高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SADIE和SPPA的柳蝙蛾小尺度空间格局分析

景天忠 陆华阳 刘丽萍 代丽敏 范淼 蔡小林 白丽 李响 李曼毓 文艺 韩勍

景天忠, 陆华阳, 刘丽萍, 代丽敏, 范淼, 蔡小林, 白丽, 李响, 李曼毓, 文艺, 韩勍. 基于SADIE和SPPA的柳蝙蛾小尺度空间格局分析[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220053
引用本文: 景天忠, 陆华阳, 刘丽萍, 代丽敏, 范淼, 蔡小林, 白丽, 李响, 李曼毓, 文艺, 韩勍. 基于SADIE和SPPA的柳蝙蛾小尺度空间格局分析[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220053
Jing Tianzhong, Lu Huayang, Liu Liping, Dai Limin, Fan Miao, Cai Xiaolin, Bai Li, Li Xiang, Li Manyu, Wen Yi, Han Qing. Analysis of small-scale spatial pattern of Endoclita excrescens based on SADIE and SPPA[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220053
Citation: Jing Tianzhong, Lu Huayang, Liu Liping, Dai Limin, Fan Miao, Cai Xiaolin, Bai Li, Li Xiang, Li Manyu, Wen Yi, Han Qing. Analysis of small-scale spatial pattern of Endoclita excrescens based on SADIE and SPPA[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220053

基于SADIE和SPPA的柳蝙蛾小尺度空间格局分析

doi: 10.12171/j.1000-1522.20220053
基金项目: 国家自然科学基金项目(31370591),黑龙江省博士后科研启动金项目(LBH-Q14012),中央高校基本科研业务费项目(2572020DR09)。
详细信息
    作者简介:

    景天忠,博士,教授。 主要研究方向:森林昆虫学。Email:Jingtianzhong@163.com 地址:150040黑龙江省哈尔滨市和兴路26号东北林业大学林学院

  • 中图分类号: S763.3

Analysis of small-scale spatial pattern of Endoclita excrescens based on SADIE and SPPA

  • 摘要:   目的  柳蝙蛾是一种多食性的森林害虫,在我国东北地区对水曲柳危害严重。在小尺度上研究柳蝙蛾的空间格局,可为精准管理提供基础信息。  方法  本文将柳蝙蛾蛀孔数及其寄主树木水曲柳胸径作为标记的空间点过程的标记,使用基于距离指数的空间分析(SADIE)来分析标记的空间格局和空间关联性。使用L函数来检验水曲柳分布的空间随机性,使用标记条件均值函数来度量标记与点之间的独立性,使用标记变异函数和Stoyan标记相关函数来度量标记的空间相关性。每个样方划分成2种不同密度的小样方来利用SADIE研究水曲柳分布与蛀孔的空间关联性。  结果  两个样地中柳蝙蛾蛀孔均呈显著的聚集分布。样地G1的斑块和间隙分别处于样地的两端,而样地G2的斑块和间隙混杂在一起。样地G1中,在4.0 ~ 4.8 m和14.5 ~ 16.0 m 距离上存在显著的蛀孔数少的树与其他蛀孔少的树互为邻居的格局。样地G2中,在8.5 ~ 9.0 m距离上存在上述格局。标记变异函数分析表明,两个样地中的空间自相关性均不显著。水曲柳的空间格局及其胸径的空间格局均与柳蝙蛾蛀孔的空间格局成强烈的关联性,表明这两个因素均影响柳蝙蛾蛀孔空间格局的形成。SADIE分析及L函数分析均表明水曲柳的空间格局为聚集性。标记条件均值函数分析表明,标记(蛀孔数)不依赖于点(水曲柳位置)。  结论  柳蝙蛾蛀孔在水曲柳林中的空间分布呈聚集性。水曲柳的空间格局及其胸径的空间格局均影响柳蝙蛾蛀孔的空间格局。

