Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China
-
摘要:
目的 揭示温带半干旱区嫩江流域泰湖国家湿地公园天然植物群落的生态系统碳储量沿湖岸至高地环境梯度的空间分布格局及成因,为我国温带半干旱区天然植被长期碳汇实践提供科学依据。 方法 采用相对生长方程、碳/氮分析仪测定法,同步测定沿湖岸至高地环境梯度依次分布的狭叶香蒲沼泽(XYP)、小香蒲沼泽(XP)、芦苇沼泽(L)、草丛沼泽(C)、拂子茅草甸(F)、湿生羊草草地(S)、旱生羊草草地(H)和沙丘榆树疏林(Y)8种植物群落的生态系统(植被和土壤)碳储量、植被净初级生产力与年净固碳量及其相关环境因子(水位、土壤有机质、全氮和全磷等),揭示其空间分异规律及其形成机制。 结果 (1)植被碳储量(0.98 ~ 27.86 t/hm2)沿湖岸至高地环境梯度呈先降后升的变化趋势(Y > L,XYP,XP > C,F,S,H),草本层碳储量(0.30 ~ 8.11 t/hm2)呈阶梯式递减趋势(L,XYP,XP > C,F,S > H,Y)。(2)土壤碳储量(38.49 ~ 321.72 t/hm2)沿湖岸至高地环境梯度呈阶梯式递减规律,且存在明显的水平空间(XYP,XP各土壤层均最高;L,C大部分土壤层较高;F,S,H仅表层较高;Y各土壤层均最低)和垂直空间(XYP,XP,L随土壤深度递减;F,S,H中上部土壤层递减;C和Y各层相近)分异规律。(3)生态系统碳储量(66.35 ~ 329.94 t/hm2)沿湖岸至高地环境梯度也呈阶梯式递减规律,且其分配格局多以土壤碳储量占绝对优势(95.43% ~ 99.04%),仅Y土壤碳储量占比低(58.2%)。(4)植被净初级生产力(2.11 ~ 16.28 t/(hm2·a))和年净固碳量(0.68 ~ 7.00 t/(hm2·a))沿湖岸至高地环境梯度呈下降趋势,XYP、XP与L显著高于其他5种群落0.3 ~ 9.3倍,且L与XYP的年净固碳量高于我国和全球植被固碳平均值10.6% ~ 70.7%。(5)处于环境梯度下段永久积水生境的植物群落生态系统各组分碳储量与年净固碳量均受水位所控制;处于环境梯度中段季节性积水生境的植物群落生态系统各组分碳储量与年净固碳量受土壤有机质、全氮、全磷和速效钾所控制;处于环境梯度上段干旱生境的植物群落生态系统各组分碳储量与年净固碳量受土壤有机质和速效磷所控制。 结论 嫩江流域泰湖国家湿地公园沿湖岸至高地的微地形对水分和养分再分配引起的空间异质性控制着植物群落分布及其碳汇作用的发挥,故对这类环境梯度的完整性应加以重点保护。 Abstract:Objective This paper aims to reveal the spatial distribution pattern and the cause of formation of the natural plant ecosystem carbon storage in the semi-arid area of temperate Nenjiang River of Taihu National Wetland Park of Northeastern China along the lakeshore to the highland environmental gradient, and to provide a scientific basis for the long term carbon sink management of natural vegetation in the temperate semi-arid area of China. Method The ecosystem carbon storage (vegetation carbon storage and soil carbon storage), net primary productivity (NPP), annual net carbon sequestration (ANCS) and related environmental factors (water level, total nitrogen and total phosphorus, etc.) of eight plant communities, i.e. Typha angustifolia wetland (XYP), Typha minima wetland (XP), Phragmites australis wetland (L), tussock wetland (C), Calamagrostis epigeios meadow (F), wet Leymus chinensis grassland (S), dry Leymus chinensis grassland (H), sand dune Ulmus pumila sparse forest (Y) distributed along the lakeshore to the highland environmental gradient were simultaneously determined by relative growth equation and carbon/nitrogen analyzer method, so as to reveal its spatial differentiation law and its formation mechanism. Result (1) The vegetation carbon storage (0.98−27.86 t/ha) showed a downward and then ascending tendency along the lakeshore to the highland environmental gradient (Y > L, XYP, XP > C, F, S, H), and herbaceous carbon storage (0.30−8.11 t/ha) showed a