Research progress on the mechanism of 2n gamete occurrence in plants
-
摘要: 未减数配子是植物多倍化的源动力,也是植物多倍体育种的重要手段和工具。自然界植物多倍体的自发形成主要包括有性多倍化和无性多倍化2条途径,其中有性多倍化途径在植物界占据着绝对统治地位。本文在分析文献的基础上,从性母细胞减数分裂染色体行为、减数分裂微管骨架、细胞质分裂等异常细胞学现象,减数分裂转变调控以及2n配子发生的分子调控等3个方面,对植物2n配子发生机理研究进展进行了综述,并讨论了植物2n配子利用过程中存在的问题。指出综合利用高通量测序、生物信息学和多组学分析技术,发掘2n配子发生的关键基因,并验证其生物学功能,解析植物2n配子发生的分子调控机理,可能是未来植物2n配子发生机理研究领域的热点。提出综合利用生物信息学分析技术和CRISPR-Cas9等现代基因编辑技术,开展精准分子设计育种,可能是从根本上解决单倍性花粉授粉竞争问题、提高三倍体诱导效率的有效方法。Abstract: Unreduced gametes are the driving force for the polyploidization of plants in nature, and are also an important tool for ploidy breeding. The spontaneous formation of polyploid in plants by sexual polyploidization and asexual polyploidization is involved in nature. For the two ways to produce polyploid, sexual polyploidization is the more predominant way. In the present paper, mechanisms of 2n gamete occurrence in plants was summarized based on the analysis of cited references. Abnormal cytological phenomena, such as meiotic chromosome behaviour, meiotic microtubule and cytokinesis, meiosis Ⅰ to meiosis Ⅱ transition, and molecular regulator of 2n gamete formation was reviewed. Some problems for utilization of 2n gamete to produce polyploid in plants were also discussed. Detecting new genes related to 2n gamete formation based on combining the high-throughput sequencing, bioinformatics and multi-omics analysis, testing their biological function and elucidating the molecular mechanism of 2n gamete formation were pointed out to be hot research domains in the future. It might be one of the effective methods to solve the competition problem of haploid pollen during pollination and increase the triploid induction rate by accurately molecular design breeding combined with bioinformatic analysis and CRISPR-Cas9 mediated gene editing.
-
热激蛋白(Heat stress proteins, Hsp)主要参与生物体内新生肽的运输、折叠、组装、定位以及变性蛋白的复性和降解,具有分子伴侣作用[1],广泛存在于自然界原核与真核细胞中,在生物体内具有多种复杂的功能。当受到环境胁迫时,生物体就会开启该类应激基因的迅速表达,产生结构上非常保守的特殊蛋白质,使生物体快速调整细胞的存活机制,促进细胞恢复正常的结构和机能[2]。热激蛋白按照蛋白分子质量大小和同源性分为5类:Hsp100(80~110 kDa)、Hsp90(82~96 kDa)、Hsp70(67~76 kDa)、Hsp60(58~65 kDa)和小分子热激蛋白(40 kDa以下)[3]。除昆虫小分子热激蛋白(smHsp)外,其余4类热激蛋白均比较保守,但smHsp在结构和功能上具有共同特征,分子质量范围12~43 kDa,所有小分子热激蛋白含有保守的80~100个氨基酸组成的α晶体结构域(α-crystallin domain,ACD),可产生数量较多的低聚体,能被胁迫因子诱导并具有分子伴侣活性[4-9]。Hsp70和Hsp40分子伴侣活性需要ATP能量,主动介导底物结合/释放循环,但smHsp的分子伴侣活性不同,其本身具有和同等质量变性底物结合的能力,而不需要直接重新折叠热诱导的非折叠变性蛋白,从而形成稳定的复合体,并且防止不可逆的非特异性聚集的发生[10]。smHsp能够与其他热激蛋白互作阻止靶蛋白的聚合,并在靶蛋白的重折叠过程中发挥重要作用[11-12]。许多研究表明smHsp参与生物体的生长发育和氧化还原代谢、维持细胞完整性以及增强对环境胁迫能力等重要生理功能[9-10]。目前,研究证实昆虫smHsp在生长发育、生殖调节以及滞育和休眠中均发挥着重要作用[11],而对杀虫剂胁迫响应方面研究甚少。
