Effects of tending intensity on carbon source/sink of Korean pine forests with different forest types by planting coniferous forest and reserving broadleaved forest
-
摘要:
目的 揭示透光抚育对不同林型中期“栽针保阔”红松林碳源/汇影响规律,为恢复地带性顶极植被阔叶红松林提供依据。 方法 运用静态箱−气相色谱分析及相对生长方程法,同步测定小兴安岭3种中期“栽针保阔”红松林(蒙古栎红松林、白桦红松林和山杨红松林冠下栽植红松25 ~ 35年及透光抚育25 ~ 30年)在不同透光抚育强度(对照、轻度透光抚育、强度透光抚育)下的土壤异养呼吸净碳排放量(CO2和CH4)、植被年净固碳量及相关环境因子(温度、土壤含水率、有机碳、全氮等),并依据生态系统净碳收支,确定林型和透光抚育强度对中期“栽针保阔”红松林碳源/汇的影响规律及其机制。 结果 (1)3种林型土壤CO2年均通量(159.94 ~ 207.43 mg/(m2·h))既受透光抚育强度影响(强度透光抚育使蒙古栎红松林显著提高18.9%),也受林型影响(对照林分白桦红松林显著大于蒙古栎红松林和山杨红松林,轻、强度透光抚育下3种林型相近);各透光抚育强度对3者的土壤CH4年均通量(−0.047 ~ −0.028 mg/(m2·h))无显著影响,但白桦红松林和山杨红松林显著高于蒙古栎红松林;(2)轻、强度透光抚育对3种林型的植被年净固碳量(1.66 ~ 3.99 t/(hm2·a))无显著影响,但在各透光抚育强度下白桦红松林显著高于蒙古栎红松林和山杨红松林(105.4% ~ 124.1%和31.0% ~ 32.6%),山杨红松林又显著高于蒙古栎红松林(55.7% ~ 71.1%);(3)轻度透光抚育对蒙古栎红松林(−1.93 ~ −1.12 t/(hm2·a))、白桦红松林(−0.13 ~ 0.46 t/(hm2·a))和山杨红松林(−1.03 ~ −0.65 t/(hm2·a))碳汇已无显著影响,而强度透光抚育的影响程度和方向与林型密切相关(蒙古栎红松林源强显著提高72.3%,白桦红松林由碳汇转化为弱源,山杨红松林源强变大但差异性不显著)。 结论 因此,从中期“栽针保阔”红松林维持森林碳汇方面考虑,对恢复较快的白桦红松林和山杨红松林可以采取强度透光抚育,而对恢复较慢的蒙古栎红松林则适宜采取轻度透光抚育。 Abstract:Objective This paper aims to reveal the influencing rule of forest type and light-felling intensity on the carbon source and sink of Korean pine forests by planting coniferous forest and reserving broadleaved forest (PCRBT), and to provide basis for the restoration of zonal climax vegetation broadleaved Korean pine forest. Method The annual net carbon sequestration of vegetation, net carbon emission (CH4, CO2) of soil heterotrophic respiration with related environmental factors (temperature, water content of soil, organic carbon, total nitrogen, etc.) under different light-felling intensities (control, low-intensity, heavy-intensity) were measured simultaneously by static chamber-gas chromatograph and relative growth equation in three types of Korean pine forests by PCRB (Mongolian oak-Korean pine forest and white birch-Korean pine forest, and Korean pine was planted under secondary crown for 25−35 years and light-felling for 25−30 years) in temperate in Xiaoxing’an Mountains of northeastern China, in order to reveal the influence of forest type and light-felling intensity on the carbon source/sink of Korean pine forest according to the net carbon balance of ecosystem. Result (1) The annual average efflux of soil CO2 (159.94−207.43 mg/(m2·h)) in three forest types was influenced by both the intensity of light-felling (heavy-intensity light-felling significantly increased by 18.9% from Mongolian oak-Korean pine forest), and the forest type (control was white birch-Korean pine forest, which was significantly higher than aspen-Korean pine forest and Mongolian oak-Korean pine forest, low and heavy light-felling had no significant impacts among three forest types); low and heavy light-felling had no significant impacts on the annual average flux of soil CH4 uptake (−0.047 − −0.028 mg/(m2·h)) from three forest types but white birch-Korean pine forest and aspen-Korean pine forest were significantly higher than Mongolian oak-Korean pine forest. (2) Low and heavy-intensity light-felling made the annual net carbon sequestration of vegetation (1.66−3.99 t/(ha·year)) from three forest types had no significant effect, but white birch-Korean pine forest was significantly higher (105.4%−124.1% and 31.0%−32.6%) than aspen-Korean pine forest and Mongolian oak-Korean pine forest , aspen-Korean pine forest was significantly higher(55.7%−71.1%) than Mongolian oak-Korean pine forest. (3) Low-intensity light-felling had no significant impacts