stepwise decreasing trend (L, XYP, XP > C, F, S > H, Y). (2) The soil carbon storage (38.49−321.72 t/ha) showed a stepwise decreasing trend along the lakeshore to the highland environmental gradient, and there were obvious horizontal spaces (XYP, XP were the highest at all soil layers; L, C were higher at most soil layers; F, S, H only was higher at the surface layer; Y was the lowest at all soil layers) and vertical space (XYP, XP, L decreased with soil depth; F, S, H at middle and upper soil layers decreased; C and Y were similar at all layers) differentiation regularity. (3) Ecosystem carbon storage (66.35−329.94 t/ha) also showed a stepwise decreasing trend along the lakeshore to the highland environmental gradient, and its distribution pattern was mostly dominated by soil carbon storage (95.43%−99.04%), only Y soil carbon storage accounted for low proportion (58.2%); (4) The NPP (2.11−16.28 t/(ha·year)) and ANCS (0.68−7.00 t/(ha·year)) of vegetation showed a decreasing trend along the lakeshore to the highland environmental gradient (XYP, XP and L were significantly higher than the other five communities by 0.3−9.3 times), and the ANCS of L and XYP was higher than the average carbon sequestration of vegetation in China and the world by 10.6%−70.7%; (5) Ecosystem carbon stocks and annual net carbon sequestration of vegetation of plant communities in permanently flooded habitat in the lower part of the environmental gradient were controlled by water level; plant communities in seasonally flooded habitat in the middle environment gradient were controlled by SOM, TN, TP and AK; plant communities in arid habitats in the upper environmental gradient were controlled by SOM and AP. Conclusion Therefore, the spatial heterogeneity of water and nutrient redistribution caused by the micro-topography controls the distribution of plant communities and their carbon sinks along the lakeshore to the highland environmental gradient in the Nenjiang River of Taihu National Wetland Park of China, so the integrity of such environmental gradients should be protected. -
图 2 泰湖国家湿地公园沿湖岸至高地梯度生态系统碳储量及其分配
不同小写字母表示不同植物群落生态系统碳储量差异显著。Different lowercase letters mean significant difference in ecosystem carbon stocks of plant communities.
Figure 2. Ecosystem carbon storage and allocation proportions of Taihu National Wetland Park along the lakeshore to the highland environmental gradient
图 3 泰湖国家湿地公园沿湖岸至高地梯度依次分布8种植物群落净初级生产力与植被年净固碳量
不同小写字母表示不同植物群落植被净初级生产力与年净固碳量差异显著。Different lowercase letters mean significant difference in net primary productivity and annual net carbon sequestration of plant communities.