舞毒蛾(Lymantria dispar)是一种周期性发生的世界性林业食叶害虫,国内报道取食杨树(Populus spp.)、马尾松(Pinus massoniana)、栎(Quercus spp.)、红松(Pinus koraiensis)等500多种植物,主要分布于东北、华北、华中和西北地区,其传播和蔓延的速度快[12],给农林业生产带来了巨大损失,化学防治仍是目前有效控制舞毒蛾危害的主要防治措施之一。本文从舞毒蛾转录本文库中获得了舞毒蛾Hsp家族中6个smHsp基因的全长cDNA序列,分析该基因生物学特性,在此基础上进一步采用实时荧光定量RT-PCR技术,探讨了smHsp对杀虫剂甲萘威胁迫的响应,为进一步研究smHsp应对外源杀虫剂响应作用机制提供依据。
1. 材料与方法
1.1 供试昆虫
舞毒蛾卵块和人工饲料购自中国林业科学研究院森林生态环境与保护研究所,幼虫置于温度(25±1) ℃,光照14 L:10 D,相对湿度75%的条件下的培养箱内,人工饲料饲养,取健康、大小一致的2龄幼虫进行试验。
1.2 smHsp基因克隆与分析
从1~6龄的舞毒蛾幼虫中,分别随机挑选活泼、健康、大小一致的幼虫各10头,采用RNeasy Mini动物组织总RNA提取试剂盒(Qiagen),分别提取舞毒蛾幼虫各龄期的总RNA,然后将各龄幼虫提取的总RNA等比例混匀,20 μg总RNA用于转录组文库构建,用Illumina HiSeqTM 2000对建好的测序文库进行测序(深圳华大基因科技有限公司)[13-14]。对转录组文库中Unigenes在NCBI上进行Blastx和Blastn分析,根据功能注释结果,查找并获得smHsp基因序列,然后设计引物进行RT-PCR验证,通过测序确定所获得的smHsp基因全长序列。用ORF founder(http://www.ncbi.nlm.nih.gov/gorf.html)程序来确定其开放读码框。用ProtParam(http://au.expasy.org/tools/protparam.html)软件计算推导蛋白质的分子质量及理论等电点。在NCBI上用Conserved Domains程序(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)来预测蛋白的保守区。利用Blast程序(http://www.ncbi.nlm.nih.gov/BLAST/)来进行序列同源性搜索,选择与其相似程度高的鳞翅目昆虫的smHsp蛋白氨基酸序列,用ClustalW多序列联配程序进行多序列比对。应用Clustalx 1.83和MEGA 5.1,采用邻接法(Neighbor-Joining, N-J)构建系统发育树[15]。
1.3 实时荧光定量RT-PCR
采用含有LC5(0.031 mg/g)、LC10(0.041 mg/g)和LC30(0.075 mg/g)剂量的甲萘威人工饲料毒饵饲喂舞毒蛾2龄幼虫,以不含甲萘威的人工饲料作为对照组,分别于饲喂舞毒蛾幼虫6、12、24、48和72 h后,随机挑取活泼幼虫提取其总RNA,用DNase I(Promega)消化总RNA中的DNA,测定其质量浓度,采用PrimeScriptTM RT reagent Kit(TaKaRa)合成cDNA,将合成cDNA稀释10倍,作为模板备用,使用试剂盒SYBR Green Real-time PCR Master mix(Toyobo)进行实时荧光定量PCR。内参基因(Actin、EF1α和TUB)和smHsp基因引物序列见表 1。实时荧光定量PCR反应体系为:10 μL 2×SYBR premix Ex Taq酶、正向和反向引物(10 μmol/L)各1、2 μL稀释的cDNA模板,加去离子水补足20 μL;反应条件:94 ℃预变性30 s,94 ℃变性12 s,60 ℃退火45 s,72 ℃延伸45 s,81 ℃读板1 s,45个循环,每样品和每处理各重复3次,用2-△△Ct方法进行基因相对表达量分析[16]。
表 1 实时荧光定量RT-PCR引物序列Table 1. Primer sequences of real-time RT-PCR基因
Gene正向引物序列(5′-3′)
Forward primer sequence (5′-3′)反向引物序列(5′-3′)
Reverse primer sequence (5′-3′)LdHsp20.3 AGACGTCGGCTCTACTATCA CATCACGGAATCGGCATCTA LdHsp18.7 GACTCCACAGCATCAGGATTAG GGATGCCGGATCTTCAATCA LdHsp21.4 CTCTGCTCTCCGATGACTACTA CGAACTGTCGACTGATGTATCC LdHsp19.1 CTCCGTACTGGATGCGTTATC CACCTTCTTCCCGTCGATTT LdHsp17.0 GGAGCGTGACAAGTACGAAA CCGAGGTACGGTGATAACTAGA LdHsp21.3 GGGTGTACTGGCTAACATCAA CCGAAATGAGGAAGATGGAAGA Actin AGAAGCACTTGCGGTGGACAAT ACCTGTACGCCAACACTGTCAT EF1α TTTGCCTTCCTTGCGCTCAACA TGTAAAGCAGCTGATCGTGGGT TUB AATGCAAGAAAGCCTTGCGCCT ATGAAGGAGGTCGACGAGCAAA 1.4 数据统计与分析
采用SPSS 17.0(SPSS Inc., USA)统计软件进行单因素方差分析(One-way ANOVA,Duncan)检测同一基因在同一浓度的甲萘威胁迫下,不同时间点表达量差异的显著性(P<0.05)。采用OriginPro 8.5软件,进行数据统计和绘图。
2. 结果与分析
2.1 smHsp基因全长克隆与分析
通过舞毒蛾转录组文库分析和RT-PCR验证获得6个舞毒蛾smHsp家族全长基因,开放阅读框大小为444~567 bp;编码147~188个氨基酸;理论等电点为5.58~6.17,均为酸性蛋白(表 2)。BLASTP对6个舞毒蛾smHsp保守区的预测结果表明,该类蛋白属于alpha-crystallin-Hsps-p23-like超级家族蛋白(图 1)。
表 2 舞毒蛾smHsp基因特性Table 2. Characteristics of smHsp genes in L. dispar基因
Gene开放阅读框
Open reading frame/bp编码氨基酸
