 9.39 ± 1.52B 12.46 ± 0.66A 10.87 ± 1.28AB 3.81 ± 0.60AB 4.31 ± 0.07A 3.42 ± 0.13B
    0~30 10.66 ± 1.68Aa 11.24 ± 1.69Aa 12.38 ± 0.44Aa 12.12 ± 1.99Aa 12.03 ± 0.34Aa 11.14 ± 0.27Ab 6.10 ± 0.77Ab 6.65 ± 0.21Ab 5.69 ± 0.23Ac
    注:同行不同大写字母表示同林型不同处理之间差异显著(P < 0.05),不同小写字母表示不同林型同处理之间差异显著(P < 0.05)。Notes: different uppercase letters in the same row indicate significant differences between different types of sample plots at P < 0.05 level; different lowercase letters indicate significant differences between varied types of sample plots in the same treatment.
    下载: 导出CSV

    表  3  小兴安岭不同透光抚育强度白桦红松林、山杨红松林和蒙古栎红松林土壤CH4季节通量

    Table  3.   Seasonal methane flux from the soil in the white birch-Korean pine forest, aspen-Korean pine forest, and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains mg/(m2·h)

    林型 Forest type观测时期 Observation period处理 Treatment
    CLH
    白桦红松林
    White birch-Korean pine forest
    春季 Spring −0.053 ± 0.009Abc −0.051 ± 0.005Abc −0.047 ± 0.010Abc
    夏季 Summer −0.064 ± 0.011Ac −0.064 ± 0.011Ac −0.061 ± 0.013Ac
    秋季 Autumn −0.046 ± 0.007Ab −0.042 ± 0.008Ab −0.035 ± 0.004Ab
    冬季 Winter −0.016 ± 0.001Aa −0.014 ± 0.002Aa −0.015 ± 0.002Aa
    生长季 Growing season −0.062 ± 0.010Ab −0.061 ± 0.008Ab −0.057 ± 0.014Ab
    非生长季 Non-growing season −0.027 ± 0.003Aa −0.024 ± 0.003Aa −0.021 ± 0.001Aa
    年平均值 Annual average −0.045 ± 0.006AⅡ −0.045 ± 0.004AⅡ −0.041 ± 0.007AⅡ
    山杨红松林
    Aspen-Korean pine forest
    春季 Spring −0.044 ± 0.005Bb −0.040 ± 0.012ABb −0.027 ± 0.002Ab
    夏季 Summer −0.062 ± 0.005Ac −0.069 ± 0.018Ac −0.053 ± 0.005Ac
    秋季 Autumn −0.043 ± 0.011ABb −0.061 ± 0.006Bc −0.035 ± 0.013Ab
    冬季 Winter −0.016 ± 0.005Aa −0.014 ± 0.004Aa −0.010 ± 0.006Aa
    生长季 Growing season −0.054 ± 0.005Ab −0.060 ± 0.017Ab −0.045 ± 0.009Ab
    非生长季 Non-growing season −0.028 ± 0.006ABa −0.030 ± 0.002Ba −0.018 ± 0.006Aa
    年平均值 Annual average −0.043 ± 0.006AⅡ −0.047 ± 0.010AⅡ −0.033 ± 0.002AⅠ
    蒙古栎红松林
    Mongolian oak-Korean pine forest
    春季 Spring −0.026 ± 0.003Ab −0.024 ± 0.002Ab −0.027 ± 0.004Ab
    夏季 Summer −0.044 ± 0.005Ac −0.049 ± 0.001ABc −0.054 ± 0.003Bc
    秋季 Autumn −0.029 ± 0.004Ab −0.025 ± 0.003Ab −0.026 ± 0.001Ab
    冬季 Winter −0.013 ± 0.001Aa −0.010 ± 0.001Aa −0.014 ± 0.004Aa
    生长季 Growing season −0.041 ± 0.005Ab −0.045 ± 0.002Ab −0.053 ± 0.002Bb
    非生长季 Non-growing season −0.014 ± 0.001Aa −0.011 ± 0.003Aa −0.012 ± 0.002Aa
    年平均值 Annual average −0.029 ± 0.003AⅠ −0.028 ± 0.001AⅠ −0.032 ± 0.001AⅠ
    注:不同大写字母表示相同季节不同处理差异显著(P < 0.05),不同小写字母表示相同处理不同季节差异显著(P < 0.05),不同罗马数字表示相同处理不同林型差异显著(P < 0.05)。Notes: different capital letters indicate significant differences between varied treatments of the same stand type in the same season at P < 0.05 level; different lowercase letters indicate significant differences between varied seasons of the same stand type in the same treatment at P < 0.05 level; different Roman numerals indicate significant differences between stand types in the same treatment at P < 0.05 level.
    下载: 导出CSV

