高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泰湖国家湿地公园天然植物群落碳储量空间分异规律及主控因素研究

高旭 牟长城 梁道省 鲁艺

高旭, 牟长城, 梁道省, 鲁艺. 泰湖国家湿地公园天然植物群落碳储量空间分异规律及主控因素研究[J]. 北京林业大学学报, 2023, 45(8): 16-28. doi: 10.12171/j.1000-1522.20220045
引用本文: 高旭, 牟长城, 梁道省, 鲁艺. 泰湖国家湿地公园天然植物群落碳储量空间分异规律及主控因素研究[J]. 北京林业大学学报, 2023, 45(8): 16-28. doi: 10.12171/j.1000-1522.20220045
Gao Xu, Mu Changcheng, Liang Daosheng, Lu Yi. Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 16-28. doi: 10.12171/j.1000-1522.20220045
Citation: Gao Xu, Mu Changcheng, Liang Daosheng, Lu Yi. Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 16-28. doi: 10.12171/j.1000-1522.20220045

泰湖国家湿地公园天然植物群落碳储量空间分异规律及主控因素研究

doi: 10.12171/j.1000-1522.20220045
基金项目: 中央高校自主科研项目计划(2019/D)
详细信息
    作者简介:

    高旭。主要研究方向:湿地生态学。Email:1781914157@qq.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:湿地生态学。Email:muccjs@163.com 地址:同上

  • 中图分类号: S718.5;Q948

Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China

  • 摘要:   目的  揭示温带半干旱区嫩江流域泰湖国家湿地公园天然植物群落的生态系统碳储量沿湖岸至高地环境梯度的空间分布格局及成因,为我国温带半干旱区天然植被长期碳汇实践提供科学依据。  方法  采用相对生长方程、碳/氮分析仪测定法,同步测定沿湖岸至高地环境梯度依次分布的狭叶香蒲沼泽(XYP)、小香蒲沼泽(XP)、芦苇沼泽(L)、草丛沼泽(C)、拂子茅草甸(F)、湿生羊草草地(S)、旱生羊草草地(H)和沙丘榆树疏林(Y)8种植物群落的生态系统(植被和土壤)碳储量、植被净初级生产力与年净固碳量及其相关环境因子(水位、土壤有机质、全氮和全磷等),揭示其空间分异规律及其形成机制。  结果  (1)植被碳储量(0.98 ~ 27.86 t/hm2)沿湖岸至高地环境梯度呈先降后升的变化趋势(Y > L,XYP,XP > C,F,S,H),草本层碳储量(0.30 ~ 8.11 t/hm2)呈阶梯式递减趋势(L,XYP,XP > C,F,S > H,Y)。(2)土壤碳储量(38.49 ~ 321.72 t/hm2)沿湖岸至高地环境梯度呈阶梯式递减规律,且存在明显的水平空间(XYP,XP各土壤层均最高;L,C大部分土壤层较高;F,S,H仅表层较高;Y各土壤层均最低)和垂直空间(XYP,XP,L随土壤深度递减;F,S,H中上部土壤层递减;C和Y各层相近)分异规律。(3)生态系统碳储量(66.35 ~ 329.94 t/hm2)沿湖岸至高地环境梯度也呈阶梯式递减规律,且其分配格局多以土壤碳储量占绝对优势(95.43% ~ 99.04%),仅Y土壤碳储量占比低(58.2%)。(4)植被净初级生产力(2.11 ~ 16.28 t/(hm2·a))和年净固碳量(0.68 ~ 7.00 t/(hm2·a))沿湖岸至高地环境梯度呈下降趋势,XYP、XP与L显著高于其他5种群落0.3 ~ 9.3倍,且L与XYP的年净固碳量高于我国和全球植被固碳平均值10.6% ~ 70.7%。(5)处于环境梯度下段永久积水生境的植物群落生态系统各组分碳储量与年净固碳量均受水位所控制;处于环境梯度中段季节性积水生境的植物群落生态系统各组分碳储量与年净固碳量受土壤有机质、全氮、全磷和速效钾所控制;处于环境梯度上段干旱生境的植物群落生态系统各组分碳储量与年净固碳量受土壤有机质和速效磷所控制。  结论  嫩江流域泰湖国家湿地公园沿湖岸至高地的微地形对水分和养分再分配引起的空间异质性控制着植物群落分布及其碳汇作用的发挥,故对这类环境梯度的完整性应加以重点保护。