Encoding amino acids分子质量
Molecular weight/kDa理论等电点
Theoretical pI含量最多的氨基酸
The most abundant amino acids/%LdHsp17.0 444 147 17.00 6.15 Lys(9.5%) LdHsp18.7 501 166 18.79 5.58 Val(9.6%) LdHsp19.1 495 164 19.10 6.13 Glu(11.0%) LdHsp20.3 534 177 20.30 5.76 Glu(8.5%) LdHsp21.4 567 188 21.42 6.17 Leu(9.0%) LdHsp21.3 564 187 21.37 5.79 Ser(11.8%) 舞毒蛾smHsp蛋白的系统进化树分析表明,6个smHsp蛋白分为二大类,LdHsp20.3、LdHsp21.4、LdHsp18.7和LdHsp17.0聚为一大类,其中LdHsp20.3、LdHsp21.4和LdHsp18.7分别与甘蓝夜蛾(Mamestra brassicae)、印度谷斑螟(Plodia interpunctella)和大红斑蝶(Danaus plexippus)亲缘关系最近而聚为一类。舞毒蛾LdHsp21.3和LdHsp19.1与艺神袖蝶(Heliconius erato)、斜纹夜蛾(Spodoptera litura)、棉铃虫(Helicoverpa armigera)和柑橘凤蝶(Papilio xuthus)聚为一大类(图 2)。
2.2 甲萘威胁迫对smHsp基因表达量的影响
为了探讨杀虫剂甲萘威对舞毒蛾smHsp基因表达的影响,运用实时荧光定量RT-PCR技术分析了亚致死剂量(LC5、LC10和LC30)的甲萘威对舞毒蛾2龄幼虫6个smHsp基因表达量的影响(图 3)。亚致死剂量甲萘威对舞毒蛾smHsp表达量的影响结果分为两类:一类是对LdHsp20.3、LdHsp19.1和LdHsp17.0主要表现为诱导上调;另一类是对LdHsp21.4、LdHsp21.3和LdHsp18.7主要表现为抑制其表达。
图 3 甲萘威胁迫对舞毒蛾smHsp基因表达量的影响A.亚致死剂量LC5处理组smHsp基因表达量;B.亚致死剂量LC10处理组smHsp基因表达量;C.亚致死剂量LC30处理组smHsp基因表达量。不同小写字母表示同一基因不同处理间的表达量差异显著(P<0.05)。Figure 3. Effects of carbaryl on smHsp gene expressions in L. dispar larvaeA, smHsp gene expression under LC5 of sublethal dose stress; B, smHsp gene expression under LC10 of sublethal dose stress; C, smHsp gene expression under LC30 of sublethal dose stress. Different lowercase letters show significant differences between treatment groups for the same gene at P < 0.05 level.LC5和LC10甲萘威胁迫处理后,舞毒蛾LdHsp20.3基因的表达量在6~72 h均表现为显著上调,且LC10胁迫诱导作用高于LC5;LC10胁迫6 h时诱导作用最大,为对照的28.08倍;而LC30处理24 h和48 h时LdHsp20.3的表达量分别下降为对照的84%和50%。与对照相比,LC5、LC10和LC30甲萘威胁迫对舞毒蛾LdHsp19.1的表达均表现为显著的诱导作用,表达量为对照的1.42~12.46倍,其中胁迫24 h是表达量最高。LC5和LC10甲萘威对LdHsp17.0主要表现为诱导作用,LC5胁迫6 h其表达量为对照的3.34倍;但LC30甲萘威在处理的72 h内(除6 h)主要表现为抑制作用,表达量为对照的39%~86%。
亚致死剂量甲萘威对舞毒蛾LdHsp21.3和LdHsp18.7的表达主要表现为显著的抑制作用。与对照相比,LC5、LC10和LC30甲萘威处理72 h(除LC5胁迫6 h)均显著抑制了LdHsp21.3的表达,表达量为对照的28%~86%,其中LC30甲萘威胁迫48 h抑制作用最大,抑制率为72%。甲萘威处理24~72 h均显著抑制了LdHsp18.7的表达,表达量为对照的13%~55%。对于LdHsp21.4,除了甲萘威胁迫6 h表现为诱导作用外,随着作用时间的延长均表现为显著的抑制作用,表达量为对照的5%~98%,其中LC5甲萘威处理48 h抑制作用最大,抑制率达95%。
3. 讨论与结论
热激蛋白是生物体细胞在一些应激源(如:高温、缺氧、重金属、氧化应激、饥饿、代谢毒物等)诱导下,激活Hsp基因从而高效表达的一组进化上高度保守的蛋白质。其中,smHsp在N端和C端氨基酸序列和长度差异较大,但它们的中段α晶体序列长度和结构上比较相似,都具有“三明治”的β折叠[17]。昆虫体内有众多smHsps,每种昆虫体内所含有的种类和功能各不相同。本文获得舞毒蛾6个含有1个α晶体结构域smHsp蛋白,系统进化树分析表明舞毒蛾smHsp蛋白序列差异性大,同源性小,LdHsp20.3、LdHsp21.4、LdHsp18.7和LdHsp17.0亲缘关系较近而聚为一大类,LdHsp19.1和LdHsp21.3聚为另一类。