    表  4  小兴安岭不同透光抚育强度白桦红松林、山杨红松林和蒙古栎红松林土壤CO2季节通量

    Table  4.   Seasonal average flux of carbon dioxide emission from the soil of white birch-Korean pine forest, aspen-Korean pine forest, and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains mg/(m2·h)

    林型 Forest type观测时期 Observation period处理 Treatment
    CLH
    白桦红松林
    White birch-Korean pine forest
    春季 Spring 197.66 ± 5.38Ab 199.69 ± 5.79Ab 208.50 ± 12.87Ab
    夏季 Summer 381.66 ± 44.28Aa 391.16 ± 39.10Aa 429.94 ± 37.71Aa
    秋季 Autumn 98.49 ± 19.77Ac 100.02 ± 19.72Ac 108.82 ± 12.41Ac
    冬季 Winter 26.30 ± 4.20Ad 24.60 ± 4.00Ad 22.48 ± 3.41Ad
    生长季 Growing season 300.45 ± 30.23Aa 303.42 ± 20.50Aa 327.99 ± 16.05Aa
    非生长季 Non-growing season 48.90 ± 6.68Ab 52.32 ± 4.18Ab 54.69 ± 5.19Ab
    年平均值 Annual average 188.65 ± 15.21AⅡ 191.82 ± 9.77AⅠ 206.52 ± 8.87AⅠ
    山杨红松林
    Aspen-Korean pine forest
    春季 Spring 171.62 ± 9.52Ab 289.30 ± 72.82Aa 239.98 ± 85.34Ab
    夏季 Summer 288.66 ± 27.06Aa 300.13 ± 35.29Aa 341.90 ± 42.42Aa
    秋季 Autumn 134.93 ± 28.37ABb 111.06 ± 25.10Bb 174.07 ± 24.04Ab
    冬季 Winter 33.48 ± 16.36Ac 30.27 ± 5.87Ac 32.01 ± 14.30Ac
    生长季 Growing season 244.85 ± 18.34Aa 303.87 ± 53.52Aa 309.05 ± 63.20Aa
    非生长季 Non-growing season 65.83 ± 8.21Bb 59.22 ± 6.52Bb 80.40 ± 4.81Ab
    年平均值 Annual average 165.28 ± 10.95AⅠ 195.14 ± 26.97AⅠ 207.43 ± 36.37AⅠ
    蒙古栎红松林
    Mongolian oak-Korean pine forest
    春季 Spring 170.94 ± 9.82Bb 193.09 ± 8.05Ab 189.87 ± 5.96Ab
    夏季 Summer 338.58 ± 10.41Ba 333.69 ± 23.49Ba 393.77 ± 30.19Aa
    秋季 Autumn 57.23 ± 9.69Bc 62.31 ± 2.81Bc 79.61 ± 6.72Ac
    冬季 Winter 25.58 ± 7.48Bd 37.43 ± 4.93Ad 46.71 ± 2.68Ad
    生长季 Growing season 261.82 ± 10.14ABa 269.35 ± 8.22Ba 294.32 ± 18.26Aa
    非生长季 Non-growing season 32.58 ± 2.12Cb 42.41 ± 2.85Bb 60.03 ± 5.13Ab
    年平均值 Annual average 159.94 ± 6.48BⅠ 168.49 ± 3.55BⅠ 190.19 ± 9.30AⅠ
    注:不同大写字母表示相同季节不同处理(P < 0.05),不同小写字母表示相同处理不同季节(P < 0.05),不同罗马数字表示相同处理不同林型(P < 0.05)。Notes: different capital letters indicate significant difference at P < 0.05 level between different treatments in the same season, different lowercase letters indicate significant difference at P<0.05 level between different seasons in the same treatment, different Roman numerals indicate different forest types at P < 0.05 level for the same treatment.
    下载: 导出CSV