on carbon sink in Mongolian oak-Korean pine forest (−1.93 − −1.12 t/(ha·year)) and aspen-Korean pine forest (−1.03 − −0.65 t/(ha·year)) and White birch-Korean pine forest (−0.13−0.46 t/(ha·year)), but the level and direction of the effect of heavy-intensity light-felling were closely related to the forest type, Mongolian oak-Korean pine forest had significantly increased by 72.3%, white birch-Korean pine forest converted into carbon source, aspen-Korean pine forest had slightly increased carbon source. Conclusion Therefore, considering the maintenance of forest carbon sink in Korean pine forests by PCRBT, the faster recovering white birch-Korean pine forest and aspen-Korean pine forest is more appropriate to take heavy-intensity light-felling, while the slower recovering Mongolian oak-Korean pine forest is suitable to be low-intensity light-felling. -
表 1 试验地概况
Table 1. Overview of test site
林型
Forest type处理
Treatment郁闭度
Canopy
density/%树种
Tree species密度/(株·hm−2)
Density/(plant·ha−1)胸高断面积/(m2·hm−2)
Basal area/(m2·ha−1)平均胸径
Mean DBH/
cm胸径范围
DBH range/
cm白桦红松林
White birch-Korean
pine forestC 75 红松 Pinus koraiensis 967 3.32 6.04 2.0 ~ 12.6 白桦 Betula platyphylla 489 14.17 18.12 7.5 ~ 41.0 山杨 Populus davidiana 244 5.27 15.97 5.8 ~ 24.2 其他 Others 483 7.17 14.37 2.7 ~ 32.5 L 70 红松 Pinus koraiensis 695 4.55 8.00 2.8 ~ 16.9 白桦 Betula platyphylla 445 12.83 18.34 8.0 ~ 30.7 山杨 Populus davidiana 317 7.27 16.94 7.5 ~ 25.5 其他 Others 194 3.99 13.93 2.2 ~ 35.3 H 65 红松 Pinus koraiensis 650 6.53 9.88 2.8 ~ 29.2 白桦 Betula platyphylla 467 14.03 18.60 8.3 ~ 32.8 山杨 Populus davidiana 150 4.29 16.17 7.9 ~ 31.4 其他 Others 372 4.30 10.02 2.8 ~ 39.7 山杨红松林
Aspen-Korean pine
forestC 83 红松 Pinus koraiensis 628 19.04 16.90 4.1 ~ 34.1 山杨 Populus davidiana 578 11.70 13.93 4.1 ~ 32.0 其他 Others 889 4.13 7.08 1.1 ~ 19.7 L 77 红松 Pinus koraiensis 922 14.19 13.76 4.5 ~ 39.5 山杨 Populus davidiana 572 9.08 11.97 2.7 ~ 32.5 其他 Others 628 19.04 16.90 4.1 ~ 34.1 H 63 红松 Pinus koraiensis 711 3.49 7.41 2.0 ~ 13.9 山杨 Populus davidiana 1 094 14.86 12.90 6.5 ~ 26.2 其他 Others 311 5.78 14.32 4.3 ~ 26.2 蒙古栎红松林
Mongolian oak-Korean
pine forestC 79 红松 Pinus koraiensis 1 967 1.23 2.56 1.0 ~ 5.9 蒙古栎 Quercus mongolica 672 14.11 14.64 4.0 ~ 34.6 其他 Others 244 3.88 9.75 1.0 ~ 45.3 L 72 红松 Pinus koraiensis 2 183 1.92 3.05 1.0 ~ 6.5 蒙古栎 Quercus mongolica 612 14.36 15.96 4.0 ~ 29.0 其他 Others 156 1.14 7.01 1.0 ~ 19.6 H 61 红松 Pinus koraiensis 2 178 1.91 3.18 1.0 ~ 7.8 蒙古栎 Quercus mongolica 539 14.67 17.31 4.0 ~ 30.5 其他 Others 150 1.61 7.34 1.2 ~ 24.1 注:C表示对照;L表示轻度透光抚育(伐除上层蓄积比1/7);H表示强度透光抚育(伐除上层蓄积比1/3)。下同。Notes: C, control; L, light-intensity light-felling (removal of upper layer storage ratio 1/7); H, heavy-intensity light-felling (removal of upper layer storage ratio 1/3). The same below. 表 2 小兴安岭3种林型不同透光抚育强度下环境因子状况
Table 2. Environmental factors in the three forest types under different light-felling intensities in Xiaoxing’an Mountains
环境因子
Environmental
factor土壤深度
Soil depth/
cm白桦红松林
White birch-Korean pine forest山杨红松林
Aspen-Korean pine forest蒙古栎红松林
Mongolian oak-Korean pine forestC L H C L H C L H 气温
Air temperature/℃3.35 ± 0.55Aa 4.00 ± 0.80Aa 4.90 ± 1.90Aa 3.06 ± 0.44Ba 3.91 ± 0.39ABa 4.52 ± 0.52Aa 2.86 ± 0.60Aa 3.34 ± 0.44Aa 2.85 ± 0.16Aa 土温