热激蛋白是有机体在压力胁迫下诱导表达的参与自身保护反应的一类特殊蛋白,在陆地和水生系统,其化学物质胁迫响应机制已成为主要研究方向之一[18-19]。在外源有毒物质对生物体毒性作用的研究中,不仅大分子Hsps基因作为生物标志基因被广泛研究,而且smHsp基因在生物体应对外源化合物胁迫响应中所起的重要作用也有所报道。有研究发现黑腹果蝇(Drosophila melanogaster)3龄幼虫暴露于0.02~2.00 μg/mL的硫丹12~48 h,Hsp83、Hsp70、Hsp60和Hsp26与对照组相比没有显著表达差异,但发现Hsp23和Hsp22的表达量随处理质量浓度和时间的增加而增加,并且在48 h后,Hsp23表达量高于Hsp22,推测Hsp22和Hsp23在果蝇应对硫丹介导的细胞压力中担当重要的保护角色[20]。王瑞娴等采用双跟踪标定定量分析法测定表明家蚕(Bombyx mori)取食蜕皮激素(2×10-3 μg/μL)和芸香苷(5×10-2 ng/μL)溶液浸泡的桑叶2 h后,BmHsp19.9基因在中肠、脂肪体和马氏管组织中的转录水平均有上升[21]。王利华等报道在毒死蜱长期筛选的灰飞虱(Laodelpphax striatellus)种群中LsHsp70-2、LsHsp90-1和LsHsp90-2的表达量分别上升2.32、1.53和2.28倍;且高温(42 ℃)热激后毒死蜱抗性品系的存活率比敏感品系高23.58%[22]。寇利花等发现Cd急性诱导下中华稻蝗(Oxya chinensis)OcsHSPs(OcHsp19.1、OcHsp19.8、OcHsp20.4、OcHsp20.7、OcHsp21.1)基因在精巢和卵巢的表达模式不同,其表达量与Cd质量浓度和作用时间有关[23]。本文研究结果表明3个亚致死剂量的甲萘威胁迫舞毒蛾2龄幼虫后,其smHsp基因呈现不同的表达模式。甲萘威处理对舞毒蛾LdHsp20.3和LdHsp19.1表现出高的诱导表达效应,但对LdHsp17.0诱导效果较小,在高质量浓度(LC30)下则表现为抑制作用。这些舞毒蛾smHsps基因的上调表达使得细胞内smHsp蛋白增多,进而及时与变性蛋白结合,形成稳定的复合体,防止不可逆的非特异性聚集,可能为DnaK/Hsp70蛋白争取更多机会与变性蛋白结合,进而增强害虫应对外界胁迫时产生的蛋白修复能力。然而,舞毒蛾LdHsp21.4、LdHsp21.3和LdHsp18.7对甲萘威胁迫的响应则主要表现为下调表达,虽然在胁迫初期表现出一定诱导作用,这表明3个smHsp基因在低质量浓度短时间胁迫下具有迅速应激响应来保护自身免受损伤的能力,但随着质量浓度和时间的延长胁迫压力增大而丧失。随着全球气候变暖和害虫抗药性日益严重,害虫对生境适应能力增强,对热激蛋白的深入研究可为探讨害虫抗逆机制以及害虫综合治理提供一定的理论基础。
-
[1] Wang Y X, Magnard J L, McCormick S, et al. Progression through meiosis Ⅰ and meiosis Ⅱ in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase Ⅰ[J]. Plant Physiology, 2004, 136(4): 4127−4135. doi: 10.1104/pp.104.051201
[2] Adams K L, Wendel J F. Novel patterns of gene expression in polyploid plants[J]. Trends in Genetics, 2005a, 21(10): 539−543. doi: 10.1016/j.tig.2005.07.009
[3] Adams K L, Wendel J F. Polyploidy and genome evolution in plants[J]. Current Opinion in Plant Biology, 2005b, 8(2): 135−141. doi: 10.1016/j.pbi.2005.01.001
[4] Leitch A R, Leitch I J. Genomic plasticity and the diversity of polyploid plants[J]. Science, 2008, 320: 481−483. doi: 10.1126/science.1153585
[5] Cui L Y, Wall P K, Leebens-Mack J H, et al. Widespread genome duplication throughout the history of flowering plants[J]. Genome Research, 2006, 16(6): 738−749. doi: 10.1101/gr.4825606
[6] Wood T E, Takebayashi N, Barker M S, et al. The frequency of polyploid speciation in vascular plants[J]. Proceedings of the National Academy of Science of the United States of America, 2009, 106(33): 13875−13879. doi: 10.1073/pnas.0811575106
[7] Bretagnolle F, Thompson J D. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants[J]. New Phytologist, 1995, 129(1): 1−22. doi: 10.1111/j.1469-8137.1995.tb03005.x
[8] 吕晔, 薛治慧, 吴改娥, 等. 三倍体和四倍体枣减数分裂行为异常现象观察[J]. 园艺学报, 2018, 45(4): 659−668. doi: 10.16420/j.issn.0513-353x.2017-0469 Lü Y, Xue Z H, Wu G E, et al. Abnormal meiosis behaviors of triploid and tetraploid Chinese jujube[J]. Acta Horticulturae Sinica, 2018, 45(4): 659−668. doi: 10.16420/j.issn.0513-353x.2017-0469
[9] Zhang S G, Qi L W, Han S Y. A report of triploid Populus of the section Aigeiros[J]. Silvae Genetica, 2004, 53(2): 69−75.