    表  5  小兴安岭3种林型不同透光抚育强度下土壤CO2和CH4排放的主要影响因子

    Table  5.   Main factors affecting methane and carbon dioxide emission from soil in three forests types under different light-felling intensities in Xiaoxing’an Mountains

    林型
    Forest type
    气体
    Gas
    处理
    Treatment
    气温
    Air temperature
    有机碳
    Organic carbon
    土壤温度
    Soil temperature
    含水率
    Water content
    全氮
    Total nitrogen
    截距
    Intercept
    R2
    白桦红松林
    White birch-Korean
    pine forest
    CH4 C 0.001** 0.036** 0.408
    L 0.001* −0.076* −0.096** 0.576
    H 0.001** −0.033** 0.414
    CO2 C 11.437** −191.588* 0.722
    L 10.275** 444.165** 0.604
    H 9.577** −332.638* 0.585
    山杨红松林
    Aspen-Korean
    pine forest
    CH4 C 0.001** 0.037** 0.395
    L 0.002** 0.040** 0.521
    H 0.002** 0.024** 0.568
    CO2 C −3.509** 10.926** 382.465** 0.548
    L −375.047** 14.311** 381.745** 0.770
    H 15.363** 115.820** 0.676
    蒙古栎红松林
    Mongolian oak-Korean
    pine forest
    CH4 C 0.001** −0.071** 0.041** 0.899
    L 0.001* 0.018** 0.716
    H 0.002** 0.019** 0.753
    CO2 C 3.418* −1.693** 9.862** −18.633 0.093
    L 6.475** −3.130* 5.678 + 158.837** 0.837
    H 22.966** 10.047 0.667
    注: + 、*、**分别表示在P < 0.1、P < 0.05、P < 0.01水平上差异显著。Notes: + , *, ** represent significant differences at P < 0.1, P < 0.05, P < 0.01 levels, respectively.
    下载: 导出CSV

    表  6  小兴安岭不同透光抚育强度下白桦红松林、山杨红松林和蒙古栎红松林的植被净初生产力与年净固碳量

    Table  6.   Net primary productivity and net carbon sequestration of white birch-Korean pine forest, aspen-Korean pine forest, and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains

    指标
    Index
    林型
    Forest type
    处理
    Treatment
    层次 Layer
    红松
    Korean pine
    阔叶树种
    Broadleaf tree
    乔木
    Tree
    灌木
    Shrub
    草本
    Herb
    植被
    Vegetation
    净初级生产力/
    (t·hm−2·a−1)
    Net primary productivity (NPP)/(t·ha−1·year−1)
    白桦红松林
    White birch-Korean
    pine forest
    C 0.90 ± 0.09Aa 6.24 ± 0.44Aa 7.14 ± 0.46Aa 1.13 ± 0.27Aa 0.15 ± 0.03Aa 8.42 ± 0.66Aa
    L 0.92 ± 0.13Aa 5.86 ± 0.26Aa 6.78 ± 0.25Aa 1.12 ± 0.31Aa 0.15 ± 0.04Aa 8.05 ± 0.17Aa
    H 1.12 ± 0.10Aa 6.01 ± 0.61Aa 7.13 ± 0.82Aa 0.73 ± 0.17Aab 0.16 ± 0.03Aa 8.02 ± 0.79Aa
    山杨红松林
    Aspen-Korean
    pine forest
    C 0.67 ± 0.08Cb 4.88 ± 0.26Ab 5.55 ± 0.24Ab 0.84 ± 0.06Aab 0.16 ± 0.01Aa 6.55 ± 0.27Ab
    L 0.84 ± 0.05Ba 4.45 ± 0.13ABb 5.29 ± 0.15Ab 0.86 ± 0.17Aa 0.13 ± 0.04Aa 6.27 ± 0.18Ab
    H 1.05 ± 0.09Aa 4.13 ± 0.42Bb 5.18 ± 0.49Ab 0.90 ± 0.11Aa 0.15 ± 0.05Aa 6.22 ± 0.46Ab
    蒙古栎红松林
    Mongolian oak-Korean
    pine forest
    C 0.40 ± 0.01Cc 2.88 ± 0.28Ac 3.28 ± 0.28Ac 0.57 ± 0.15Ab 0.17 ± 0.05Aa 4.02 ± 0.21Ac
    L 0.60 ± 0.03Bb 2.35 ± 0.03Bc 2.95 ± 0.05Ac 0.78 ± 0.22Aa 0.21 ± 0.03Aa 3.94 ± 0.27Ac
    H 0.75 ± 0.07Ab 2.16 ± 0.12Bc 2.91 ± 0.19Ac 0.47 ± 0.17Ab 0.17 ± 0.06Aa 3.55 ± 0.32Ac
    植被年净固碳量/
    (t·hm−2·a−1)
    Annual net carbon sequestration of vegetation (VNCS)/(t·ha−1·year−1)
    白桦红松林
    White birch-Korean
    pine forest
    C 0.43 ± 0.05Aa 2.96 ± 0.25Aa 3.39 ± 0.28Aa 0.53 ± 0.13Aa 0.07 ± 0.01Aa 3.99 ± 0.37Aa
    L 0.43 ± 0.06Aa 2.77 ± 0.22Aa 3.20 ± 0.09Aa 0.53 ± 0.15Aa 0.07 ± 0.02Aa 3.80 ± 0.73Aa
    H 0.52 ± 0.12Aa 2.79 ± 0.29Aa 3.31 ± 0.38Aa 0.34 ± 0.08Aab 0.07 ± 0.01Aa 3.72 ± 0.37Aa
    山杨红松林
    Aspen-Korean
    pine forest
    C 0.33 ± 0.04Cb 2.20 ± 0.12Ab 2.54 ± 0.24Ab 0.40 ± 0.04Aab 0.07 ± 0.01Aa 3.01 ± 0.14Ab
    L 0.42 ± 0.02Ba 1.95 ± 0.11ABb 2.37 ± 0.13Ab 0.40 ± 0.09Aa 0.06 ± 0.02Aa 2.88 ± 0.15Ab
    H 0.53 ± 0.04Aa 1.86 ± 0.20Bb 2.39 ± 0.24Ab 0.42 ± 0.06Aa 0.07 ± 0.02Aa 2.84 ± 0.23Ab
    蒙古栎红松林
    Mongolian oak-Korean
    pine forest
    C 0.19 ± 0.01Cc 1.37 ± 0.14Ac 1.56 ± 0.14Ac 0.25 ± 0.06Ab 0.07 ± 0.02Aa 1.88 ± 0.11Ac
    L 0.28 ± 0.02Bb 1.12 ± 0.01Bc 1.40 ± 0.01Ac 0.35 ± 0.10Aa 0.09 ± 0.02Aa 1.85 ± 0.12Ac
    H 0.35 ± 0.03Ab 1.02 ± 0.06Bc 1.38 ± 0.09Ac 0.21 ± 0.08Ab 0.07 ± 0.03Aa 1.66 ± 0.15Ac
    注:不同大写字母表示相同林型不同处理(P < 0.05),不同小写字母表示相同处理不同林型(P < 0.05)。Notes: capital letters indicate significant differences between treatments in the same type at P < 0.05 level; different lowercase letters indicate significant differences between the same treatments of three forest types at P < 0.05 level.
    下载: 导出CSV