     

  • 图  1  研究区样地示意图

    Figure  1.  Schematic diagram of sample plots in the research area

    图  2  泰湖国家湿地公园沿湖岸至高地梯度生态系统碳储量及其分配

    不同小写字母表示不同植物群落生态系统碳储量差异显著。Different lowercase letters mean significant difference in ecosystem carbon stocks of plant communities.

    Figure  2.  Ecosystem carbon storage and allocation proportions of Taihu National Wetland Park along the lakeshore to the highland environmental gradient

    图  3  泰湖国家湿地公园沿湖岸至高地梯度依次分布8种植物群落净初级生产力与植被年净固碳量

    不同小写字母表示不同植物群落植被净初级生产力与年净固碳量差异显著。Different lowercase letters mean significant difference in net primary productivity and annual net carbon sequestration of plant communities.

    Figure  3.  Net primary productivity and net carbon sequestration of the eight kinds of plant communities of Taihu National Wetland Park along the lakeshore to the highland environmental gradient

    表  1  沙丘榆树疏林建群种榆树相对生长方程

    Table  1.   Relative growth equations for Ulmus pumila, constructive species of dune Ulmus pumila sparse forest

    胸径生长量
    DBH growth/cm
    组分
    Component
    生物量方程
    Biomass equation
    R2显著性
    Significance
    树干 Trunk W = 10−1.580D2.599 0.954 1 0.001
    树根 Root W = 10−2.009D2.624 0.990 2 0.000
    0.298 ~ 1.089 树枝 Branch W = 10−1.672D2.451 0.928 1 0.000
    树叶 Leaf W = 10−2.092D2.745 0.746 5 0.009
    单木 Single tree W = 10−1.190D2.602 0.949 3 0.001
    注:W. 生物量,kg;D. 胸径,cm。Notes: W, biomass, kg; D, DBH, cm.
    下载: 导出CSV

    表  2  泰湖国家湿地公园沿湖岸至高地环境梯度分布的8种植物群落土壤理化性质

    Table  2.   Soil physicochemical properties of 8 plant communities of Taihu National Wetland Park along the lakeshore to the highland environmental gradient