Soil temperature/℃0 7.44 ± 0.36A 6.50 ± 0.51B 7.50 ± 0.30A 6.38 ± 0.33A 6.61 ± 0.50A 6.58 ± 0.39A 5.78 ± 0.33B 7.88 ± 0.39A 7.35 ± 0.56A 10 6.78 ± 0.23A 6.39 ± 0.61A 6.56 ± 0.54A 5.80 ± 0.40A 6.10 ± 0.40A 6.06 ± 0.46A 5.84 ± 0.84A 6.09 ± 0.01A 6.63 ± 0.97A 20 6.65 ± 0.26A 6.31 ± 0.42A 6.42 ± 0.48A 5.68 ± 0.48A 5.85 ± 0.35A 6.11 ± 0.89A 6.14 ± 0.16A 6.35 ± 1.75A 6.56 ± 1.77A 30 5.84 ± 0.06A 5.77 ± 1.01A 5.78 ± 0.53A 5.37 ± 0.53A 5.66 ± 0.47A 5.79 ± 0.30A 6.82 ± 0.90A 6.95 ± 0.75A 7.00 ± 1.31A 40 5.46 ± 1.04A 4.77 ± 0.54A 5.64 ± 0.45A 4.99 ± 0.49A 5.24 ± 0.45A 4.86 ± 0.34A 6.11 ± 0.66A 6.38 ± 0.48A 6.63 ± 1.68A 0~40 6.44 ± 0.39Aa 5.95 ± 0.25Ab 6.38 ± 0.16Ab 5.98 ± 0.63Aa 5.89 ± 0.10Ab 5.88 ± 0.02Ac 6.14 ± 0.24Ba 6.73 ± 0.30Aa 6.84 ± 0.20Aa 含水率
Water content/%0~10 0.91 ± 0.31A 0.92 ± 0.17A 0.89 ± 0.11A 0.78 ± 0.07A 0.82 ± 0.13A 0.77 ± 0.06A 0.34 ± 0.10A 0.36 ± 0.06A 0.45 ± 0.16A 10~20 0.74 ± 0.19A 0.63 ± 0.26A 0.59 ± 0.17A 0.55 ± 0.11A 0.53 ± 0.11A 0.50 ± 0.08A 0.26 ± 0.04A 0.24 ± 0.03A 0.24 ± 0.10A 20~30 0.43 ± 0.06A 0.61 ± 0.21A 0.42 ± 0.01A 0.43 ± 0.07A 0.44 ± 0.06A 0.38 ± 0.03A 0.25 ± 0.10A 0.15 ± 0.03A 0.19 ± 0.02A 0~30 0.69 ± 0.10Aa 0.73 ± 0.15Aa 0.63 ± 0.09Aa 0.59 ± 0.08Aa 0.60 ± 0.09Aa 0.55 ± 0.05Aa 0.28 ± 0.02Ab 0.25 ± 0.01Ab 0.29 ± 0.09Ab 有机碳
Organic carbon/
(g·kg−1)0~10 110.78 ± 25.51A 88.99 ± 15.79A 107.95 ± 11.69A 93.73 ± 21.52A 85.26 ± 10.63A 91.27 ± 5.33A 49.98 ± 7.93A 47.94 ± 0.60A 38.65 ± 9.36A 10~20 67.11 ± 18.05A 58.36 ± 15.70A 55.01 ± 6.17A 51.84 ± 9.18A 46.20 ± 11.35A 47.79 ± 6.88A 27.03 ± 4.69A 22.13 ± 0.59A 20.76 ± 4.81A 20~30 37.51 ± 8.28A 36.86 ± 10.34A 35.32 ± 6.09A 32.39 ± 7.88A 32.04 ± 7.58A 28.44 ± 2.87A 12.82 ± 1.26A 18.29 ± 7.79A 18.63 ± 4.18A 0~30 71.80 ± 17.06Aa 61.40 ± 13.13Aa 66.10 ± 7.27Aa 59.32 ± 12.81Aa 54.50 ± 7.00Aa 55.83 ± 3.85Aa 29.94 ± 0.88Ab 27.71 ± 0.41Ab 25.87 ± 3.53Ab 全氮
Total nitrogen/
(g·kg−1)0~10 12.13 ± 2.17A 11.89 ± 2.36A 13.08 ± 0.59A 13.27 ± 4.36A 13.57 ± 2.54A 12.78 ± 0.38A 8.70 ± 1.05A 9.32 ± 0.27A 8.61 ± 0.50A 10~20 10.23 ± 2.45A 11.62 ± 1.56A 12.26 ± 2.22A 13.68 ± 2.46A 10.06 ± 0.10B 9.76 ± 1.33B 5.77 ± 0.68AB 6.33 ± 0.51A 5.05 ± 0.30B 20~30 9.63 ± 3.18A 10.21 ± 2.15A 11.78 ± 2.83A 9.39 ± 1.52B 12.46 ± 0.66A 10.87 ± 1.28AB 3.81 ± 0.60AB 4.31 ± 0.07A 3.42 ± 0.13B 0~30 10.66 ± 1.68Aa 11.24 ± 1.69Aa 12.38 ± 0.44Aa 12.12 ± 1.99Aa 12.03 ± 0.34Aa 11.14 ± 0.27Ab 6.10 ± 0.77Ab 6.65 ± 0.21Ab 5.69 ± 0.23Ac 注:同行不同大写字母表示同林型不同处理之间差异显著(P < 0.05),不同小写字母表示不同林型同处理之间差异显著(P < 0.05)。Notes: different uppercase letters in the same row indicate significant differences between different types of sample plots at P < 0.05 level; different lowercase letters indicate significant differences between varied types of sample plots in the same treatment. 表 3 小兴安岭不同透光抚育强度白桦红松林、山杨红松林和蒙古栎红松林土壤CH4季节通量
Table 3. Seasonal methane flux from the soil in the white birch-Korean pine forest, aspen-Korean pine forest, and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains
mg/(m2·h) 林型 Forest type 观测时期 Observation period 处理 Treatment C L H 白桦红松林
White birch-Korean pine forest春季 Spring −0.053 ± 0.009Abc −0.051 ± 0.005Abc −0.047 ± 0.010Abc 夏季 Summer −0.064 ± 0.011Ac −0.064 ± 0.011Ac −0.061 ± 0.013Ac 秋季 Autumn −0.046 ± 0.007Ab −0.042 ± 0.008Ab −0.035 ± 0.004Ab 冬季 Winter −0.016 ± 0.001Aa −0.014 ± 0.002Aa −0.015 ± 0.002Aa 生长季 Growing season −0.062 ± 0.010Ab −0.061 ± 0.008Ab −0.057 ± 0.014Ab 非生长季 Non-growing season −0.027 ± 0.003Aa −0.024 ± 0.003Aa −0.021 ± 0.001Aa 年平均值 Annual average −0.045 ± 0.006AⅡ −0.045 ± 0.004AⅡ −0.041 ± 0.007AⅡ 山杨红松林
Aspen-Korean pine forest春季 Spring −0.044 ± 0.005Bb −0.040 ± 0.012ABb −0.027 ± 0.002Ab 夏季 Summer −0.062 ± 0.005Ac −0.069 ± 0.018Ac −0.053 ± 0.005Ac 秋季 Autumn −0.043 ± 0.011ABb −0.061 ± 0.006Bc −0.035 ± 0.013Ab 冬季 Winter −0.016 ± 0.005Aa −0.014 ± 0.004Aa −0.010 ± 0.006Aa 生长季 Growing season −0.054 ± 0.005Ab −0.060 ± 0.017Ab −0.045 ± 0.009Ab 非生长季 Non-growing season −0.028 ± 0.006ABa −0.030 ± 0.002Ba −0.018 ± 0.006Aa 年平均值 Annual average −0.043 ± 0.006AⅡ −0.047 ± 0.010AⅡ −0.033 ± 0.002AⅠ 蒙古栎红松林