Figure 3. Net primary productivity and net carbon sequestration of the eight kinds of plant communities of Taihu National Wetland Park along the lakeshore to the highland environmental gradient
表 1 沙丘榆树疏林建群种榆树相对生长方程
Table 1. Relative growth equations for Ulmus pumila, constructive species of dune Ulmus pumila sparse forest
胸径生长量
DBH growth/cm组分
Component生物量方程
Biomass equationR2 显著性
Significance树干 Trunk W = 10−1.580D2.599 0.954 1 0.001 树根 Root W = 10−2.009D2.624 0.990 2 0.000 0.298 ~ 1.089 树枝 Branch W = 10−1.672D2.451 0.928 1 0.000 树叶 Leaf W = 10−2.092D2.745 0.746 5 0.009 单木 Single tree W = 10−1.190D2.602 0.949 3 0.001 注:W. 生物量,kg;D. 胸径,cm。Notes: W, biomass, kg; D, DBH, cm. 表 2 泰湖国家湿地公园沿湖岸至高地环境梯度分布的8种植物群落土壤理化性质
Table 2. Soil physicochemical properties of 8 plant communities of Taihu National Wetland Park along the lakeshore to the highland environmental gradient
植被类型
Plant type水位
Water table/m有机质
Organic matter/
(g·kg−1)全氮
Total nitrogen/
(g·kg−1)全磷
Total phosphorus/ (g·kg−1)pH 速效磷
Available phosphorus/(g·kg−1)速效钾
Available potassium/(g·kg−1)XYP 0.63 ± 0.01G 69.53 ± 0.67F 1.82 ± 0.06G 0.29 ± 0.01CD 7.24 ± 0.03B 23.94 ± 0.70F 186.56 ± 0.35D XP 0.28 ± 0.01F 67.86 ± 1.74F 1.51 ± 0.02F 0.30 ± 0.01CD 7.23 ± 0.03B 23.87 ± 0.55F 183.48 ± 0.15D L 0.13 ± 0.01E 56.44 ± 1.71E 1.23 ± 0.01E 0.45 ± 0.01E 7.95 ± 0.03DE 33.22 ± 0.23G 183.34 ± 3.50D C 0.07 ± 0.02E 34.00 ± 2.95D 1.11 ± 0.04D 0.31 ± 0.01D 7.55 ± 0.04C 6.92 ± 0.88B 96.98 ± 3.91B F −0.11 ± 0.01D 28.70 ± 0.65C 0.59 ± 0.04C 0.32 ± 0.02D 7.79 ± 0.07D 21.17 ± 0.31E 102.08 ± 8.17BC S −0.48 ± 0.06C 25.29 ± 0.84C 0.40 ± 0.04A 0.25 ± 0.04B 7.85 ± 0.03D 18.41 ± 1.12D 104.72 ± 4.68C H −1.99 ± 0.09B 20.48 ± 1.67B 0.44 ± 0.05AB 0.27 ± 0.02BC 8.11 ± 0.16E 12.21 ± 0.88C 83.93 ± 1.26A Y −4.33 ± 0.15A 6.72 ± 0.72A 0.50 ± 0.05B 0.12 ± 0.01A 6.05 ± 0.23A 3.64 ± 0.38A 80.79 ± 1.92A 注:XYP. 狭叶香蒲沼泽;XP. 小香蒲沼泽;L. 芦苇沼泽;C. 草丛沼泽;F. 拂子茅草甸;S. 湿生羊草草地;H. 旱生羊草草地;Y. 沙丘榆树疏林。不同大写字母表示不同植物群落环境因子差异显著(P < 0.05)。下同。Notes: XYP, Typha angustifolia wetland; XP, Typha minima wetland; L, Phragmites australis wetland; C, tussock wetland; F, Calamagrostis epigeios meadow; S, wet Leymus chinensis grassland; H, Leymus chinensis grassland; Y, sand dune Ulmus pumila sparse forest. Different capital letters mean significant difference between plant communities of environmental factors (P < 0.05). The same below. 表 3 泰湖国家湿地公园沿湖岸至高地梯度分布8种植物群落的植被碳储量及其分配
Table 3. Carbon storage and allocation proportions of Taihu National Wetland Park along the lakeshore tothe highland environmental gradient
植被类型
Plant type碳储量/(t·hm−2) Carbon storage/(t·ha−1) 分配比 Allocation proportion/% 乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer凋落物层
Litter layer植被层
Vegetation layer乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer凋落物层