    植被类型
    Plant type
    水位
    Water table/m
    有机质
    Organic matter/
    (g·kg−1
    全氮
    Total nitrogen/
    (g·kg−1
    全磷
    Total phosphorus/ (g·kg−1
    pH速效磷
    Available phosphorus/(g·kg−1
    速效钾
    Available potassium/(g·kg−1
    XYP0.63 ± 0.01G69.53 ± 0.67F1.82 ± 0.06G0.29 ± 0.01CD7.24 ± 0.03B23.94 ± 0.70F186.56 ± 0.35D
    XP0.28 ± 0.01F67.86 ± 1.74F1.51 ± 0.02F0.30 ± 0.01CD7.23 ± 0.03B23.87 ± 0.55F183.48 ± 0.15D
    L0.13 ± 0.01E56.44 ± 1.71E1.23 ± 0.01E0.45 ± 0.01E7.95 ± 0.03DE33.22 ± 0.23G183.34 ± 3.50D
    C0.07 ± 0.02E34.00 ± 2.95D1.11 ± 0.04D0.31 ± 0.01D7.55 ± 0.04C6.92 ± 0.88B96.98 ± 3.91B
    F−0.11 ± 0.01D28.70 ± 0.65C0.59 ± 0.04C0.32 ± 0.02D7.79 ± 0.07D21.17 ± 0.31E102.08 ± 8.17BC
    S−0.48 ± 0.06C25.29 ± 0.84C0.40 ± 0.04A0.25 ± 0.04B7.85 ± 0.03D18.41 ± 1.12D104.72 ± 4.68C
    H−1.99 ± 0.09B20.48 ± 1.67B0.44 ± 0.05AB0.27 ± 0.02BC8.11 ± 0.16E12.21 ± 0.88C83.93 ± 1.26A
    Y−4.33 ± 0.15A6.72 ± 0.72A0.50 ± 0.05B0.12 ± 0.01A6.05 ± 0.23A3.64 ± 0.38A80.79 ± 1.92A
    注:XYP. 狭叶香蒲沼泽;XP. 小香蒲沼泽;L. 芦苇沼泽;C. 草丛沼泽;F. 拂子茅草甸;S. 湿生羊草草地;H. 旱生羊草草地;Y. 沙丘榆树疏林。不同大写字母表示不同植物群落环境因子差异显著(P < 0.05)。下同。Notes: XYP, Typha angustifolia wetland; XP, Typha minima wetland; L, Phragmites australis wetland; C, tussock wetland; F, Calamagrostis epigeios meadow; S, wet Leymus chinensis grassland; H, Leymus chinensis grassland; Y, sand dune Ulmus pumila sparse forest. Different capital letters mean significant difference between plant communities of environmental factors (P < 0.05). The same below.
    下载: 导出CSV

    表  3  泰湖国家湿地公园沿湖岸至高地梯度分布8种植物群落的植被碳储量及其分配

    Table  3.   Carbon storage and allocation proportions of Taihu National Wetland Park along the lakeshore tothe highland environmental gradient

    植被类型
    Plant type
    碳储量/(t·hm−2) Carbon storage/(t·ha−1 分配比 Allocation proportion/%
    乔木层
    Tree layer
    灌木层
    Shrub layer
    草本层
    Herb layer
    凋落物层
    Litter layer
    植被层
    Vegetation layer
    乔木层
    Tree layer
    灌木层
    Shrub layer
    草本层
    Herb layer
    凋落物层
    Litter layer
    XYP 8.11 ± 0.52E 0.12 ± 0.01A 8.23 ± 0.53CD 98.54 ± 0.00 1.46 ± 0.00
    XP 5.80 ± 0.49D 0.51 ± 0.07BC 6.31 ± 0.85BCD 92.31 ± 0.05 7.69 ± 0.05
    L 8.05 ± 0.33E 1.88 ± 0.15E 9.93 ± 0.57D 81.18 ± 0.14 18.82 ± 0.14
    C 4.03 ± 0.16C 0.65 ± 0.12C 4.68 ± 0.05ABC 86.11 ± 0.18 13.89 ± 0.18
    F 2.24 ± 0.74B 1.40 ± 0.16D 3.64 ± 0.67AB 54.30 ± 0.16 45.70 ± 0.16
    S 2.13 ± 0.72B 1.35 ± 0.25D 3.48 ± 0.68AB 57.38 ± 0.15 42.62 ± 0.15
    H 0.68 ± 0.09A 0.30 ± 0.04AB 0.98 ± 0.05A 68.88 ± 0.06 31.12 ± 0.06
    Y 26.18 ± 11.12 0.04 ± 0.01 0.30 ± 0.04A 1.34 ± 0.16D 27.86 ± 6.32E 93.76 ± 0.01 0.16 ± 0.00 1.13 ± 0.00 4.95 ± 0.01
    下载: 导出CSV

    表  4  泰湖国家湿地公园沿湖岸至高地梯度土壤有机碳储量及其分配

    Table  4.   Soil organic carbon storage and allocation proportions of Taihu National Wetland Park along the lakeshore to the highland environmental gradient