Mongolian oak-Korean pine forest春季 Spring −0.026 ± 0.003Ab −0.024 ± 0.002Ab −0.027 ± 0.004Ab 夏季 Summer −0.044 ± 0.005Ac −0.049 ± 0.001ABc −0.054 ± 0.003Bc 秋季 Autumn −0.029 ± 0.004Ab −0.025 ± 0.003Ab −0.026 ± 0.001Ab 冬季 Winter −0.013 ± 0.001Aa −0.010 ± 0.001Aa −0.014 ± 0.004Aa 生长季 Growing season −0.041 ± 0.005Ab −0.045 ± 0.002Ab −0.053 ± 0.002Bb 非生长季 Non-growing season −0.014 ± 0.001Aa −0.011 ± 0.003Aa −0.012 ± 0.002Aa 年平均值 Annual average −0.029 ± 0.003AⅠ −0.028 ± 0.001AⅠ −0.032 ± 0.001AⅠ 注:不同大写字母表示相同季节不同处理差异显著(P < 0.05),不同小写字母表示相同处理不同季节差异显著(P < 0.05),不同罗马数字表示相同处理不同林型差异显著(P < 0.05)。Notes: different capital letters indicate significant differences between varied treatments of the same stand type in the same season at P < 0.05 level; different lowercase letters indicate significant differences between varied seasons of the same stand type in the same treatment at P < 0.05 level; different Roman numerals indicate significant differences between stand types in the same treatment at P < 0.05 level. 表 4 小兴安岭不同透光抚育强度白桦红松林、山杨红松林和蒙古栎红松林土壤CO2季节通量
Table 4. Seasonal average flux of carbon dioxide emission from the soil of white birch-Korean pine forest, aspen-Korean pine forest, and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains
mg/(m2·h) 林型 Forest type 观测时期 Observation period 处理 Treatment C L H 白桦红松林
White birch-Korean pine forest春季 Spring 197.66 ± 5.38Ab 199.69 ± 5.79Ab 208.50 ± 12.87Ab 夏季 Summer 381.66 ± 44.28Aa 391.16 ± 39.10Aa 429.94 ± 37.71Aa 秋季 Autumn 98.49 ± 19.77Ac 100.02 ± 19.72Ac 108.82 ± 12.41Ac 冬季 Winter 26.30 ± 4.20Ad 24.60 ± 4.00Ad 22.48 ± 3.41Ad 生长季 Growing season 300.45 ± 30.23Aa 303.42 ± 20.50Aa 327.99 ± 16.05Aa 非生长季 Non-growing season 48.90 ± 6.68Ab 52.32 ± 4.18Ab 54.69 ± 5.19Ab 年平均值 Annual average 188.65 ± 15.21AⅡ 191.82 ± 9.77AⅠ 206.52 ± 8.87AⅠ 山杨红松林
Aspen-Korean pine forest春季 Spring 171.62 ± 9.52Ab 289.30 ± 72.82Aa 239.98 ± 85.34Ab 夏季 Summer 288.66 ± 27.06Aa 300.13 ± 35.29Aa 341.90 ± 42.42Aa 秋季 Autumn 134.93 ± 28.37ABb 111.06 ± 25.10Bb 174.07 ± 24.04Ab 冬季 Winter 33.48 ± 16.36Ac 30.27 ± 5.87Ac 32.01 ± 14.30Ac 生长季 Growing season 244.85 ± 18.34Aa 303.87 ± 53.52Aa 309.05 ± 63.20Aa 非生长季 Non-growing season 65.83 ± 8.21Bb 59.22 ± 6.52Bb 80.40 ± 4.81Ab 年平均值 Annual average 165.28 ± 10.95AⅠ 195.14 ± 26.97AⅠ 207.43 ± 36.37AⅠ 蒙古栎红松林
Mongolian oak-Korean pine forest春季 Spring 170.94 ± 9.82Bb 193.09 ± 8.05Ab 189.87 ± 5.96Ab 夏季 Summer 338.58 ± 10.41Ba 333.69 ± 23.49Ba 393.77 ± 30.19Aa 秋季 Autumn 57.23 ± 9.69Bc 62.31 ± 2.81Bc 79.61 ± 6.72Ac 冬季 Winter 25.58 ± 7.48Bd 37.43 ± 4.93Ad 46.71 ± 2.68Ad 生长季 Growing season 261.82 ± 10.14ABa 269.35 ± 8.22Ba 294.32 ± 18.26Aa 非生长季 Non-growing season 32.58 ± 2.12Cb 42.41 ± 2.85Bb 60.03 ± 5.13Ab 年平均值 Annual average 159.94 ± 6.48BⅠ 168.49 ± 3.55BⅠ 190.19 ± 9.30AⅠ 注:不同大写字母表示相同季节不同处理(P < 0.05),不同小写字母表示相同处理不同季节(P < 0.05),不同罗马数字表示相同处理不同林型(P < 0.05)。Notes: different capital letters indicate significant difference at P < 0.05 level between different treatments in the same season, different lowercase letters indicate significant difference at P<0.05 level between different seasons in the same treatment, different Roman numerals indicate different forest types at P < 0.05 level for the same treatment. 表 5 小兴安岭3种林型不同透光抚育强度下土壤CO2和CH4排放的主要影响因子
Table 5. Main factors affecting methane and carbon dioxide emission from soil in three forests types under different light-felling intensities in Xiaoxing’an Mountains