[10] Orjeda G, Freyre R, Iwanaga M. Production of 2n pollen in diploid Ipomoea trifida, a putative wild ancestor of sweet potato[J]. Journal of Heredity, 1990, 81: 462−467. doi: 10.1093/oxfordjournals.jhered.a111026
[11] Dewitte A, Eeckhaut T, van Huylenbroeck J, et al. Meiotic aberrations during 2n pollen formation in Begonia[J]. Heredity, 2010, 104(2): 215−223. doi: 10.1038/hdy.2009.111
[12] Crespel L, Ricci S C, Gudin S. The production of 2n pollen in rose[J]. Euphytica, 2006, 151(2): 155−164. doi: 10.1007/s10681-006-9136-1
[13] 康向阳. 毛白杨未减数2n花粉的发生机制的研究[J]. 北京林业大学学报, 2002, 24(5): 67−71. doi: 10.3321/j.issn:1000-1522.2002.05.013 Kang X Y. Mechanism of unreduced 2n pollen occurring in Chinese white poplar[J]. Journal of Beijing Forestry University, 2002, 24(5): 67−71. doi: 10.3321/j.issn:1000-1522.2002.05.013
[14] 鲁敏, 王君, 王旭军,等. 响叶杨小孢子母细胞减数分裂及染色体行为的研究[J]. 植物科学学报, 2011, 29(2): 171−177. Lu M, Wang J, Wang X J, et al. Meiosis and chromosome behaviour of microsporocytes in Populus adenopoda Maxim.[J]. Plant Science Journal, 2011, 29(2): 171−177.
[15] Manzos A M. Fastgrowing form of Populus balsamifera obtaied by polliating female flowers with fractionated pollen of the same species[J]. Doklady Akademii Nauk Sssr, 1960, 130(2): 433−435.
[16] 王君, 康向阳, 李代丽, 等. 通辽杨花粉母细胞减数分裂及其染色体行为研究[J]. 西北植物学报, 2006, 26(11): 2231−2238. doi: 10.3321/j.issn:1000-4025.2006.11.007 Wang J, Kang X Y, Li D L, et al. Meiosis and chromosome behavior of pollen mother cell in Populus simonii Carr. × P. nigra L. ‘Tongliao’[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(11): 2231−2238. doi: 10.3321/j.issn:1000-4025.2006.11.007
[17] Seitz F W. The occurrence of triploids after self-pollination of anomalous androgynous flowers of a gray poplar[J]. Z Forstgenet, 1954, 3(1): 1−6.
[18] 买旖旎, 李树战, 索玉静, 等. 柿不同种质中的天然2n花粉得率的评价及诱导时期的判定[J]. 中国农业大学学报, 2019, 24(12): 44−52. doi: 10.11841/j.issn.1007-4333.2019.12.05 Mai Y N, Li S Z, Suo Y J, et al. Identification of natural 2n pollen in different persimmon germplasms and ascertainment of their induction period[J]. Journal of China Agricultural University, 2019, 24(12): 44−52. doi: 10.11841/j.issn.1007-4333.2019.12.05
[19] Dong C B, Mao J F, Suo Y J, et al. A strategy for characterization of persistent heteroduplex DNA in higher plants[J]. The Plant Journal, 2014, 80(2): 282−291. doi: 10.1111/tpj.12631
[20] Lim K B, Ramanna M S, Jong J H D, et al. Indeterminate restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH[J]. Theoretical and Applied Genetics, 2001, 103(2−3): 219−230. doi: 10.1007/s001220100638
[21] Lam S L. Origin and formation of unreduced gametes in the potato[J]. Joural of Heredity, 1974, 65: 175−178. doi: 10.1093/oxfordjournals.jhered.a108492
[22] Sanford J C. Methods in fruit breeding[M]. Purdue: Purdue University Press, 1983.