    指标
    Index
    土层深度
    Soil depth/cm
    植被类型 Plant type
    XYPXPLCFSHY
    土壤密度
    Soil density/
    (g·cm−3
    0 ~ 20 0.86 ± 0.11ABa 0.79 ± 0.06Aa 0.90 ± 0.06ABa 1.18 ± 0.05DEa 1.24 ± 0.12DEa 1.25 ± 0.09Ea 1.10 ± 0.07CDa 1.00 ± 0.03BCa
    20 ~ 40 1.07 ± 0.04Ab 1.03 ± 0.02Ab 1.04 ± 0.03Ab 1.33 ± 0.13Cab 1.29 ± 0.18BCa 1.44 ± 0.07Cb 1.15 ± 0.02ABb 1.04 ± 0.04Aab
    40 ~ 60 1.12 ± 0.05Bb 1.10 ± 0.01ABb 1.08 ± 0.02ABb 1.38 ± 0.06Ec 1.31 ± 0.02Da 1.43 ± 0.02Eb 1.21 ± 0.02Cc 1.05 ± 0.05Aab
    60 ~ 80 1.16 ± 0.06ABb 1.19 ± 0.04ABc 1.16 ± 0.03ABc 1.38 ± 0.11Cbc 1.35 ± 0.11Ca 1.38 ± 0.08Cb 1.23 ± 0.04Bc 1.08 ± 0.04Ab
    80 ~ 100 1.20 ± 0.06ABb 1.24 ± 0.04Bc 1.23 ± 0.04Bc 1.36 ± 0.12Bbc 1.36 ± 0.16Ba 1.34 ± 0.06Bab 1.22 ± 0.03ABc 1.08 ± 0.02Ab
    平均值
    Mean
    1.08 ± 0.05A 1.07 ± 0.01A 1.08 ± 0.01A 1.33 ± 0.01C 1.31 ± 0.06C 1.37 ± 0.02C 1.18 ± 0.04B 1.05 ± 0.02A
    碳含量 Carbon content/
    (g·kg−1
    0 ~ 20 50.23 ± 0.72Ee 48.25 ± 2.63Ed 50.29 ± 3.49Ee 23.54 ± 6.77Cd 35.44 ± 4.41Dc 24.54 ± 3.29Cd 17.10 ± 2.22Bc 5.69 ± 1.13Ab
    20 ~ 40 40.08 ± 2.28Fd 43.52 ± 5.51Fd 30.05 ± 1.03Ed 20.37 ± 2.64Dcd 10.85 ± 3.56Bb 14.00 ± 2.40BCc 18.14 ± 1.12CDc 3.03 ± 0.52Aa
    40 ~ 60 30.67 ± 1.47Ec 26.32 ± 3.15Dc 17.88 ± 2.34Cc 15.24 ± 2.11Cbc 1.99 ± 0.03Aa 5.46 ± 1.15ABb 7.53 ± 3.47Bb 3.08 ± 0.61Aa
    60 ~ 80 23.68 ± 4.90Db 18.82 ± 2.32Cb 9.64 ± 2.12Bb 13.35 ± 2.24Bab 1.72 ± 0.09Aa 0.72 ± 0.19Aa 1.79 ± 0.82Aa 3.69 ± 0.62Aa
    80 ~ 100 11.02 ± 1.63Da 9.22 ± 1.70CDa 3.28 ± 0.85Ba 7.35 ± 2.15Ca 0.71 ± 0.16Aa 0.45 ± 0.12Aa 0.25 ± 0.04Aa 2.95 ± 0.85Ba
    平均值
    Mean
    31.14 ± 0.88E 29.22 ± 0.96E 22.23 ± 1.62D 15.97 ± 2.51C 10.14 ± 0.62B 9.04 ± 0.57B 8.96 ± 0.63B 3.69 ± 0.43A
    碳储量/(t·hm−2
    Carbon storage/(t·ha−1
    0 ~ 20 85.40 ± 10.26Dc 75.78 ± 10.04CDc 90.49 ± 12.07De 55.82 ± 18.29BCb 87.68 ± 19.92Dc 60.45 ± 4.20Cd 37.18 ± 2.35Bc 11.32 ± 1.98Ab
    20 ~ 40 86.18 ± 4.89Ec 89.97 ± 11.76Ec 62.39 ± 3.39Dd 53.78 ± 1.94Db 27.73 ± 5.83Bb 40.53 ± 7.51Cc 41.15 ± 3.62Cc 6.33 ± 1.08Aa
    40 ~ 60 68.51 ± 2.45Eb 58.14 ± 7.36Db 38.62 ± 5.57Cc 42.52 ± 5.28Cb 5.20 ± 0.58Aa 15.80 ± 4.33Bb 18.11 ± 8.46Bb 6.51 ± 1.29Aa
    60 ~ 80 55.16 ± 13.43Db 44.91 ± 7.23CDb 21.87 ± 4.85Bb 36.96 ± 8.73Cab 4.61 ± 0.49Aa 1.98 ± 0.54Aa 4.46 ± 2.24Aa 7.95 ± 1.13Aa
    80 ~ 100 26.47 ± 4.60Ca 22.96 ± 5.00Ca 8.03 ± 1.86Ba 20.15 ± 6.77Ca 1.90 ± 0.24ABa 1.22 ± 0.30Aa 0.63 ± 0.37Aa 6.37 ± 1.96ABa
    总计
    Total
    321.72 ± 29.93D 291.76 ± 12.49D 221.40 ± 22.48C 209.23 ± 29.20C 127.12 ± 19.14B 119.98 ± 6.65B 101.52 ± 11.86B 38.49 ± 3.93A
    注:不同小写字母表示植物群落内各土层差异显著(P < 0.05)。Note: different lowercase letters mean significant difference between soil layers of plant communities (P < 0.05).
    下载: 导出CSV