Litter layerXYP 8.11 ± 0.52E 0.12 ± 0.01A 8.23 ± 0.53CD 98.54 ± 0.00 1.46 ± 0.00 XP 5.80 ± 0.49D 0.51 ± 0.07BC 6.31 ± 0.85BCD 92.31 ± 0.05 7.69 ± 0.05 L 8.05 ± 0.33E 1.88 ± 0.15E 9.93 ± 0.57D 81.18 ± 0.14 18.82 ± 0.14 C 4.03 ± 0.16C 0.65 ± 0.12C 4.68 ± 0.05ABC 86.11 ± 0.18 13.89 ± 0.18 F 2.24 ± 0.74B 1.40 ± 0.16D 3.64 ± 0.67AB 54.30 ± 0.16 45.70 ± 0.16 S 2.13 ± 0.72B 1.35 ± 0.25D 3.48 ± 0.68AB 57.38 ± 0.15 42.62 ± 0.15 H 0.68 ± 0.09A 0.30 ± 0.04AB 0.98 ± 0.05A 68.88 ± 0.06 31.12 ± 0.06 Y 26.18 ± 11.12 0.04 ± 0.01 0.30 ± 0.04A 1.34 ± 0.16D 27.86 ± 6.32E 93.76 ± 0.01 0.16 ± 0.00 1.13 ± 0.00 4.95 ± 0.01 表 4 泰湖国家湿地公园沿湖岸至高地梯度土壤有机碳储量及其分配
Table 4. Soil organic carbon storage and allocation proportions of Taihu National Wetland Park along the lakeshore to the highland environmental gradient
指标
Index土层深度
Soil depth/cm植被类型 Plant type XYP XP L C F S H Y 土壤密度
Soil density/
(g·cm−3)0 ~ 20 0.86 ± 0.11ABa 0.79 ± 0.06Aa 0.90 ± 0.06ABa 1.18 ± 0.05DEa 1.24 ± 0.12DEa 1.25 ± 0.09Ea 1.10 ± 0.07CDa 1.00 ± 0.03BCa 20 ~ 40 1.07 ± 0.04Ab 1.03 ± 0.02Ab 1.04 ± 0.03Ab 1.33 ± 0.13Cab 1.29 ± 0.18BCa 1.44 ± 0.07Cb 1.15 ± 0.02ABb 1.04 ± 0.04Aab 40 ~ 60 1.12 ± 0.05Bb 1.10 ± 0.01ABb 1.08 ± 0.02ABb 1.38 ± 0.06Ec 1.31 ± 0.02Da 1.43 ± 0.02Eb 1.21 ± 0.02Cc 1.05 ± 0.05Aab 60 ~ 80 1.16 ± 0.06ABb 1.19 ± 0.04ABc 1.16 ± 0.03ABc 1.38 ± 0.11Cbc 1.35 ± 0.11Ca 1.38 ± 0.08Cb 1.23 ± 0.04Bc 1.08 ± 0.04Ab 80 ~ 100 1.20 ± 0.06ABb 1.24 ± 0.04Bc 1.23 ± 0.04Bc 1.36 ± 0.12Bbc 1.36 ± 0.16Ba 1.34 ± 0.06Bab 1.22 ± 0.03ABc 1.08 ± 0.02Ab 平均值
Mean1.08 ± 0.05A 1.07 ± 0.01A 1.08 ± 0.01A 1.33 ± 0.01C 1.31 ± 0.06C 1.37 ± 0.02C 1.18 ± 0.04B 1.05 ± 0.02A 碳含量 Carbon content/
(g·kg−1)0 ~ 20 50.23 ± 0.72Ee 48.25 ± 2.63Ed 50.29 ± 3.49Ee 23.54 ± 6.77Cd 35.44 ± 4.41Dc 24.54 ± 3.29Cd 17.10 ± 2.22Bc 5.69 ± 1.13Ab 20 ~ 40 40.08 ± 2.28Fd 43.52 ± 5.51Fd 30.05 ± 1.03Ed 20.37 ± 2.64Dcd 10.85 ± 3.56Bb 14.00 ± 2.40BCc 18.14 ± 1.12CDc 3.03 ± 0.52Aa 40 ~ 60 30.67 ± 1.47Ec 26.32 ± 3.15Dc 17.88 ± 2.34Cc 15.24 ± 2.11Cbc 1.99 ± 0.03Aa 5.46 ± 1.15ABb 7.53 ± 3.47Bb 3.08 ± 0.61Aa 60 ~ 80 23.68 ± 4.90Db 18.82 ± 2.32Cb 9.64 ± 2.12Bb 13.35 ± 2.24Bab 1.72 ± 0.09Aa 0.72 ± 0.19Aa 1.79 ± 0.82Aa 3.69 ± 0.62Aa 80 ~ 100 11.02 ± 1.63Da 9.22 ± 1.70CDa 3.28 ± 0.85Ba 7.35 ± 2.15Ca 0.71 ± 0.16Aa 0.45 ± 0.12Aa 0.25 ± 0.04Aa 2.95 ± 0.85Ba 平均值
Mean31.14 ± 0.88E 29.22 ± 0.96E 22.23 ± 1.62D 15.97 ± 2.51C 10.14 ± 0.62B 9.04 ± 0.57B 8.96 ± 0.63B 3.69 ± 0.43A 碳储量/(t·hm−2)
Carbon storage/(t·ha−1)0 ~ 20 85.40 ± 10.26Dc 75.78 ± 10.04CDc 90.49 ± 12.07De 55.82 ± 18.29BCb 87.68 ± 19.92Dc 60.45 ± 4.20Cd 37.18 ± 2.35Bc 11.32 ± 1.98Ab 20 ~ 40 86.18 ± 4.89Ec 89.97 ± 11.76Ec 62.39 ± 3.39Dd 53.78 ± 1.94Db 27.73 ± 5.83Bb 40.53 ± 7.51Cc 41.15 ± 3.62Cc 6.33 ± 1.08Aa 40 ~ 60 68.51 ± 2.45Eb 58.14 ± 7.36Db 38.62 ± 5.57Cc 42.52 ± 5.28Cb 5.20 ± 0.58Aa 15.80 ± 4.33Bb 18.11 ± 8.46Bb 6.51 ± 1.29Aa 60 ~ 80 55.16 ± 13.43Db 44.91 ± 7.23CDb 21.87 ± 4.85Bb 36.96 ± 8.73Cab 4.61 ± 0.49Aa 1.98 ± 0.54Aa 4.46 ± 2.24Aa 7.95 ± 1.13Aa 80 ~ 100 26.47 ± 4.60Ca 22.96 ± 5.00Ca 8.03 ± 1.86Ba 20.15 ± 6.77Ca 1.90 ± 0.24ABa 1.22 ± 0.30Aa 0.63 ± 0.37Aa 6.37 ± 1.96ABa 总计
Total321.72 ± 29.93D 291.76 ± 12.49D 221.40 ± 22.48C 209.23 ± 29.20C 127.12 ± 19.14B 119.98 ± 6.65B 101.52 ± 11.86B 38.49 ± 3.93A 注:不同小写字母表示植物群落内各土层差异显著(P < 0.05)。Note: different lowercase letters mean significant difference between soil layers of plant communities (P < 0.05). 表 5 不同生境下植物群落碳储量和年净固碳量与环境因子的逐步多元线性回归分析