     

  • 图  1  研究样地水曲柳胸径及每株树上虫孔数分布图

    A. 样地G1水曲柳胸径 DBH of ash tree in sample plot G1;B. 样地G1虫孔数 Count of bored holes in sample plot G1;C. 样地G2水曲柳胸径 DBH of ash tree in sample plot G2;D. 样地G2虫孔数 Count of bored holes in sample plot G2

    Figure  1.  DBH of host ash tree and counts of bored holes

    图  2  研究样地划分小样方方案

    A. 样地1,方案P1 Plan P1 for sample plot G1;B. 样地1,方案P2 Plan P2 for sample plot G1;C. 样地2,方案P1 Plan P1 for sample plot G2;D. 样地2,方案P2 Plan P2 for sample plot G2

    Figure  2.  Plans for quadrating

    图  3  水曲柳蛀孔数及胸径分布的红蓝图

    A.样地G1,蛀孔 Bored holes of sample plot G1;B.样地G1,胸径 DBH of sample plot G1;C.样地G2,蛀孔 Bored holes of sample plot G2;D.样地G2,胸径 DBH of sample plot G2

    Figure  3.  Red-blue plots of bored holes and DBH of ash

    图  4  水曲柳空间分布随机性检验

    A. 样地G1 Sample plot G1;B. 样地G2 Sample plot G2。包迹线的宽度为2 × dcrit,obs和theo分别代表观测值和期望值,lo = 期望值 − dcrit,hi = 期望值 + dcrit。The simultaneous critical envelopes have constant width 2 × dcrit; obs and theo represent observed values and expected values, respectively; lo = expected − dcrit and hi = expected + dcrit.

    Figure  4.  Spatial randomness test for distribution of ash trees

    图  5  柳蝙蛾蛀孔的标记条件均值函数

    obs、theo、lo、hi见图4Fig.4obs, theo, lo, hi are showed in Fig. 4.

    Figure  5.  Conditional mean of the mark functions of bore holes of the moth

    图  6  柳蝙蛾蛀孔的标记变异函数

    obs、theo、lo、hi见图4。See Fig.4 for obs, theo, lo, hi.

    Figure  6.  Mark variograms of of bore holes of the moth

    图  7  柳蝙蛾蛀孔的标记相关函数

    obs、theo、lo、hi见图4。The unit for r is meter. See Fig.4 for obs, theo, lo, hi。

    Figure  7.  Mark correlation functions of bore holes of the moth

    表  1  基于点数据的空间聚集指数和空间关联指数

    Table  1.   Spatial aggregation indices and spatial associations based on point-referenced data

    样地 Sample plot蛀孔 Bored hole 胸径 DBH空间关联指数
    Spatial association index (X)
    修改的t检验 Modified t test
    IaPIaPFdf1, df2P
    G1 2.897 2 < 2.22×10−16 2.251 4 < 2.22×10−16 0.685 4 195.025 1 1, 220.121 7 0
    G2 2.106 0 < 2.22×10−16 3.059 1 < 2.22×10−16 0.453 3 28.612 9 1, 110.612 5 0
    注:Ia.聚集指数。下同。Note: Ia, index of aggregation. The same below.
    下载: 导出CSV

    表  2  基于小样方数据的空间聚集指数和空间关联指数

    Table  2.   Spatial aggregation indices and spatial associations based on quadrat-referenced data