    表  5  不同生境下植物群落碳储量和年净固碳量与环境因子的逐步多元线性回归分析

    Table  5.   Stepwise multiple linear regression model between carbon storage and annual net carbon sequestration and environmental factors of plant communities in different habitats

    生境类型
    Habitat type
    指标
    Index
    水位
    Water table
    有机质
    Organic matter
    全氮
    Total nitrogen
    全磷
    Total phosphorus
    速效磷
    Available phosphorus
    速效钾
    Available potassium
    pH截距
    Intercept
    R2F
    永久积水生境
    Permanently flooded habitat
    植被碳储量
    Vegetation carbon storage
    5.468* 4.771** 0.683 < 0.05
    土壤碳储量
    Soil carbon storage
    84.556** 268.123*** 0.952 < 0.01
    生态系统碳储量
    Ecosystem carbon storage
    89.555*** 273.108*** 0.959 < 0.001
    年净固碳量
    Annual net carbon sequestration
    5.579** 1.884** 0.937 < 0.01
    季节性积水生境
    Seasonally
    flooded habitat
    植被碳储量
    Vegetation carbon storage
    0.210** 0.032* −2.824** 0.951 < 0.01
    土壤碳储量
    Soil carbon storage
    131.712*** 59.785** 0.852 < 0.001
    生态系统碳储量
    Ecosystem carbon storage
    131.840*** 64.960** 0.796 < 0.001
    年净固碳量
    Annual net carbon sequestration
    7.722** 0.043*** −4.388* 0.987 < 0.001
    干旱生境
    Arid habitat
    植被碳储量
    Vegetation carbon carbon
    −2.611** 38.165** 0.935 < 0.01
    土壤碳储量
    Soil carbon storage
    6.165*** 13.937* 0.976 < 0.001
    生态系统碳储量
    Ecosystem carbon storage
    4.297** 50.363** 0.896 < 0.01
    年净固碳量
    Annual net carbon sequestration
    −0.081*** 1.669*** 0.972 < 0.001
    注:*表示在0.05水平上差异显著;**表示在0.01水平上差异显著;***表示在0.001水平上差异显著。Notes: * means significant difference at the 0.05 level. ** means significant difference at 0.01 level. *** means significant difference at 0.001 level.
    下载: 导出CSV
  • [1] Lin E D, Guo L P, Ju H. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 723−725. doi: 10.1016/S2095-3119(17)61744-1
    [2] Tu C L, He T B, Lu X H, et al. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China[J]. Catena, 2018, 163: 204−209. doi: 10.1016/j.catena.2017.12.028
    [3] Nadia S S, María F A, Rachael H N, et al. Storage of organic carbon in the soils of Mexican temperate forests[J]. Forest Ecology and Management, 2019, 446: 115−125. doi: 10.1016/j.foreco.2019.05.029
    [4] Martin H, Markus R. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 2008, 451: 289−292. doi: 10.1038/nature06591
    [5] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009−1013. doi: 10.1038/nature07944
    [6] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
    [7] Xu L, Yu G R, He N P, et al. Carbon storage in China’s terrestrial ecosystems: a synthesis[J]. Scientific Reports, 2018, 8(1): 2806−2818. doi: 10.1038/s41598-018-20764-9