林型
Forest type气体
Gas处理
Treatment气温
Air temperature有机碳
Organic carbon土壤温度
Soil temperature含水率
Water content全氮
Total nitrogen截距
InterceptR2 白桦红松林
White birch-Korean
pine forestCH4 C 0.001** 0.036** 0.408 L 0.001* −0.076* −0.096** 0.576 H 0.001** −0.033** 0.414 CO2 C 11.437** −191.588* 0.722 L 10.275** 444.165** 0.604 H 9.577** −332.638* 0.585 山杨红松林
Aspen-Korean
pine forestCH4 C 0.001** 0.037** 0.395 L 0.002** 0.040** 0.521 H 0.002** 0.024** 0.568 CO2 C −3.509** 10.926** 382.465** 0.548 L −375.047** 14.311** 381.745** 0.770 H 15.363** 115.820** 0.676 蒙古栎红松林
Mongolian oak-Korean
pine forestCH4 C 0.001** −0.071** 0.041** 0.899 L 0.001* 0.018** 0.716 H 0.002** 0.019** 0.753 CO2 C 3.418* −1.693** 9.862** −18.633 0.093 L 6.475** −3.130* 5.678 + 158.837** 0.837 H 22.966** 10.047 0.667 注: + 、*、**分别表示在P < 0.1、P < 0.05、P < 0.01水平上差异显著。Notes: + , *, ** represent significant differences at P < 0.1, P < 0.05, P < 0.01 levels, respectively. 表 6 小兴安岭不同透光抚育强度下白桦红松林、山杨红松林和蒙古栎红松林的植被净初生产力与年净固碳量
Table 6. Net primary productivity and net carbon sequestration of white birch-Korean pine forest, aspen-Korean pine forest, and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains
指标
Index林型
Forest type处理
Treatment层次 Layer 红松
Korean pine阔叶树种
Broadleaf tree乔木
Tree灌木
Shrub草本
Herb植被
Vegetation净初级生产力/
(t·hm−2·a−1)
Net primary productivity (NPP)/(t·ha−1·year−1)白桦红松林
White birch-Korean
pine forestC 0.90 ± 0.09Aa 6.24 ± 0.44Aa 7.14 ± 0.46Aa 1.13 ± 0.27Aa 0.15 ± 0.03Aa 8.42 ± 0.66Aa L 0.92 ± 0.13Aa 5.86 ± 0.26Aa 6.78 ± 0.25Aa 1.12 ± 0.31Aa 0.15 ± 0.04Aa 8.05 ± 0.17Aa H 1.12 ± 0.10Aa 6.01 ± 0.61Aa 7.13 ± 0.82Aa 0.73 ± 0.17Aab 0.16 ± 0.03Aa 8.02 ± 0.79Aa 山杨红松林
Aspen-Korean
pine forestC 0.67 ± 0.08Cb 4.88 ± 0.26Ab 5.55 ± 0.24Ab 0.84 ± 0.06Aab 0.16 ± 0.01Aa 6.55 ± 0.27Ab L 0.84 ± 0.05Ba 4.45 ± 0.13ABb 5.29 ± 0.15Ab 0.86 ± 0.17Aa 0.13 ± 0.04Aa 6.27 ± 0.18Ab H 1.05 ± 0.09Aa 4.13 ± 0.42Bb 5.18 ± 0.49Ab 0.90 ± 0.11Aa 0.15 ± 0.05Aa 6.22 ± 0.46Ab 蒙古栎红松林
Mongolian oak-Korean
pine forestC 0.40 ± 0.01Cc 2.88 ± 0.28Ac 3.28 ± 0.28Ac 0.57 ± 0.15Ab 0.17 ± 0.05Aa 4.02 ± 0.21Ac L 0.60 ± 0.03Bb 2.35 ± 0.03Bc 2.95 ± 0.05Ac 0.78 ± 0.22Aa 0.21 ± 0.03Aa 3.94 ± 0.27Ac H 0.75 ± 0.07Ab 2.16 ± 0.12Bc 2.91 ± 0.19Ac 0.47 ± 0.17Ab 0.17 ± 0.06Aa 3.55 ± 0.32Ac 植被年净固碳量/
(t·hm−2·a−1)
Annual net carbon sequestration of vegetation (VNCS)/(t·ha−1·year−1)白桦红松林
White birch-Korean
pine forestC 0.43 ± 0.05Aa 2.96 ± 0.25Aa 3.39 ± 0.28Aa 0.53 ± 0.13Aa 0.07 ± 0.01Aa 3.99 ± 0.37Aa L 0.43 ± 0.06Aa 2.77 ± 0.22Aa 3.20 ± 0.09Aa 0.53 ± 0.15Aa 0.07 ± 0.02Aa 3.80 ± 0.73Aa H 0.52 ± 0.12Aa 2.79 ± 0.29Aa 3.31 ± 0.38Aa 0.34 ± 0.08Aab 0.07 ± 0.01Aa 3.72 ± 0.37Aa 山杨红松林
Aspen-Korean
pine forestC 0.33 ± 0.04Cb 2.20 ± 0.12Ab 2.54 ± 0.24Ab 0.40 ± 0.04Aab 0.07 ± 0.01Aa 3.01 ± 0.14Ab L 0.42 ± 0.02Ba 1.95 ± 0.11ABb 2.37 ± 0.13Ab 0.40 ± 0.09Aa 0.06 ± 0.02Aa 2.88 ± 0.15Ab H 0.53 ± 0.04Aa 1.86 ± 0.20Bb 2.39 ± 0.24Ab 0.42 ± 0.06Aa 0.07 ± 0.02Aa 2.84 ± 0.23Ab 蒙古栎红松林
Mongolian oak-Korean
pine forestC 0.19 ± 0.01Cc 1.37 ± 0.14Ac 1.56 ± 0.14Ac 0.25 ± 0.06Ab 0.07 ± 0.02Aa 1.88 ± 0.11Ac L 0.28 ± 0.02Bb 1.12 ± 0.01Bc 1.40 ± 0.01Ac 0.35 ± 0.10Aa 0.09 ± 0.02Aa 1.85 ± 0.12Ac H 0.35 ± 0.03Ab 1.02 ± 0.06Bc 1.38 ± 0.09Ac 0.21 ± 0.08Ab 0.07 ± 0.03Aa 1.66 ± 0.15Ac 注:不同大写字母表示相同林型不同处理(P < 0.05),不同小写字母表示相同处理不同林型(P < 0.05)。Notes: capital letters indicate significant differences between treatments in the same type at P < 0.05 level; different lowercase letters indicate significant differences between the same treatments of three forest types at P < 0.05 level. 表 7 小兴安岭不同透光抚育强度下白桦红松林、山杨红松林和蒙古栎红松林植被固碳的主要影响因子
