Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China
-
摘要:目的
揭示喀斯特地区马尾松人工林枯落物养分化学计量特征及其对林分特征、地形因子和物种多样性的响应。
方法以西南典型喀斯特地区不同龄组(中龄林、近熟林、成过熟林)马尾松人工林为研究对象,通过野外调查和室内试验相结合的方法,分析马尾松人工林枯落物有机碳(OC)、全氮(TN)、全磷(TP)含量、化学计量特征和影响因子。
结果(1)研究区马尾松人工林枯落物OC、TN、TP含量平均值分别为346.92、11.22、0.21 g/kg,枯落物OC、TN、TP的化学计量比C/N、C/P、N/P平均值分别为31.31、4 296.96、148.73;(2)马尾松人工林枯落物OC、TN含量和C/N在不同龄组间无显著差异(p > 0.05),TP含量随着林龄的增加呈先增加后降低的趋势(p < 0.05),中龄林枯落物C/P、N/P均显著高于近熟林和成过熟林(p < 0.05);(3)枯落物养分TN与TP之间存在极显著的正相关线性关系(p < 0.001),枯落物C/N与OC和TN含量均存在显著的线性关系,而N/P和C/P与TP含量均存在极显著的幂函数关系;(4)影响枯落物TP的因子是灌木层和乔木层优势度指数,影响枯落物N/P和C/P的因子包括灌木层优势度指数、丰富度指数、均匀度指数和林分密度。
结论西南喀斯特地区不同龄组间马尾松人工林枯落物TP含量、C/P和N/P具有显著差异,而乔木和灌木多样性是影响人工林枯落物碳氮磷及其化学计量比的主要因素。
Abstract:ObjectiveIn this study, the stoichiometric characteristics of litter and its response to stand characteristics, topographic factors and species diversity will be revealed in Pinus massoniana plantations in karst areas.
MethodMiddle-aged forest, near mature forest and over mature forest of P. massoniana plantation were used as research objects, organic carbon (OC), total nitrogen (TN), total phosphorus (TP), the stoichiometric characteristics and influencing factors were analyzed through the combination of field investigation and laboratory test.
Result(1) The average contents of OC, TN and TP in the litter of P. massoniana plantation in the study area were 346.92, 11.22 and 0.21 g/kg, respectively, and the average values of C/N, C/P and N/P were 31.31, 4 296.96 and 148.73, respectively. (2) There was no significant difference in OC, TN content and C/N of litter among different age groups (p > 0.05), and the content of TP increased first and then decreased with the growth of forest age (p < 0.05). The C/P and N/P of middle-aged forest were significantly higher than those of near mature forest and over mature forest (p < 0.05). (3) Significant positive and linear correlations were found between TN and TP (p < 0.001), significant linear correlations were observed between C/N and OC content, C/N and TN content, but significant power relationship was observed between C/P and TP content, N/P and TP content. (4) The TP content of litter was mainly affected by the Simpson index of shrubs and arborous layers, N/P and C/P were mainly influenced by Simpson index, Margalef index, Pielou index of shrubs and the density of plantation.
ConclusionThe TP content, C/P and N/P of the litter are significantly different among varied age groups of P. massoniana plantations, and the diversity of arborous and shrubs is the main factor affecting OC, TN, TP and their stoichiometric ratio of the litter of P. massoniana plantation in the karst area of southwestern China.
-
Keywords:
- karst /
- Pinus massoniana plantation /
- litter /
- chemometrics /
- influencing factor
-
-
图 1 不同龄组马尾松人工林枯落物OC、TN、TP含量及化学计量
M. 中龄林;N. 近熟林;O.成过熟林;不同小写字母表示枯落物各指标在不同龄组间差异显著(p < 0.05)。M, middle-aged forest; N, near mature forest, O, over mature forest. Different small letters indicate that there are significant differences at indexes of litter among different age groups (p < 0.05).