    样地 Sample plot小样方划分方案
    Quadrating plan
    蛀孔 Bored hole 寄主树 Host tree空间关联指数
    Spatial association index
    修改的t检验 Modified t test
    IaPIaPFdf1, df2P
    G1 P1 1.501 0 0.01 1.430 0 0.03 0.735 4 31.005 6 1, 26.324 5 0
    P2 1.704 3 0.01 1.612 9 < 2.22×10−16 0.725 0 72.074 3 1, 65.041 2 0
    G2 P1 1.398 4 0.08 1.346 0 0.07 0.782 9 34.416 0 1, 21.726 7 0
    P2 1.791 5 0.01 1.933 9 < 2.22×10−16 0.821 2 61.212 3 1, 29.563 3 0
    下载: 导出CSV
  • [1] Law R, Illian J B, Burslem D F R P, et al. Ecological information from spatial patterns of plants: insights from point process theory[J]. Journal of Ecology, 2009, 97: 616−628. doi: 10.1111/j.1365-2745.2009.01510.x
    [2] Brown C, Illian J B, Burslem D F R P. Success of spatial statistics in determining underlying process in simulated plant communities[J]. Journal of Ecology, 2016, 104: 160−172. doi: 10.1111/1365-2745.12493
    [3] Shrestha G, Rijal J P, Reddy G V. Characterization of the spatial distribution of alfalfa weevil, Hypera postica, and its natural enemies, using geospatial models[J]. Pest Management Science, 2021, 77(2): 906−918. doi: 10.1002/ps.6100
    [4] 迟德富, 孙凡, 甄志先, 等. 柳蝙蛾生物学特性及发生规律[J]. 应用生态学报, 2000, 11(5): 757−762. doi: 10.3321/j.issn:1001-9332.2000.05.027

    Chi D F, Sun F, Zhen Z X, et al. Biological characteristics and occurrence regularity of Phassus excrescens Bulter[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 757−762. doi: 10.3321/j.issn:1001-9332.2000.05.027
    [5] Matsuzawa H, Toyomura K, Kohama Y. On the food plants of the larva of the swift moth, Phassus excrescens Butler[J]. Technical Bulletin of Faculty of Agriculture, Kagawa University, 1963, 15(1): 1−7.
    [6] Hyun-Chul K, Wi-Young L, Jin-Kie Y, et al. Aboveground biomass and adaptability of four-year-old poplar in a Riparian area[J]. Journal of Agriculture & Life Science, 2015, 49(1): 95−102.
    [7] Nielsen E S, Robinson G S, Wagner D L. Ghost-moths of the world: a global inventory and bibliography of the Exoporia (Mnesarchaeoidea and Hepialoidea)(Lepidoptera)[J]. Journal of Natural History, 2000, 34(6): 823−878. doi: 10.1080/002229300299282
    [8] Ochi K. Damage-analysis of Alnus hirsuta Turcz. in a young stand infested with Endoclyta excrescens Bulter (Lepidoptera, Hepialidae)[J]. Journal of the Japanese Forest Society, 1971, 53(6): 181−184.
    [9] 萧刚柔, 李镇宇. 中国森林昆虫[M]. 3版. 北京: 中国林业出版社, 2020.

    Xiao G R, Li Z Y. Chinese forest insect [M]. 3rd ed. Beijing: China Forestry Publishing House, 2020.
    [10] 甄志先, 迟德富, 张晓燕, 等. 柳蝙蛾的研究进展[J]. 河北林果研究, 2001, 16(2): 178−182. doi: 10.3969/j.issn.1007-4961.2001.02.022

    Zhen Z X, Chi D F, Zhang X Y, et al. Advances on the research of the swift moth[J]. Hebei Journal of Forestry and Orchard Research, 2001, 16(2): 178−182. doi: 10.3969/j.issn.1007-4961.2001.02.022
    [11] 甄志先, 迟德富, 孙凡, 等. 柳蝙蛾危害对水曲柳木材性质的影响[J]. 东北林业大学学报, 2006, 34(3): 13−15. doi: 10.3969/j.issn.1000-5382.2006.03.006

    Zhen Z X, Chi D F, Sun F, et al. Wood properties of Fraxinus mandshurica damaged by Phassus excrenscens[J]. Journal of Northeast Forestry University, 2006, 34(3): 13−15. doi: 10.3969/j.issn.1000-5382.2006.03.006
    [12] 来茂生, 赵琦, 庄敬华. 柳蝙蛾危害北五味子的防治[J]. 中药材, 1987(4): 56.