    [8] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184−187. doi: 10.1038/35041539
    [9] Don A, Schumacher J, Scherer-Lorenzen M, et al. Spatial and vertical variation of soil carbon at two grassland sites: implications for measuring soil carbon stocks[J]. Geoderma, 2007, 141(3−4): 272−282. doi: 10.1016/j.geoderma.2007.06.003
    [10] Saiz G, Bird M I, Domingues T, et al. Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa[J]. Global Change Biology, 2012, 18(5): 1670−1683. doi: 10.1111/j.1365-2486.2012.02657.x
    [11] Wang J Y, Song C C, Wang X W, et al. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China[J]. Catena, 2012, 96: 83−89. doi: 10.1016/j.catena.2012.03.009
    [12] Meeussen C, Govaert S, Vanneste T, et al. Drivers of carbon stocks in forest edges across Europe[J]. Science of the Total Environment, 2021, 759: 497−538.
    [13] Charman J D, Amesbury J M, Hinchliffe W, et al. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America[J]. Quaternary Science Reviews, 2015, 121: 110−119. doi: 10.1016/j.quascirev.2015.05.012
    [14] Giardina P C, Ryan G M. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404: 858−861. doi: 10.1038/35009076
    [15] Osland J M, Gabler A C, Grace B J, et al. Climate and plant controls on soil organic matter in coastal wetlands[J]. Global Change Biology, 2018, 24(11): 5361−5379. doi: 10.1111/gcb.14376
    [16] Jiang T, Wang D Y, Wei S Q, et al. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China[J]. Science of the Total Environment, 2018, 636: 249−259. doi: 10.1016/j.scitotenv.2018.04.262
    [17] Zheng L L, Xu J Y, Tan Z Q, et al. Spatial distribution of soil organic matter related to microtopography and NDVI changes in Poyang Lake, China[J]. Wetlands, 2019, 39(4): 789−801. doi: 10.1007/s13157-019-01131-4
    [18] Guo X L, Lu X G, Tong S Z, et al. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2008, 20(12): 1445−1452. doi: 10.1016/S1001-0742(08)62547-4
    [19] Gong L, Liu G H, Wang M, et al. Effects of vegetation restoration on soil organic carbon in China: a meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188−200. doi: 10.1007/s11769-017-0858-x
    [20] Ma K, Zhang Y, Tang S X, et al. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau[J]. Catena, 2016, 144: 102−108. doi: 10.1016/j.catena.2016.05.014
    [21] Mazurczyk T, Brooks P R. Carbon storage dynamics of temperate freshwater wetlands in Pennsylvania[J]. Wetlands Ecology and Management, 2018, 26(5): 893−914. doi: 10.1007/s11273-018-9619-6
    [22] 刘华兵, 李谦维, 高俊琴, 等. 红碱淖湿地不同水分条件下芦苇群落对土壤有机碳组分和无机氮含量的影响[J]. 环境科学学报, 2022, 42(1): 1−8.