Figure 1. Contents and stoichiometry of OC, TN and TP in the litter of Pinus massoniana plantation in different age groups
表 1 样地概况
Table 1 Sample plot overview
龄组
Age group样地号
Sample
plot No.林龄/a
Stand
age/year海拔
Altitude/m坡向
Aspect坡位
Slope position坡度
Slope/(°)郁闭度
Canopy
density胸径
DBH/cm树高
Tree
height/m密度/(株·hm−2)
Density/(tree·ha−1)中龄林
Middle-aged forest1 20 883 西 West 上 Upper 23 0.90 11.374 9.075 2 729.86 2 20 883 西 West 上 Upper 23 0.90 11.374 9.075 2 729.86 3 14 779 西北 Northwest 中 Middle 18 0.70 14.226 16.454 1455.00 近熟林
Near mature forest4 26 786 西 West 中 Middle 12 0.85 11.810 11.390 1 620.00 5 26 770 西 West 中 Middle 5 0.60 16.040 13.550 1 290.00 6 27 678 南 South 上 Upper 7 0.75 14.950 12.710 1 275.00 7 26 797 西 West 中上 Upper-middle 16 0.56 14.810 14.540 1 619.92 8 25 897 西南 Southwest 中 Middle 45 0.60 18.080 14.340 1 499.93 成过熟林
Over mature forest9 31 912 南 South 上 Upper 15 0.75 15.800 16.990 1 799.91 10 32 894 南 South 上 Upper 13 0.67 16.530 19.870 1 589.92 11 70 960 南 South 中 Middle 11 0.70 25.720 16.630 719.96 表 2 马尾松人工林枯落物OC、TP、TN含量及其化学计量比
Table 2 OC, TP and TN contents and stoichiometric ratio of litter in Pinus massoniana plantation
参数
Parameter有机碳含量
Organic carbon
content (OC)/(g·kg−1)全氮含量
Total nitrogen content
(TN)/(g·kg−1)全磷含量
Total phosphorus content
(TP)/(g·kg−1)C/N C/P N/P 平均值 Mean value 346.92 11.22 0.21 31.31 4 296.96 148.73 标准误 Standard error 10.53 0.24 0.02 1.02 877.34 35.25 最小值 Min. value 168.10 8.26 0.01 16.20 439.74 22.20 最大值 Max. value 513.84 15.11 0.45 48.87 35 435.10 1 501.77 变异系数 Variation coefficient/% 21.46 14.99 68.01 22.97 144.38 167.57 表 3 枯落物OC、TN、TP含量及其与化学计量比间的最优拟合关系
Table 3 Optimal fitting relationship between OC, TN, TP content and stoichiometric ratio in litter
因变量
Dependent variable(y)自变量 Independent variable(x) OC TN TP TN y= 0.006x + 9.09(R2 = 0.07,p > 0.05) TP y = −0.000 3x + 0.31(R2 = 0.02,p > 0.05) y = 0.076x + 4.85(R2 = 0.62,p < 0.001) C/N y = 0.076x + 4.85(R2 = 0.62,p < 0.001) y = −1.55x + 48.69(R2 = 0.14,p < 0.05) y = −4.92x + 32.34(R2 = 0.01,p > 0.05) N/P y = −0.17x + 207.76(R2 = 0.003,p > 0.05) y = 40.98x − 310.94(R2 = 0.077,p > 0.05) y = 10.95x−1.01(R2 = 0.98,p < 0.001) C/P y = 4.53x + 2 724.3(R2 = 0.003,p > 0.05) y = 890.99x – 5 698.1(R2 = 0.06,p > 0.05) y = 339.13x−0.99(R2 = 0.94,p < 0.001) 表 4 林分特征、地形和物种多样性对OC、TN、TP及其化学计量特征的影响
Table 4 Effects of stand characteristics, topography and species diversity on OC, TN, TP and their stoichiometric characteristics
因变量
Independent variables自变量和常量
Dependent variables and constantB SE 标准系数
Standard coefficientt p R2 OC 常量 Constant 367.70 70.77 5.20 < 0.001 0.33 D乔木层 95.33 26.52 0.57 3.60 < 0.001 D灌木层 −56.30 20.30 −0.47 −2.77 < 0.01 坡度 Slope −3.05 0.90 −0.44 −3.38 < 0.001 密度 Density 0.06 0.02 0.42 2.69 < 0.01 TN 常量 Constant 1.38 0.10 14.25 < 0.001 0.13 D灌木层 −0.10 0.04 −0.36 −2.69 < 0.01 TP 常量 Constant 0.69 0.07 9.41 < 0.001 0.49 C灌木层 −1.90 0.39 −0.55 −4.88 < 0.001 C乔木层 −0.21 0.09 −0.28 −2.46 < 0.05 N/P 常量 Constant −439.03 115.71 −3.79 < 0.001 0.49 C灌木层 681.20 168.02 1.14 4.05 < 0.001 D灌木层 37.06 9.67 0.91 3.83 < 0.001 J′灌木层 222.44 77.04 0.70 2.89 < 0.01 密度 Density 0.04 0.01 0.69 5.13 < 0.001 C/P 常量 Constant −101 674.87 27 675.36 −3.67 < 0.001 0.54 C灌木层 164 567.55 40 188.93 1.08 4.10 < 0.001 D灌木层 8 785.66 2 313.12 0.85 3.80 < 0.001 密度 Density 9.49 1.68 0.72 5.67 < 0.001 J′灌木层 48 226.05 18 426.41 0.60 2.62 < 0.05 注:C. Simpson优势度指数;D. Margalef丰富度指数;J′. Pielou均匀度指数。Notes: C, Simpson dominance index; D, Margalef richness index; J′, Pielou evenness index. -
[1] 王岩松, 马保明, 高海平, 等. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 2020, 42(8): 81−93. Wang Y S, Ma B M, Gao H P, et al. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81−93.