Table 5. Stepwise multiple linear regression model between carbon storage and annual net carbon sequestration and environmental factors of plant communities in different habitats
生境类型
Habitat type指标
Index水位
Water table有机质
Organic matter全氮
Total nitrogen全磷
Total phosphorus速效磷
Available phosphorus速效钾
Available potassiumpH 截距
InterceptR2 F 永久积水生境
Permanently flooded habitat植被碳储量
Vegetation carbon storage5.468* 4.771** 0.683 < 0.05 土壤碳储量
Soil carbon storage84.556** 268.123*** 0.952 < 0.01 生态系统碳储量
Ecosystem carbon storage89.555*** 273.108*** 0.959 < 0.001 年净固碳量
Annual net carbon sequestration5.579** 1.884** 0.937 < 0.01 季节性积水生境
Seasonally
flooded habitat植被碳储量
Vegetation carbon storage0.210** 0.032* −2.824** 0.951 < 0.01 土壤碳储量
Soil carbon storage131.712*** 59.785** 0.852 < 0.001 生态系统碳储量
Ecosystem carbon storage131.840*** 64.960** 0.796 < 0.001 年净固碳量
Annual net carbon sequestration7.722** 0.043*** −4.388* 0.987 < 0.001 干旱生境
Arid habitat植被碳储量
Vegetation carbon carbon−2.611** 38.165** 0.935 < 0.01 土壤碳储量
Soil carbon storage6.165*** 13.937* 0.976 < 0.001 生态系统碳储量
Ecosystem carbon storage4.297** 50.363** 0.896 < 0.01 年净固碳量
Annual net carbon sequestration−0.081*** 1.669*** 0.972 < 0.001 注:*表示在0.05水平上差异显著;**表示在0.01水平上差异显著;***表示在0.001水平上差异显著。Notes: * means significant difference at the 0.05 level. ** means significant difference at 0.01 level. *** means significant difference at 0.001 level. -
[1] Lin E D, Guo L P, Ju H. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 723−725. doi: 10.1016/S2095-3119(17)61744-1 [2] Tu C L, He T B, Lu X H, et al. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China[J]. Catena, 2018, 163: 204−209. doi: 10.1016/j.catena.2017.12.028 [3] Nadia S S, María F A, Rachael H N, et al. Storage of organic carbon in the soils of Mexican temperate forests[J]. Forest Ecology and Management, 2019, 446: 115−125. doi: 10.1016/j.foreco.2019.05.029 [4] Martin H, Markus R. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 2008, 451: 289−292. doi: 10.1038/nature06591 [5] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009−1013. doi: 10.1038/nature07944 [6] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185 [7] Xu L, Yu G R, He N P, et al. Carbon storage in China’s terrestrial ecosystems: a synthesis[J]. Scientific Reports, 2018, 8(1): 2806−2818. doi: 10.1038/s41598-018-20764-9 [8] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184−187. doi: 10.1038/35041539 [9] Don A, Schumacher J, Scherer-Lorenzen M, et al. Spatial and vertical variation of soil carbon at two grassland sites: implications for measuring soil carbon stocks[J]. Geoderma, 2007, 141(3−4): 272−282. doi: 10.1016/j.geoderma.2007.06.003 [10] Saiz G, Bird M I, Domingues T, et al. Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa[J]. Global Change Biology, 2012, 18(5): 1670−1683. doi: 10.1111/j.1365-2486.2012.02657.x [11] Wang J Y, Song C C, Wang X W, et al. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China[J]. Catena, 2012, 96: 83−89. doi: 10.1016/j.catena.2012.03.009 [12] Meeussen C, Govaert S, Vanneste T, et al. Drivers of carbon stocks in forest edges across Europe[J]. Science of the Total Environment, 2021, 759: 497−538. [13] Charman J D, Amesbury J M, Hinchliffe W, et al. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America[J]. Quaternary Science Reviews, 2015, 121: 110−119. doi: 10.1016/j.quascirev.2015.05.012 [14] Giardina P C, Ryan G M. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404: 858−861. doi: 10.1038/35009076 [15] Osland J M, Gabler A C, Grace B J, et al. Climate and plant controls on soil organic matter in coastal wetlands[J]. Global Change Biology, 2018, 24(11): 5361−5379. doi: 10.1111/gcb.14376 [16] Jiang T, Wang D Y, Wei S Q, et al. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China[J]. Science of the Total Environment, 2018, 636: 249−259. doi: 10.1016/j.scitotenv.2018.04.262 [17] Zheng L L, Xu J Y, Tan Z Q, et al. Spatial distribution of soil organic matter related to microtopography and NDVI changes in Poyang Lake, China[J]. Wetlands, 2019, 39(4): 789−801. doi: 10.1007/s13157-019-01131-4 [18] Guo X L, Lu X G, Tong S Z, et al. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2008, 20(12): 1445−1452. doi: 10.1016/S1001-0742(08)62547-4 [19] Gong L, Liu G H, Wang M, et al. Effects of vegetation restoration on soil organic carbon in China: a meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188−200. doi: 10.1007/s11769-017-0858-x [20] Ma K, Zhang Y, Tang S X, et al. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau[J]. Catena, 2016, 144: 102−108. doi: 10.1016/j.catena.2016.05.014 [21] Mazurczyk T, Brooks P R. Carbon storage dynamics of temperate freshwater wetlands in Pennsylvania[J]. Wetlands Ecology and Management, 2018, 26(5): 893−914. doi: 10.1007/s11273-018-9619-6 [22] 刘华兵, 李谦维, 高俊琴, 等. 红碱淖湿地不同水分条件下芦苇群落对土壤有机碳组分和无机氮含量的影响[J]. 环境科学学报, 2022, 42(1): 1−8.Liu H B, Li Q W, Gao J Q, et al. Effects of Phragmites australis community on soil organic carbon and inorganic nitrogen content under different soil moistures in Hongjiannao Wetland[J]. Journal of Environmental Science, 2022, 42(1): 1−8. [23] 殷书柏, 杨青, 吕宪国. 三江平原典型环型湿地土壤有机碳剖面分布及碳贮量[J]. 土壤通报, 2006, 37(4): 659−661.Yin S B, Yang Q, Lü X G. Distribution and accumulation of organic carbon in typical annular wetlands of Sanjiang Plain[J]. Chinese Journal of Soil Science, 2006, 37(4): 659−661. [24] 严格, 葛振鸣, 张利权. 崇明东滩湿地不同盐沼植物群落土壤碳储量分布[J]. 应用生态学报, 2014, 25(1): 85−91.Yan G, Ge Z M, Zhang L Q. Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan Wetland[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 85−91. [25] Bai J Y, Zong M M, Li S Y, et al. Nitrogen, water content, phosphorus and active iron jointly regulate soil organic carbon in tropical acid red soil forest[J]. European Journal of Soil Science, 2021, 72(1): 446−459. [26] Sun S, Xing F, Zhao H, et al. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen Grassland in Northeastern China[J]. Journal of Soil Science and Plant Nutrition, 2014, 14(3): 565−580. [27] 田艳林, 刘贤赵, 毛德华, 等. 基于MODIS数据的松嫩平原西部芦苇湿地地上生物量遥感估算[J]. 生态学报, 2016, 36(24): 8071−8080.Tian Y L, Liu X Z, Mao D H, et al. Remote sensing estimation of the aboveground biomass of reed wetland in the Western Songnen Plain, China, based on MODIS data[J]. Acta Ecologica Sinica, 2016, 36(24): 8071−8080. [28] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012 [29] 王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量[J]. 生态学报, 2019, 39(9): 3344−3354.Wang B W, Mu C C, Wang B. Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China[J]. Acta Ecologica Sinica, 2019, 39(9): 3344−3354. [30] 彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6): 1525−1538.Peng W H, Mu C C, Chang Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, Northeast China[J]. Acta Pedologica Sinica, 2020, 57(6): 1525−1538. [31] Wu G L, Ren G H, Wang D, et al. Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Journal of Hydrology, 2013, 476(1): 120−127. [32] Brix H, Sorrell K B, Lorenzen B. Are phragmites-dominated wetlands a net source or net sink of greenhouse gases?[J]. Aquatic Botany, 2001, 69(2−4): 313−324. doi: 10.1016/S0304-3770(01)00145-0 [33] Trama A F, Rizo-Patrón L F, Kumar A, et al. Wetland cover types and plant community changes in response to cattail-control activities in the Palo Verde Marsh, Costa Rica[J]. Ecological Restoration, 2009, 27(3): 278−289. doi: 10.3368/er.27.3.278 [34] 吴云杰. 草海湿地生态系统植被和土壤的有机碳分布特征和储量研究[D]. 哈尔滨: 东北林业大学, 2016.Wu Y J. Organic carbon dstribution and storage structure of vegetation and soil in Caohai Wetland ecosystem[D]. Harbin: Northeast Forestry University, 2016. [35] Anderson-Teixeira J K, Delong P J, Fox M A, et al. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico[J]. Global Change Biology, 2011, 17(1): 410−424. doi: 10.1111/j.1365-2486.2010.02269.x [36] Adams D H, Guardiola-Claramonte M, Barron-Gafford A G, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J]. Proceedings of the National Academy of Sciences, 2009, 106(17): 7063−7066. doi: 10.1073/pnas.0901438106 [37] Xiong Y M, Liao B W, Proffitt E, et al. Soil carbon storage in mangroves is primarily controlled by soil properties: a study at Dongzhai Bay, China[J]. Science of the Total Environment, 2018, 619: 1226−1235. [38] Huang L B, Bai J H, Gao H F, et al. Soil organic carbon content and storage of raised field wetlands in different functional zones of a typical shallow freshwater lake, China[J]. Soil Research, 2012, 50(8): 664−671. doi: 10.1071/SR12236 [39] Lawrence A B, Zedler B J. Carbon storage by carex stricta tussocks: a restorable ecosystem service?[J]. Wetlands, 2013, 33(3): 483−493. doi: 10.1007/s13157-013-0405-1 [40] Zhao Q Q, Bai J H, Liu Q, et al. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China[J]. Wetlands, 2016, 36(S1): 145−152. doi: 10.1007/s13157-015-0647-1 [41] Sahrawat L K. Organic matter accumulation in submerged soils[J]. Advances in Agronomy, 2004, 81: 169−201. [42] Setia R, Marschner P. Carbon mineralization in saline soils as affected by residue composition and water potential[J]. Biology and Fertility of Soils, 2013, 49(1): 71−77. doi: 10.1007/s00374-012-0698-x [43] Inoue T, Koizumi H. Effects of environmental factors upon variation in soil respiration of a Zoysia japonica grassland, central Japan[J]. Ecological Research, 2012, 27(2): 445−452. doi: 10.1007/s11284-011-0918-0 [44] Nahlik A M, Fennessy M S. Carbon storage in US wetlands[J]. Nature Communications, 2016, 7(1): 1−9. [45] Luyssaert S, Schulze E D, Börner A, et al. Old-growth forests as global carbon sinks[J]. Nature, 2008, 455: 213−215. doi: 10.1038/nature07276 [46] Yue J W, Guan J H, Yan M J, et al. Biomass carbon density in natural oak forests with different climate conditions and stand ages in northwest China[J]. Journal of Forest Research, 2018, 23(6): 354−362. doi: 10.1080/13416979.2018.1536313 [47] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2010, 6(3): 317−327. [48] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1): 11−19.Zhou G S, Zhang X S. Study on NPP of natural vegetation in China under global climate change[J]. Chinese Journal of Plant Ecology, 1996, 20(1): 11−19. [49] 毛德华, 王宗明, 罗玲, 等. 1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6): 1511−1519.Mao D H, Wang Z M, Luo L, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982−2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511−1519. [50] 何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6): 1122−1127.He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. [51] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379−389. doi: 10.11821/xb200104001Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001 [52] Peralta L A, Ludmer S, Matthews W J, et al. Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands[J]. Ecological Engineering, 2014, 73: 246−253. doi: 10.1016/j.ecoleng.2014.09.047 [53] Yin S, Bai J H, Wang W, et al. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies[J]. Journal of Hydrology, 2019, 574: 1074−1084. doi: 10.1016/j.jhydrol.2019.05.007 [54] Zhang C C, Wang Y Q, Jia X X, et al. Estimates and determinants of soil organic carbon and total nitrogen stocks up to 5 m depth across a long transect on the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(2): 748−765. doi: 10.1007/s11368-020-02861-3 [55] Tian H Q, Wang S Q, Liu J Y, et al. Patterns of soil nitrogen storage in China[J]. Global Biogeochemical Cycles, 2006, 20(1): 1−9. [56] Gärdenäs I A, Ågren I G, Bird A J, et al. Knowledge gaps in soil carbon and nitrogen interactions: from molecular to global scale[J]. Soil Biology & Biochemistry, 2011, 43(4): 702−717. [57] Bai J H, Ouyang H, Deng W, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands[J]. Geoderma, 2005, 124(1−2): 181−192. [58] Richter D D, Markewitz D, Trumbore S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400: 56−58. doi: 10.1038/21867 -