    表  7  小兴安岭不同透光抚育强度下白桦红松林、山杨红松林和蒙古栎红松林植被固碳的主要影响因子

    Table  7.   Main affecting factors of vegetation carbon sequestration of white birch-Korean pine forest, aspen-Korean pine forest and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains

    指标
    Item
    林型
    Forest type
    土壤温度
    Soil temperature
    含水率
    Water content
    有机碳
    Organic carbon
    截距
    Intercept
    R2
    NPP 白桦红松林 White birch-Korean pine forest 0.026* 6.450** 0.581
    山杨红松林 Aspen-Korean pine forest 0.049** 3.582** 0.635
    蒙古栎红松林 Mongolian oak-Korean pine forest −0.257** 9.044** 3.017** 0.951
    VNCS 白桦红松林 White birch-Korean pine forest 0.010* 3.165** 0.453
    山杨红松林 Aspen-Korean pine forest 0.027** 1.367* 0.597
    蒙古栎红松林 Mongolian oak-Korean pine forest −0.121** 4.357** 1.381** 0.951
    注: *、**分别表示在P < 0.05、P < 0.01水平上差异显著。Notes: *, ** represent significant difference at P < 0.05, P < 0.01 levels, respectively.
    下载: 导出CSV
  • [1] IPCC. Climate change 2013: the physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013.
    [2] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
    [3] Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry[M]// Solomon S, Qin D, Manning M, et al. Climate change 2007: the physical science basis: contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
    [4] Dixon R K, Solomon A, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
    [5] Vayreda J, Martinez-Vilalta J, Gracia M, et al. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests[J]. Global Change Biology, 2012, 18(3): 1028−1041. doi: 10.1111/j.1365-2486.2011.02606.x
    [6] Alvarez S, Ortiz C, Díaz-Pinés E, et al. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean Mountain forests: a case study using the CO2 fix model[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(7): 1045−1058.
    [7] Fernandez I, Älvarez-Gonzalez J G, Carrasco B, et al. Post-thinning soil organic matter evolution and soil CO2 effluxes in temperate radiata pine plantations: impacts of moderate thinning regimes on the forest C cycle[J]. Canadian Journal of Forest Research, 2012, 42(11): 1953−1964. doi: 10.1139/x2012-137
    [8] Boncina A, Kadunc A, Robic D. Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-Eastern Slovenia[J]. Annals of Forest Science, 2007, 64(1): 47−57. doi: 10.1051/forest:2006087
    [9] Olajuyigbe S, Tobin B, Saunders M, et al. Forest thinning and soil respiration in a Sitka spruce forest in Ireland[J]. Agricultural and Forest Meteorology, 2012, 157: 86−95. doi: 10.1016/j.agrformet.2012.01.016
    [10] Lena G, Baker S C, Jürgen B, et al. Retention forestry to maintain multifunctional forests: a world perspective[J]. BioScience, 2012, 7: 633−645.
    [11] Lei L, Xiao W, Zeng L, et al. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands[J]. Science of the Total Environment, 2018, 621: 1360−1369. doi: 10.1016/j.scitotenv.2017.10.092