[2] Sterner R W. Ecological stoichiometry: overview[J]. Encyclopedia of Ecology, 2008, 16: 1101−1116.
[3] 陈云, 李玉强, 王旭洋, 等. 中国典型生态脆弱区生态化学计量学研究进展[J]. 生态学报, 2021, 41(10): 4213−4225. Chen Y, Li Y Q, Wang X Y, et al. Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China[J]. Acta Ecologica Sinica, 2021, 41(10): 4213−4225.
[4] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
[5] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741−748. Wang K, Zhao C J, Zhang R S, et al. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus in Pinus sylvestris plantation with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
[6] 王丽娜, 吴俊文, 董琼, 等. 抚育间伐对云南松非结构性碳和化学计量特征的影响[J]. 北京林业大学学报, 2021, 43(8): 70−82. Wang L N, Wu J W, Dong Q, et al. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70−82.
[7] 喻阳华, 钟欣平, 李红. 黔中石漠化区不同海拔顶坛花椒人工林生态化学计量特征[J]. 生态学报, 2019, 39(15): 5536−5545. Yu Y H, Zhong X P, Li H. Ecological stoichiometry of Zanthoxylum planispinum var. dintanensis plantation at different altitudes in rocky desertification area of central Guizhou[J]. Acta Ecologica Sinica, 2019, 39(15): 5536−5545.
[8] 李喜霞, 杜天雨, 魏亚伟, 等. 阔叶红松林生态化学计量学特征及其对纬度梯度的响应[J]. 生态学报, 2018, 38(11): 3952−3960. Li X X, Du T Y, Wei Y W, et al. Characteristics of ecological stoichiometry in broad-leaved and Korean pine mixed forest and its response to latitude gradient in Northeast China[J]. Acta Ecologica Sinica, 2018, 38(11): 3952−3960.
[9] 何高迅, 王越, 彭淑娴, 等. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学报, 2020, 40(13): 4425−4435. He G X, Wang Y, Peng S X, et al. Soil carbon, nitrogen and phosphorus storage and ecostoichiometric characteristics under different vegetation restoration in degraded mountainous areas of central Yunnan[J]. Acta Ecologica Sinica, 2020, 40(13): 4425−4435.
[10] Zhang G, Ping Z, Peng S, et al. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China[J]. Scientific Reports, 2017, 7: 11754.
[11] 范夫静, 黄国勤, 宋同清, 等. 西南峡谷型喀斯特坡地土壤微生物量C、N、P空间变异特征[J]. 生态学报, 2014, 34(12): 3293−3301. Fan F J, Huang G Q, Song T Q, et al. Spatial heterogeneity of soil microbial biomass carbon, nitrogen, and phosphorus in sloping field in a groge karst region, Southwest China[J]. Journal of Ecology, 2014, 34(12): 3293−3301.
[12] 蔡磊, 杨健, 王六平, 等. 贵州省主要人工林近自然经营技术研究[J]. 林业实用技术, 2013(9): 62−64. Cai L, Yang J, Wang L P, et al. Study on near natural management technology of main plantation in Guizhou Province[J]. Practical Forestry Technology, 2013(9): 62−64.
[13] 周祎, 丁贵杰. 贵州省马尾松人工林生物量及其分布格局研究[J]. 贵州林业科技, 2016, 44(2): 1−7. Zhou Y, Ding G J. Biomass and distribution pattern of Pinus massoniana plantation in Guizhou Province[J]. Guizhou Forestry Science and Technology, 2016, 44(2): 1−7.