[23] Ramsey J, Schemske D. Pathway, mechanisms, and rates on polyploid formation in flowering plant[J]. Annual Review of Ecology & System, 1998, 29: 467−501.
[24] Zhang P D, Kang X Y. Occurrence and cytological mechanism of numerically unreduced pollen in diploid Populus euphratica[J]. Silvae Genetica, 2013, 62(6): 285−291.
[25] Zhang Z H, Kang X Y. Cytological characteristics of numerically unreduced pollen production in Populus tomentosa Carr.[J]. Euphytica, 2010, 173(2): 151−159. doi: 10.1007/s10681-009-0051-0
[26] 李燕杰. 高温诱导银灰杨产生2n花粉的细胞及分子机制[D]. 北京: 北京林业大学, 2017. Li Y J. Cytological and molecular mechanism of 2n pollen production induced by high temperature in Populus canescens[D]. Beijing: Beijing Forestry University, 2017.
[27] 张凡. 月季2n花粉的秋水仙素诱导及其萌发特征的研究[D]. 北京: 北京林业大学, 2019. Zhang F. 2n pollen induction by colchicine and its characteristics of in vitro germination in Rosa spp.[D]. Beijing: Beijing Forestry University, 2019.
[28] Veilleux R. Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding[J]. Plant Breeding Reviews, 1985, 3: 253−288.
[29] d’Erfurth I, Jolivet S, Froger N, et al. Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) lead to the production of diploid pollen grains[J/OL]. PLoS Genetics, 2008[2018−11−01]. https://doi.org/10.1371/journal.pgen.1000274.
[30] 鲁敏. 响叶杨三倍体和四倍体诱导技术研究[D]. 北京: 北京林业大学, 2013. Lu M. Techniques of triploid and tetraploid induction of Populus adenopoda Maxim.[D]. Beijing: Beijing Forestry University, 2013.
[31] 张平冬, 康向阳. 胡杨小孢子发生及微管骨架变化与异常研究[J]. 西北植物学报, 2013, 33(11): 2166−2171. doi: 10.7606/j.issn.1000-4025.2013.11.2166 Zhang P D, Kang X Y. Organization of microtubule and its abnormities during microsporogenesis in Populus euphratica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(11): 2166−2171. doi: 10.7606/j.issn.1000-4025.2013.11.2166
[32] 王君. 青杨派树种多倍体诱导技术研究[D]. 北京: 北京林业大学, 2009. Wang J. Techniques of polyploid induction in Populus spp. (Section Tacamahaca)[D]. Beijing: Beijing Forestry University, 2009.
[33] de Storme N, Gregory P C, Geelen D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays[J]. Plant Physiology, 2012, 160(4): 1808−1826. doi: 10.1104/pp.112.208611
[34] de Storme N, Geelen D. Cytokinesis in plant male meiosis[J/OL]. Plant Signaling & Behavior, 2013[2013−01−01]. https://doi.org/10.4161/psb.23394.
[35] Conicella C, Genualdo1 G, Errico A, et al. Meiotic restitution mechanisms and 2n pollen formation in a Solanum tuberosum dihaploid and in dihaploid × wild species hybrids[J]. Plant Breeding, 1996, 115(3): 157−161. doi: 10.1111/j.1439-0523.1996.tb00893.x
[36] Zhang J F, Wei Z Z, Li D, et al. Using SSR markers to study the mechanism of 2n pollen formation in Populus × euramericana (Dode) Guinier and P. × popularis[J]. Annals of Forest Science, 2009, 66(506): 1−10.