Table 7. Main affecting factors of vegetation carbon sequestration of white birch-Korean pine forest, aspen-Korean pine forest and Mongolian oak-Korean pine forest under different light-felling intensities in Xiaoxing’an Mountains
指标
Item林型
Forest type土壤温度
Soil temperature含水率
Water content有机碳
Organic carbon截距
InterceptR2 NPP 白桦红松林 White birch-Korean pine forest 0.026* 6.450** 0.581 山杨红松林 Aspen-Korean pine forest 0.049** 3.582** 0.635 蒙古栎红松林 Mongolian oak-Korean pine forest −0.257** 9.044** 3.017** 0.951 VNCS 白桦红松林 White birch-Korean pine forest 0.010* 3.165** 0.453 山杨红松林 Aspen-Korean pine forest 0.027** 1.367* 0.597 蒙古栎红松林 Mongolian oak-Korean pine forest −0.121** 4.357** 1.381** 0.951 注: *、**分别表示在P < 0.05、P < 0.01水平上差异显著。Notes: *, ** represent significant difference at P < 0.05, P < 0.01 levels, respectively. -
[1] IPCC. Climate change 2013: the physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013. [2] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609 [3] Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry[M]// Solomon S, Qin D, Manning M, et al. Climate change 2007: the physical science basis: contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. [4] Dixon R K, Solomon A, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185 [5] Vayreda J, Martinez-Vilalta J, Gracia M, et al. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests[J]. Global Change Biology, 2012, 18(3): 1028−1041. doi: 10.1111/j.1365-2486.2011.02606.x [6] Alvarez S, Ortiz C, Díaz-Pinés E, et al. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean Mountain forests: a case study using the CO2 fix model[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(7): 1045−1058. [7] Fernandez I, Älvarez-Gonzalez J G, Carrasco B, et al. Post-thinning soil organic matter evolution and soil CO2 effluxes in temperate radiata pine plantations: impacts of moderate thinning regimes on the forest C cycle[J]. Canadian Journal of Forest Research, 2012, 42(11): 1953−1964. doi: 10.1139/x2012-137 [8] Boncina A, Kadunc A, Robic D. Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-Eastern Slovenia[J]. Annals of Forest Science, 2007, 64(1): 47−57. doi: 10.1051/forest:2006087 [9] Olajuyigbe S, Tobin B, Saunders M, et al. Forest thinning and soil respiration in a Sitka spruce forest in Ireland[J]. Agricultural and Forest Meteorology, 2012, 157: 86−95. doi: 10.1016/j.agrformet.2012.01.016 [10] Lena G, Baker S C, Jürgen B, et al. Retention forestry to maintain multifunctional forests: a world perspective[J]. BioScience, 2012, 7: 633−645. [11] Lei L, Xiao W, Zeng L, et al. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands[J]. Science of the Total Environment, 2018, 621: 1360−1369. doi: 10.1016/j.scitotenv.2017.10.092 [12] Doukalianou F, Radoglou K, Agnelli A E, et al. Annual greenhouse-gas emissions from forest soil of a peri-urban conifer forest in greece under different thinning intensities and their climate-change mitigation potential[J]. Forest Science, 2019, 65(4): 387−400. doi: 10.1093/forsci/fxy069 [13] Han M G, Gao W F, Shi B K, et al. Long-term (42 years) effect of thinning on soil CO2 emission in a mixed broadleaved-Korean pine (Pinus koraiensis) forest in northeast China[J]. Pedosphere, 2021, 31(2): 353−362. doi: 10.1016/S1002-0160(20)60066-2 [14] Sullivan B W, Kolb T E, Hart S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests[J]. Forest Ecology and Management, 2008, 255(12): 4047−4055. doi: 10.1016/j.foreco.2008.03.051 [15] Yang L, Niu S L, Tian D S, et al. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning[J/OL]. Science of the Total Environment, 2022, 804: 150225[2022−01−18]. https://doi.org/10.1016/j.scitotenv.2021.150225. [16] Chiang J M, Mcewan R W, Yaussy D A, et al. The effects of prescribed fire and silvicultural thinning on the aboveground carbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio[J]. Forest Ecology and Management, 2008, 255(5−6): 1584−1594. doi: 10.1016/j.foreco.2007.11.016 [17] Saunders M, Tobin B, Black K, et al. Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature-dependent[J]. Agricultural and Forest Meteorology, 2012, 157: 1−10. doi: 10.1016/j.agrformet.2012.01.008 [18] Ogaya R, Escolà A, Liu D, et al. Effects of thinning in a water-limited holm oak forest[J]. Journal of Sustainable Forestry, 2020, 39(4): 365−378. doi: 10.1080/10549811.2019.1673179 [19] Dore S, Kolb T E, Montes-Helu M, et al. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning[J]. Ecological Applications, 2010, 20(3): 663−683. doi: 10.1890/09-0934.1 [20] Aun K, Kukumgi M, Varik M, et al. Short-term effect of thinning on the carbon budget of young and middle-aged silver birch (Betula pendula Roth) stands[J/OL]. Forest Ecology and Management, 2021, 11: 118660[2022−01−12]. https://doi.org/10.1016/j.foreco.2020.118660. [21] Dore S, Fry D L, Collins B M, et al. Management impacts on carbon dynamics in a Sierra Nevada mixed conifer forest [J/OL]. PLoS One, 2016, 11(2): e0150256[2022−01−17]. https://doi.org/10.1371/journal.pone.0150256. [22] Davis S C, Hessl A E, Scott C J, et al. Forest carbon sequestration changes in response to timber harvest[J]. Forest Ecology and Management, 2009, 258(9): 2101−2109. doi: 10.1016/j.foreco.2009.08.009 [23] Moreno-Fernández D, Díaz-Pinés E, Barbeito I, et al. Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean Mountain Scots pine forests[J]. Forest Ecology and Management, 2015, 348: 186−195. doi: 10.1016/j.foreco.2015.03.043 [24] Pukkala T. Does management improve the carbon balance of forestry? [J]. Forestry, 2017, 90(1): 125−135. [25] Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113(1−4): 185−222. doi: 10.1016/S0168-1923(02)00108-9 [26] Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2010, 10(12): 2052−2077. [27] 李俊清, 王业蘧. 天然林内红松种群数量变化的波动性[J]. 生态学杂志, 1986, 5(5): 1−5.Li J Q, Wang Y J. Wave features of population changes of Pinus koraiensis in natural forest[J]. Journal of Ecology, 1986, 5(5): 1−5. [28] 李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997.Li J W. Ecology and management of Korean pine mixed forest[M]. Harbin: Northeast Forestry University Press, 1997. [29] 特喜铁, 邓庆华, 戎可. 红松资源的合理开发与东北地区生态安全[J]. 安徽农业科学, 2011, 39(23): 14082−14083,14132. doi: 10.3969/j.issn.0517-6611.2011.23.071Te X T, Deng Q H, Rong K. Rational exploitation of Korean pines resources and ecological security in northeast China[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14082−14083,14132. doi: 10.3969/j.issn.0517-6611.2011.23.071 [30] 于大炮, 周莉, 代力民. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.Yu D P, Zhou L, Dai L M. Exploring the history of the management theory and technology of broadleaved Korean pine forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434. [31] 陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ)-栽针保阔的经营途径[J]. 东北林学院学报, 1984, 12(4): 1−12.Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in Heilongjiang Province: the management way of Korean pine forest restored by planting conifer and reserving broad-leaved tree[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12. [32] 牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山"栽针保阔"红松林植被碳储量影响[J]. 