[14] 丁贵杰. 贵州马尾松人工建筑材林合理采伐年龄研究[J]. 林业科学, 1998, 34(3): 42−48. Ding G J. Study on reasonable cutting age of Pinus massoniana plantation in Guizhou[J]. Forestry Science, 1998, 34(3): 42−48.
[15] 黄家荣, 温佐吾. 贵州马尾松人工林密度和结构控制初步研究[J]. 贵州林业科技, 1999, 27(2): 17−21. Huang J R, Wen Z W. Preliminary study on density and structure control of Pinus massoniana plantation in Guizhou[J]. Guizhou Forestry Science and Technology, 1999, 27(2): 17−21.
[16] 李臻, 梁月明, 潘复静, 等. 不同林龄马尾松人工林土壤酶活性及其生态化学计量特征[J]. 桂林理工大学学报, 2021, 41(1): 210−217. doi: 10.3969/j.issn.1674-9057.2021.01.026 Li Z, Liang Y M, Pan F J, et al. Soil enzyme activities and ecostoichiometric characteristics of masson pine plantations of different ages[J]. Journal of Guilin University of Technology, 2021, 41(1): 210−217. doi: 10.3969/j.issn.1674-9057.2021.01.026
[17] 梁月明, 潘复静, 马姜明, 等. 不同林龄和密度马尾松人工林针叶和根系的生态化学计量特征[J]. 广西植物, 2021, 41(9): 1497−1508. Liang Y M, Pan F J, Ma J M, et al. Ecological stoichiometry characteristics of needle leaves and roots in different age and density stands of Pinus massoniana plantations[J]. Guangxi Flora, 2021, 41(9): 1497−1508.
[18] 李茜, 杨胜天, 盛浩然, 等. 典型喀斯特地区马尾松纯林及马尾松−阔叶树混交林营养元素生物循环研究: 以贵州龙里为例[J]. 中国岩溶, 2008, 27(4): 321−328. doi: 10.3969/j.issn.1001-4810.2008.04.005 Li Q, Yang S T, Sheng H R, et al. Biological cycling of nutrients in Pinus forest and Pinus-hardwood mixed forest in karst area: a case study in Longli, Guizhou[J]. China Karst, 2008, 27(4): 321−328. doi: 10.3969/j.issn.1001-4810.2008.04.005
[19] 黄雍容, 高伟, 黄石德, 等. 福建三种常绿阔叶林碳氮磷生态化学计量特征[J]. 生态学报, 2021, 41(5): 1991−2000. Huang Y R, Gao W, Huang S D, et al. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in three evergreen broad-leaved forests in Fujian[J]. Acta Ecologica Sinica, 2021, 41(5): 1991−2000.
[20] 赵其国, 王明珠, 何园球. 我国热带亚热带森林凋落物及其对土壤的影响[J]. 土壤, 1991, 23(1): 8−15. Zhao Q G, Wang M Z, He Y Q. Litter from tropical and subtropical forests in China and its effects on soil[J]. Soil, 1991, 23(1): 8−15.
[21] 曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特森林植物−凋落物−土壤生态化学计量特征[J]. 植物生态学报, 2015, 39(7): 682−693. Zeng Z X, Wang K L, Liu X L, et al. Ecostoichiometric characteristics of plant litter soil in karst forest in Northwest Guangxi[J]. Journal of Plant Ecology, 2015, 39(7): 682−693.
[22] 薛飞, 龙翠玲, 廖全兰, 等. 喀斯特森林凋落物对土壤养分及土壤酶的影响[J]. 森林与环境学报, 2020, 40(5): 449−458. Xue F, Long C L, Liao Q L, et al. Effects of karst forest litter on soil nutrients and soil enzymes[J]. Journal of Forest and Environment, 2020, 40(5): 449−458.
[23] 喻林华, 方晰, 项文化, 等. 亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J]. 林业科学, 2016, 52(10): 10−21. doi: 10.11707/j.1001-7488.20161002 Yu L H, Fang X, Xiang W H, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus in litter layer and soil layer of four subtropical forest types[J]. Forestry Science, 2016, 52(10): 10−21. doi: 10.11707/j.1001-7488.20161002
[24] Kang H Z, Xin Z J, Berg B, et al. Global pattern of leaf litter nitrogen and phosphorus in woody plants[J]. Annals of Forest Science, 2010, 67(8): 811. doi: 10.1051/forest/2010047
[25] Meisner A, Boer W D, Cornelissen J. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients[J]. PLoS ONE, 2012, 7(2): e31596.