[37] Hashimoto N, Watanabe N, Furuta Y, et al. Parthenogenetic activation of oocytes in c-mos-deficient mice[J]. Nature, 1994, 370: 68−71. doi: 10.1038/370068a0
[38] Marston A L, Amon A. Meiosis: cell-cycle controls shuffle and deal[J]. Nature Reviews Molecular Cell Biology, 2004, 5(12): 983−997. doi: 10.1038/nrm1526
[39] Pesin J A, Orr-Weaver T L. Regulation of APC/C activators in mitosis and meiosis[J]. Annual Review of Cell and Developmental Biology, 2008, 24: 475−499. doi: 10.1146/annurev.cellbio.041408.115949
[40] Jones K T. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization[J]. Molecular Human Reproduction, 2004, 10(1): 1−5. doi: 10.1093/molehr/gah009
[41] Ledan E, Polanski Z, Terret M E, et al. Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation[J]. Developmental Biology, 2001, 232(2): 400−413. doi: 10.1006/dbio.2001.0188
[42] Kobayashi H, Minshull J, Ford C, et al. On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis[J]. Journal of Cell Biology, 1991, 114(4): 755−765. doi: 10.1083/jcb.114.4.755
[43] Iwabuchi M, Ohsumi K, Yamamoto T M, et al. Residual Cdc2 activity remaining at meiosis Ⅰ exit is essential for meiotic M-M transition in Xenopus oocyte extracts[J]. The EMBO Journal, 2000, 19(17): 4513−4523. doi: 10.1093/emboj/19.17.4513
[44] Madgwick S, Hansen D V, Levasseur M, et al. Mouse Emi2 is required to enter meiosis Ⅱ by reestablishing cyclin B1 during interkinesis[J]. Journal of Cell Biology, 2006, 174(6): 791−801. doi: 10.1083/jcb.200604140
[45] Ohe M, Inoue D, Kanemori Y, et al. Erp1/Emi2 is essential for the meiosis Ⅰ to meiosis Ⅱ transition in Xenopus oocytes[J]. Developmental Biology, 2007, 303(1): 157−164. doi: 10.1016/j.ydbio.2006.10.044
[46] Tang W, Wu J Q, Guo Y, et al. Cdc2 and Mos regulate Emi2 stability to promote the meiosis Ⅰ-meiosis Ⅱ transition[J]. Molecular Biology of the Cell, 2008, 19(8): 3536−3543. doi: 10.1091/mbc.e08-04-0417
[47] Izawa D, Goto M, Yamashita A, et al. Fission yeast Mes1p ensures the onset of meiosis Ⅱ by blocking degradation of cyclin Cdc13p[J]. Nature, 2005, 434: 529−533. doi: 10.1038/nature03406
[48] Kimata Y, Trickey M, Izawa D, et al. A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast[J]. Developmental Cell, 2008, 14(3): 446−454. doi: 10.1016/j.devcel.2007.12.010
[49] Carlile T M, Amon A. Meiosis Ⅰ is established through division-specific translational control of a cyclin[J]. Cell, 2008, 133(2): 280−291. doi: 10.1016/j.cell.2008.02.032
[50] Kiburz B M, Amon A, Marston A L. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae[J]. Molecualr Biology of the Cell, 2008, 19(3): 1199−1209.
[51] Barrell P J, Grossniklaus U. Confocal microscopy of whole ovules for analysis of reproductive development: the elongate1 mutant affects meiosis Ⅱ[J]. The Plant Journal, 2005, 43(2): 309−320. doi: 10.1111/j.1365-313X.2005.02456.x
[52] d’Erfurth I, Jolivet S, Froger N, et al. Turning meiosis into mitosis[J/OL]. PLoS Biology, 2009[2020−01−10]. https://doi.org/10.1371/journal.pbio.1000124.
[53] d’Erfurth I, Cromer L, Jolivet S, et al. The cyclin-A CYCA1;2/TAM is required for the meiosis Ⅰ to meiosis Ⅱ transition and cooperates with OSD1 for the prophase to first meiotic division transition[J/OL]. PLoS Genettics, 2010[2010−06−01]. https://doi.org/10.1371/journal.pgen.1000989.
[54] Inze D, de Veylder L. Cell cycle regulation in plant development[J]. Annual Review of Genetics, 2006, 40: 77−105. doi: 10.1146/annurev.genet.40.110405.090431
[55] Rymen B, Fiorani F, Kartal F, et al. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes[J]. Plant Physiology, 2007, 143(3): 1429−1438. doi: 10.1104/pp.106.093948
[56] Bita C E, Zenoni S, Vriezen W H, et al. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants[J/OL]. BMC Genomics, 2011[2011−07−31]. https://doi.org/10.1186/1471-2164-12-384.
[57] Consiglio F, Carputo D, Monti L, et al. Exploitation of genes affecting meiotic non-reduction and nuclear restitution: Arabidopsis as a model?[J]. Sexual Plant Reprodouction, 2004, 17(2): 97−105.
[58] Brownfield L, Köhler C. Unreduced gamete formation in plants: mechanisms and prospects[J]. Journal of Experimental Botany, 2011, 62(5): 1659−1668. doi: 10.1093/jxb/erq371
[59] Ravi M, Marimuthu M P A, Siddiqi I. Gamete formation without meiosis in Arabidopsis[J]. Nature, 2008, 451: 1121−1124. doi: 10.1038/nature06557
[60] Pawlowski W P, Wang C J R, Golubovskaya I N, et al. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3603−3608. doi: 10.1073/pnas.0810115106
[61] Singh M, Goel S, Meeley R B, et al. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein[J]. The Plant Cell, 2011, 23(2): 443−458. doi: 10.1105/tpc.110.079020
[62] de Storme N, Geelen D. The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis Ⅱ[J]. Plant Physiology, 2011, 155(3): 1403−1415. doi: 10.1104/pp.110.170415
[63] Zeng Q N, Chen J G, Ellis B E. AtMPK4 is required for male-specific meiotic cytokinesis in Arabidopsis[J]. The Plant Journal, 2011, 67(5): 895−906. doi: 10.1111/j.1365-313X.2011.04642.x
[64] Liu B, de Storme N, Geelen D. Gibberellin induces diploid pollen formation by interfering with meiotic cytokinesis[J]. Plant Physiology, 2017, 173(1): 338−353.