    [12] Doukalianou F, Radoglou K, Agnelli A E, et al. Annual greenhouse-gas emissions from forest soil of a peri-urban conifer forest in greece under different thinning intensities and their climate-change mitigation potential[J]. Forest Science, 2019, 65(4): 387−400. doi: 10.1093/forsci/fxy069
    [13] Han M G, Gao W F, Shi B K, et al. Long-term (42 years) effect of thinning on soil CO2 emission in a mixed broadleaved-Korean pine (Pinus koraiensis) forest in northeast China[J]. Pedosphere, 2021, 31(2): 353−362. doi: 10.1016/S1002-0160(20)60066-2
    [14] Sullivan B W, Kolb T E, Hart S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests[J]. Forest Ecology and Management, 2008, 255(12): 4047−4055. doi: 10.1016/j.foreco.2008.03.051
    [15] Yang L, Niu S L, Tian D S, et al. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning[J/OL]. Science of the Total Environment, 2022, 804: 150225[2022−01−18]. https://doi.org/10.1016/j.scitotenv.2021.150225.
    [16] Chiang J M, Mcewan R W, Yaussy D A, et al. The effects of prescribed fire and silvicultural thinning on the aboveground carbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio[J]. Forest Ecology and Management, 2008, 255(5−6): 1584−1594. doi: 10.1016/j.foreco.2007.11.016
    [17] Saunders M, Tobin B, Black K, et al. Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature-dependent[J]. Agricultural and Forest Meteorology, 2012, 157: 1−10. doi: 10.1016/j.agrformet.2012.01.008
    [18] Ogaya R, Escolà A, Liu D, et al. Effects of thinning in a water-limited holm oak forest[J]. Journal of Sustainable Forestry, 2020, 39(4): 365−378. doi: 10.1080/10549811.2019.1673179
    [19] Dore S, Kolb T E, Montes-Helu M, et al. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning[J]. Ecological Applications, 2010, 20(3): 663−683. doi: 10.1890/09-0934.1
    [20] Aun K, Kukumgi M, Varik M, et al. Short-term effect of thinning on the carbon budget of young and middle-aged silver birch (Betula pendula Roth) stands[J/OL]. Forest Ecology and Management, 2021, 11: 118660[2022−01−12]. https://doi.org/10.1016/j.foreco.2020.118660.
    [21] Dore S, Fry D L, Collins B M, et al. Management impacts on carbon dynamics in a Sierra Nevada mixed conifer forest [J/OL]. PLoS One, 2016, 11(2): e0150256[2022−01−17]. https://doi.org/10.1371/journal.pone.0150256.
    [22] Davis S C, Hessl A E, Scott C J, et al. Forest carbon sequestration changes in response to timber harvest[J]. Forest Ecology and Management, 2009, 258(9): 2101−2109. doi: 10.1016/j.foreco.2009.08.009
    [23] Moreno-Fernández D, Díaz-Pinés E, Barbeito I, et al. Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean Mountain Scots pine forests[J]. Forest Ecology and Management, 2015, 348: 186−195. doi: 10.1016/j.foreco.2015.03.043
    [24] Pukkala T. Does management improve the carbon balance of forestry? [J]. Forestry, 2017, 90(1): 125−135.
    [25] Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113(1−4): 185−222. doi: 10.1016/S0168-1923(02)00108-9
    [26] Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2010, 10(12): 2052−2077.
    [27] 李俊清, 王业蘧. 天然林内红松种群数量变化的波动性[J]. 生态学杂志, 1986, 5(5): 1−5.