[26] 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18): 5484−5492. Zeng D P, Jiang L L, Zeng C S, et al. Research progress on characteristics and application of ecological chemometrics[J]. Acta Ecologica Sinica, 2013, 33(18): 5484−5492.
[27] Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003, 6: 936−943. doi: 10.1046/j.1461-0248.2003.00518.x
[28] 俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物−凋落物−土壤−微生物生态化学计量特征[J]. 生态学报, 2022, 42(3): 1−12. Yu Y F, He T G, Zeng C C, et al. Carbon, doping and tumor stoichiometry in plants, litter, soil, and microbes in degraded vegetation communities in a karst area of suspected China[J]. Acta Ecologica Sinica, 2022, 42(3): 1−12.
[29] 杜满义, 范少辉, 刘广路, 等. 中国毛竹林碳氮磷生态化学计量特征[J]. 植物生态学报, 2016, 40(8): 15. Du M Y, Fan S H, Liu G L, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China[J]. Chinese Journal of Plant Ecology, 2016, 40(8): 15.
[30] 斯贵才, 王建, 夏燕青. 念青唐古拉山沼泽土壤微生物群落和酶活性随海拔变化特征[J]. 湿地科学, 2014, 12(3): 340−348. Si G C, Wang J, Xia Y Q. Variation characteristics of soil microbial community and enzyme activity with altitude in Nianqing Tanggula Mountain[J]. Wetland Science, 2014, 12(3): 340−348.
[31] 何斌, 李青, 冯图, 等. 黔西北不同林龄马尾松人工林针叶−凋落物−土壤C、N、P化学计量特征[J]. 生态环境学报, 2019, 28(11): 2149−2157. He B, Li Q, Feng T, et al. Stoichiometric characteristics of C, N and P in coniferous litter soil of Pinus massoniana plantation of different forest ages in Northwest Guizhou[J]. Journal of Ecological Environment, 2019, 28(11): 2149−2157.
[32] 李雪峰, 韩士杰, 胡艳玲, 等. 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J]. 应用生态学报, 2008, 19(2): 245−251. Li X F, Han S J, Hu Y L, et al. Relationship between organic matter decomposition and carbon, nitrogen and phosphorus release in leaf litter of secondary coniferous and broad-leaved mixed forest in Changbai Mountain[J]. Journal of Applied Ecology, 2008, 19(2): 245−251.
[33] Saswati M, Vadakepuram C J. Influence of leaf litter types on microbial functions and nutrient status of soil: ecological suitability of forest trees for afforestation in tropical laterite wastelands[J]. Soil Biology and Biochemistry, 2010, 42(12): 2306−2315. doi: 10.1016/j.soilbio.2010.09.007
[34] 王飞. 青藏高原高寒草甸物种丰富度和均匀度对凋落物分解以及氮、磷释放的影响[D]. 兰州: 兰州大学, 2013. Wang F. Effects of species richness and evenness on litter decomposition and nitrogen and phosphorus release in alpine meadow of Qinghai Tibet Plateau [D]. Lanzhou: Lanzhou University, 2013.
[35] 陈金磊, 张仕吉, 李雷达, 等. 亚热带不同植被恢复阶段林地凋落物层现存量和养分特征[J]. 生态学报, 2020, 40(12): 4073−4086. Chen J L, Zhang S J, Li L D, et al. Stock and nutrient characteristics of litter layer at different vegetation restoration stages in subtropical region, China[J]. Acta Ecologica Sinica, 2020, 40(12): 4073−4086.
[36] Kawakami E, Katayama A, Hishi T. Effects of declining understory vegetation on leaf litter decomposition in a Japanese cool-temperate forest[J]. Journal of Forest Research, 2020(4): 1−9.
[37] 赵成姣. 不同密度沙地樟子松人工林生态化学计量特征[D]. 阜新: 辽宁工程技术大学, 2019. Zhao C J. Ecostoichiometric characteristics of Pinus sylvestris plantation in sandy land with different density [D]. Fuxin: Liaoning University of Engineering and Technology, 2019.
-
期刊类型引用(1)
1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术
其他类型引用(3)