    Liu H B, Li Q W, Gao J Q, et al. Effects of Phragmites australis community on soil organic carbon and inorganic nitrogen content under different soil moistures in Hongjiannao Wetland[J]. Journal of Environmental Science, 2022, 42(1): 1−8.
    [23] 殷书柏, 杨青, 吕宪国. 三江平原典型环型湿地土壤有机碳剖面分布及碳贮量[J]. 土壤通报, 2006, 37(4): 659−661.

    Yin S B, Yang Q, Lü X G. Distribution and accumulation of organic carbon in typical annular wetlands of Sanjiang Plain[J]. Chinese Journal of Soil Science, 2006, 37(4): 659−661.
    [24] 严格, 葛振鸣, 张利权. 崇明东滩湿地不同盐沼植物群落土壤碳储量分布[J]. 应用生态学报, 2014, 25(1): 85−91.

    Yan G, Ge Z M, Zhang L Q. Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan Wetland[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 85−91.
    [25] Bai J Y, Zong M M, Li S Y, et al. Nitrogen, water content, phosphorus and active iron jointly regulate soil organic carbon in tropical acid red soil forest[J]. European Journal of Soil Science, 2021, 72(1): 446−459.
    [26] Sun S, Xing F, Zhao H, et al. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen Grassland in Northeastern China[J]. Journal of Soil Science and Plant Nutrition, 2014, 14(3): 565−580.
    [27] 田艳林, 刘贤赵, 毛德华, 等. 基于MODIS数据的松嫩平原西部芦苇湿地地上生物量遥感估算[J]. 生态学报, 2016, 36(24): 8071−8080.

    Tian Y L, Liu X Z, Mao D H, et al. Remote sensing estimation of the aboveground biomass of reed wetland in the Western Songnen Plain, China, based on MODIS data[J]. Acta Ecologica Sinica, 2016, 36(24): 8071−8080.
    [28] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
    [29] 王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量[J]. 生态学报, 2019, 39(9): 3344−3354.

    Wang B W, Mu C C, Wang B. Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China[J]. Acta Ecologica Sinica, 2019, 39(9): 3344−3354.
    [30] 彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6): 1525−1538.

    Peng W H, Mu C C, Chang Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, Northeast China[J]. Acta Pedologica Sinica, 2020, 57(6): 1525−1538.
    [31] Wu G L, Ren G H, Wang D, et al. Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Journal of Hydrology, 2013, 476(1): 120−127.
    [32] Brix H, Sorrell K B, Lorenzen B. Are phragmites-dominated wetlands a net source or net sink of greenhouse gases?[J]. Aquatic Botany, 2001, 69(2−4): 313−324. doi: 10.1016/S0304-3770(01)00145-0
    [33] Trama A F, Rizo-Patrón L F, Kumar A, et al. Wetland cover types and plant community changes in response to cattail-control activities in the Palo Verde Marsh, Costa Rica[J]. Ecological Restoration, 2009, 27(3): 278−289. doi: 10.3368/er.27.3.278
    [34] 吴云杰. 草海湿地生态系统植被和土壤的有机碳分布特征和储量研究[D]. 哈尔滨: 东北林业大学, 2016.