[65] 朱之悌. 毛白杨遗传改良[M]. 北京: 中国林业出版社, 2006. Zhu Z T. Genetic improvement of Populus tomentosa[M]. Beijing: China Forestry Publishing House, 2006.
[66] 康向阳, 王君. 杨树多倍体诱导技术研究[M]. 北京: 科学出版社, 2010. Kang X Y, Wang J. Techniques of ploidy induction in Populus spp.[M]. Beijing: Science Press, 2010.
[67] Zhou Q, Wu J, Sang Y R, et al. Effects of colchicine on Populus canescens ectexine structure and 2n pollen production[J/OL]. Frontiers in Plant Science, 2020[2020−03−17]. https://doi.org/10.3389/fpls.2020.00295.
[68] Yang J, Yao P Q, Li Y, et al. Induction of 2n pollen with colchicine during microsporogenesis in Eucalyptus[J]. Euphytica, 2016, 210(1): 69−78. doi: 10.1007/s10681-016-1699-x
[69] Yao P Q, Li G H, Long Q Y, et al. Microsporogenesis and induction of unreduced pollen with high temperature in rubber tree clone RRIM 600[J/OL]. Forests, 2017[2017−07−13]. https://doi.org/10.3390/f8050152.
[70] Pécrix Y, Géraldine R, Hélène F, et al. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.[J]. Journal of Experimental Botany, 2011, 62(10): 3587−3597. doi: 10.1093/jxb/err052
[71] 康向阳, 朱之悌, 林惠斌. 白杨不同倍性花粉的辐射敏感性及其应用[J]. 遗传学报, 2000, 27(1): 78−82. Kang X Y, Zhu Z T, Lin H B. Radiosensitivity of different ploidy pollen in poplar and its application[J]. Acta Genetica Sinica, 2000, 27(1): 78−82.
[72] Lu M, Zhang P D, Kang X Y. Induction of 2n female gametes in Populus adenopoda Maxim. by high temperature exposure during female gametophyte development[J]. Breeding Science, 2013, 63(1): 96−103. doi: 10.1270/jsbbs.63.96
[73] Li Y J, Tian M D, Zhang P D. Embryo sac chromosome doubling in Populus alba × P. glandulosa induced by high temperature exposure to produce triploids[J]. Breeding Science, 2017, 67(3): 233−238. doi: 10.1270/jsbbs.16193
[74] Delphine M, Sylvie J, Maud R, et al. Turning rice meiosis into mitosis[J]. Cell Research, 2016, 26(11): 1242−1254. doi: 10.1038/cr.2016.117
-
期刊类型引用(7)
1. 于秋莹,郭苗苗,许岢昕,刘建斌,王聪,郑健,张克中,张炎. 欧洲丁香品种‘Downfield’花序和花序轴愈伤组织诱导和悬浮培养. 东北林业大学学报. 2023(03): 47-53 . 百度学术
2. 胡家锋,代鲁鲁,戴瑜,姚芳,姜韬,谈家金. 常熟市枫香刺小蠹野外危害调查及防治效果评价. 天津农业科学. 2023(06): 56-61 . 百度学术
3. 韩娟,李亚鹏,田彦挺,郭琪,李云,孙宇涵,邓永平,牛东升,苏立琢,李秀宇,彭祚登. 刺槐离体叶片高效再生体系的优化. 林业科学. 2023(04): 68-78 . 百度学术
4. 胡家锋,谈家金,姚芳,戴瑜,姜韬,代鲁鲁. 6种药剂对枫香刺小蠹幼虫及成虫的室内毒力测定. 东北林业大学学报. 2023(11): 157-161 . 百度学术
5. 王玉娟,罗成凤,幸伟年,李进,占志勇,何小三. 中国枫香×北美枫香杂交子代生长表现及初步评价. 南方林业科学. 2022(06): 15-18 . 百度学术
6. 李亦轩,江帅菲,董明亮,齐帅征,张金凤,Lisheng Kong. 油松胚性愈伤组织成熟培养的影响因素. 东北林业大学学报. 2020(04): 20-23+49 . 百度学术
7. 高磊,王建国,王章训,李猷,鞠瑞亭. 危险性害虫枫香刺小蠹的形态特征及发生现状. 林业科学. 2020(03): 193-198 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 528
- HTML全文浏览量: 290
- PDF下载量: 111
- 被引次数: 10