植物研究, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017 [33] 韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 33(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008Han L D, Mu C C, Zhang J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountain[J]. Journal of Northeast Forestry University, 2016, 33(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008 [34] 韩阳瑞, 牟长城, 张晓亮, 等. 透光抚育对“栽针保阔”红松林中红松生长过程的影响[J]. 安徽农业科学, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057Han Y R, Mu C C, Zhang X L, et al. The influence of light transmittance felling on Pinus Koraiensis growth process in the “preserving deciduous while planting coniferous” Korean pine[J]. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057 [35] 张迪祥. 伊春市带岭地区自然地理条件对植物群落分布的影响[J]. 植物科学学报, 1983, 1(2): 229−236.Zhang D X. The influence of natural geographical condition of Dailing Area in Yichun City to the distribution of plant community[J]. Plant Science Journal, 1983, 1(2): 229−236. [36] 张悦, 牟长城, 刘辉, 等. 透光抚育对温带帽儿山红松林非生长季土壤温室气体排放的影响[J]. 应用生态学报, 2018, 29(7): 2183−2194.Zhang Y, Mu C C, Liu H, et al. Effects of light-felling on non-growing season greenhouse gas emission from soils in Korean pine forests in Maoer Mountain[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2183−2194. [37] 姜宁, 牟长城, 韩丽冬, 等. 采伐对大兴安岭非连续冻土区毛赤杨沼泽碳源/汇的影响[J]. 北京林业大学学报, 2020, 42(3): 1−13. doi: 10.12171/j.1000-1522.20190074Jiang N, Mu C C, Han L D, et al. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1−13. doi: 10.12171/j.1000-1522.20190074 [38] Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074 [39] Smith K A, Ball T, Conen F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2018, 69(1): 10−20. doi: 10.1111/ejss.12539 [40] Curry C L. Modeling the soil consumption of atmospheric methane at the global scale[J/OL]. Global Biogeochemical Cycles, 2007, 21: G84012[2022−01−10]. https://doi.org/10.1029/2006GB002818. [41] Borken W, Beese F. Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce[J]. European Journal of Soil Science, 2005, 57(5): 617−625. [42] Henri V K, Bodelier P, Rian H A D, et al. Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study[J/OL]. Frontiers in Microbiology, 2018, 9: 1714[2022−01−15]. https://doi.org/10.3389/fmicb.2018.01714. [43] Ryan M, Law B. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73(1): 3−27. doi: 10.1007/s10533-004-5167-7 [44] Wu X, Brüggemann N, Gasche R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany[J]. Environmental Pollution, 2011, 159(10): 2467−2475. [45] 潘新丽, 林波, 刘庆. 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响[J]. 应用生态学报, 2008, 19(8): 1637−1643.Pan X L, Lin B, Liu Q. Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forestin western Sichuan Province, China[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1637−1643. [46] Wei Y W, Li M H, Chen H, et al. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China[J/OL]. PLoS One, 2013, 8(8): e72201[2022−03−19]. https://doi.org/10.1371/journal.pone.0072201. [47] 岳军伟. 甘肃主要森林类型固碳动态, 潜力及影响机制 [D]. 咸阳: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.Yue J W. Dynamics, potential and mechanism of carbon sequestration in major forest types in Gansu Province, China[D]. Xianyang: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), 2018. [48] Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada[J]. Global Change Biology, 2010, 10: 1267−1284. [49] 齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303 -