    Wu Y J. Organic carbon dstribution and storage structure of vegetation and soil in Caohai Wetland ecosystem[D]. Harbin: Northeast Forestry University, 2016.
    [35] Anderson-Teixeira J K, Delong P J, Fox M A, et al. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico[J]. Global Change Biology, 2011, 17(1): 410−424. doi: 10.1111/j.1365-2486.2010.02269.x
    [36] Adams D H, Guardiola-Claramonte M, Barron-Gafford A G, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J]. Proceedings of the National Academy of Sciences, 2009, 106(17): 7063−7066. doi: 10.1073/pnas.0901438106
    [37] Xiong Y M, Liao B W, Proffitt E, et al. Soil carbon storage in mangroves is primarily controlled by soil properties: a study at Dongzhai Bay, China[J]. Science of the Total Environment, 2018, 619: 1226−1235.
    [38] Huang L B, Bai J H, Gao H F, et al. Soil organic carbon content and storage of raised field wetlands in different functional zones of a typical shallow freshwater lake, China[J]. Soil Research, 2012, 50(8): 664−671. doi: 10.1071/SR12236
    [39] Lawrence A B, Zedler B J. Carbon storage by carex stricta tussocks: a restorable ecosystem service?[J]. Wetlands, 2013, 33(3): 483−493. doi: 10.1007/s13157-013-0405-1
    [40] Zhao Q Q, Bai J H, Liu Q, et al. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China[J]. Wetlands, 2016, 36(S1): 145−152. doi: 10.1007/s13157-015-0647-1
    [41] Sahrawat L K. Organic matter accumulation in submerged soils[J]. Advances in Agronomy, 2004, 81: 169−201.
    [42] Setia R, Marschner P. Carbon mineralization in saline soils as affected by residue composition and water potential[J]. Biology and Fertility of Soils, 2013, 49(1): 71−77. doi: 10.1007/s00374-012-0698-x
    [43] Inoue T, Koizumi H. Effects of environmental factors upon variation in soil respiration of a Zoysia japonica grassland, central Japan[J]. Ecological Research, 2012, 27(2): 445−452. doi: 10.1007/s11284-011-0918-0
    [44] Nahlik A M, Fennessy M S. Carbon storage in US wetlands[J]. Nature Communications, 2016, 7(1): 1−9.
    [45] Luyssaert S, Schulze E D, Börner A, et al. Old-growth forests as global carbon sinks[J]. Nature, 2008, 455: 213−215. doi: 10.1038/nature07276
    [46] Yue J W, Guan J H, Yan M J, et al. Biomass carbon density in natural oak forests with different climate conditions and stand ages in northwest China[J]. Journal of Forest Research, 2018, 23(6): 354−362. doi: 10.1080/13416979.2018.1536313
    [47] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2010, 6(3): 317−327.
    [48] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1): 11−19.

    Zhou G S, Zhang X S. Study on NPP of natural vegetation in China under global climate change[J]. Chinese Journal of Plant Ecology, 1996, 20(1): 11−19.
    [49] 毛德华, 王宗明, 罗玲, 等. 1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6): 1511−1519.

    Mao D H, Wang Z M, Luo L, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982−2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511−1519.
    [50] 何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6): 1122−1127.

    He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127.
    [51] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379−389. doi: 10.11821/xb200104001

    Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
    [52] Peralta L A, Ludmer S, Matthews W J, et al. Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands[J]. Ecological Engineering, 2014, 73: 246−253. doi: 10.1016/j.ecoleng.2014.09.047
    [53] Yin S, Bai J H, Wang W, et al. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies[J]. Journal of Hydrology, 2019, 574: 1074−1084. doi: 10.1016/j.jhydrol.2019.05.007
    [54] Zhang C C, Wang Y Q, Jia X X, et al. Estimates and determinants of soil organic carbon and total nitrogen stocks up to 5 m depth across a long transect on the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(2): 748−765. doi: 10.1007/s11368-020-02861-3
    [55] Tian H Q, Wang S Q, Liu J Y, et al. Patterns of soil nitrogen storage in China[J]. Global Biogeochemical Cycles, 2006, 20(1): 1−9.
    [56] Gärdenäs I A, Ågren I G, Bird A J, et al. Knowledge gaps in soil carbon and nitrogen interactions: from molecular to global scale[J]. Soil Biology & Biochemistry, 2011, 43(4): 702−717.
    [57] Bai J H, Ouyang H, Deng W, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands[J]. Geoderma, 2005, 124(1−2): 181−192.
    [58] Richter D D, Markewitz D, Trumbore S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400: 56−58. doi: 10.1038/21867
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  31
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-04-27
  • 录用日期:  2023-07-02
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回