    Li J Q, Wang Y J. Wave features of population changes of Pinus koraiensis in natural forest[J]. Journal of Ecology, 1986, 5(5): 1−5.
    [28] 李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997.

    Li J W. Ecology and management of Korean pine mixed forest[M]. Harbin: Northeast Forestry University Press, 1997.
    [29] 特喜铁, 邓庆华, 戎可. 红松资源的合理开发与东北地区生态安全[J]. 安徽农业科学, 2011, 39(23): 14082−14083,14132. doi: 10.3969/j.issn.0517-6611.2011.23.071

    Te X T, Deng Q H, Rong K. Rational exploitation of Korean pines resources and ecological security in northeast China[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14082−14083,14132. doi: 10.3969/j.issn.0517-6611.2011.23.071
    [30] 于大炮, 周莉, 代力民. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.

    Yu D P, Zhou L, Dai L M. Exploring the history of the management theory and technology of broadleaved Korean pine forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
    [31] 陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ)-栽针保阔的经营途径[J]. 东北林学院学报, 1984, 12(4): 1−12.

    Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in Heilongjiang Province: the management way of Korean pine forest restored by planting conifer and reserving broad-leaved tree[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12.
    [32] 牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山"栽针保阔"红松林植被碳储量影响[J]. 植物研究, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017

    Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017
    [33] 韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 33(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008

    Han L D, Mu C C, Zhang J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountain[J]. Journal of Northeast Forestry University, 2016, 33(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008
    [34] 韩阳瑞, 牟长城, 张晓亮, 等. 透光抚育对“栽针保阔”红松林中红松生长过程的影响[J]. 安徽农业科学, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057

    Han Y R, Mu C C, Zhang X L, et al. The influence of light transmittance felling on Pinus Koraiensis growth process in the “preserving deciduous while planting coniferous” Korean pine[J]. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057
    [35] 张迪祥. 伊春市带岭地区自然地理条件对植物群落分布的影响[J]. 植物科学学报, 1983, 1(2): 229−236.

    Zhang D X. The influence of natural geographical condition of Dailing Area in Yichun City to the distribution of plant community[J]. Plant Science Journal, 1983, 1(2): 229−236.
    [36] 张悦, 牟长城, 刘辉, 等. 透光抚育对温带帽儿山红松林非生长季土壤温室气体排放的影响[J]. 应用生态学报, 2018, 29(7): 2183−2194.

    Zhang Y, Mu C C, Liu H, et al. Effects of light-felling on non-growing season greenhouse gas emission from soils in Korean pine forests in Maoer Mountain[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2183−2194.
    [37] 姜宁, 牟长城, 韩丽冬, 等. 采伐对大兴安岭非连续冻土区毛赤杨沼泽碳源/汇的影响[J]. 北京林业大学学报, 2020, 42(3): 1−13. doi: 10.12171/j.1000-1522.20190074

    Jiang N, Mu C C, Han L D, et al. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1−13. doi: 10.12171/j.1000-1522.20190074
    [38] Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
    [39] Smith K A, Ball T, Conen F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2018, 69(1): 10−20. doi: 10.1111/ejss.12539
    [40] Curry C L. Modeling the soil consumption of atmospheric methane at the global scale[J/OL]. Global Biogeochemical Cycles, 2007, 21: G84012[2022−01−10]. https://doi.org/10.1029/2006GB002818.
    [41] Borken W, Beese F. Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce[J]. European Journal of Soil Science, 2005, 57(5): 617−625.
    [42] Henri V K, Bodelier P, Rian H A D, et al. Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study[J/OL]. Frontiers in Microbiology, 2018, 9: 1714[2022−01−15]. https://doi.org/10.3389/fmicb.2018.01714.
    [43] Ryan M, Law B. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73(1): 3−27. doi: 10.1007/s10533-004-5167-7
    [44] Wu X, Brüggemann N, Gasche R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany[J]. Environmental Pollution, 2011, 159(10): 2467−2475.
    [45] 潘新丽, 林波, 刘庆. 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响[J]. 应用生态学报, 2008, 19(8): 1637−1643.

    Pan X L, Lin B, Liu Q. Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forestin western Sichuan Province, China[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1637−1643.
    [46] Wei Y W, Li M H, Chen H, et al. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China[J/OL]. PLoS One, 2013, 8(8): e72201[2022−03−19]. https://doi.org/10.1371/journal.pone.0072201.
    [47] 岳军伟. 甘肃主要森林类型固碳动态, 潜力及影响机制 [D]. 咸阳: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.

    Yue J W. Dynamics, potential and mechanism of carbon sequestration in major forest types in Gansu Province, China[D]. Xianyang: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), 2018.
    [48] Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada[J]. Global Change Biology, 2010, 10: 1267−1284.
    [49] 齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303

    Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  124
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-04-18
  • 录用日期:  2022-05-11
  • 网络出版日期:  2022-05-14
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回