    Lai M S, Zhao Q, Zhuang J H. Control of Phassus excrenscens damaging Schisandra chinensis[J]. Chinese Medicine, 1987(4): 56.
    [13] Huang H. Chapter 7-cultivation and management [M]//Huang H. Kiwifruit. San Diego: Academic Press, 2016.
    [14] 李磊, 尹显慧, 龙友华, 等. 修文猕猴桃准透翅蛾、柳蝙蛾发生情况与防治药剂筛选[J]. 中国南方果树, 2019, 48(1): 78−82.

    Li L, Yin X H, Long Y H, et al. Chemicals screening for control of Paranthrene actinidiae and Phassus excrenscens in Xiuwen[J]. South China Fruit, 2019, 48(1): 78−82.
    [15] Henne D C, Thinakaran J. Spatially explicit changes in potato psyllid (Hemiptera: Triozidae) populations in three south Texas potato fields[J]. Journal of Economic Entomology, 2019, 113(2): 988−1000.
    [16] Winder L, Alexander C, Griffiths G, et al. Twenty years and counting with SADIE: spatial analysis by distance indices software and review of its adoption and use[J]. Rethinking Ecology, 2019, 4: 1−16. doi: 10.3897/rethinkingecology.4.30890
    [17] Perry J N. Spatial analysis by distance indices[J]. Journal of Animal Ecology, 1995, 64(3): 303−314. doi: 10.2307/5892
    [18] Kennington J L, Helgason R V. Algorithms for network programming[M]. New York: Wiley, 1980.
    [19] Perry J N, Winder L, Holland J M, et al. Red-blue plots for detecting clusters in count data[J]. Ecology Letters, 1999, 2(2): 106−113. doi: 10.1046/j.1461-0248.1999.22057.x
    [20] Perry J N, Dixon P M. A new method to measure spatial association for ecological count data[J]. Ecoscience, 2002, 9(2): 133−141. doi: 10.1080/11956860.2002.11682699
    [21] Dutilleul P, Clifford P, Richardson S, et al. Modifying the t test for assessing the correlation between two spatial processes[J]. Biometrics, 1993, 49(1): 305−314. doi: 10.2307/2532625
    [22] Vallejos R, Osorio F, Bevilacqua M. Spatial relationships between two georeferenced variables: with applications in R[M]. New York: Springer, 2020.
    [23] Wiegand T A, Moloney K. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104(2): 209−229. doi: 10.1111/j.0030-1299.2004.12497.x
    [24] Schlather M, Ribeiro P J, Diggle P J. Detecting dependence between marks and locations of marked point processes[J]. Journal of the Royal Statistical Society Series B (Statistical Methodology), 2004, 66(1): 79−93. doi: 10.1046/j.1369-7412.2003.05343.x
    [25] Wälder O, Stoyan D. On variograms in point process statistics[J]. Biometrical Journal, 1996, 38(8): 895−905. doi: 10.1002/bimj.4710380802
    [26] Stoyan D, Stoyan H. Fractals, random shapes and point fields: methods of geometrical statistics[M]. Chichester: John Wiley and Sons, 1994.
    [27] Baddeley R A, Rubak E, Turner R. Spatial point patterns: methodology and applications with R [M]. Boca Raton: CRC Press, 2016.
    [28] 李海霞, 郭树平, 周志军, 等. 柳蝙蛾幼虫空间分布型及抽样技术的研究[J]. 西北林学院学报, 2009, 24(4): 140−142.

    Li H X, Guo S P, Zhou Z J, et al. Spatial distribution pattern and sampling method of the larvae of Phassus excrescens[J]. Journal of Northwest Forestry University, 2009, 24(4): 140−142.
    [29] Saitoo A. Damage-analysis of Alnus inokumae Kusaka et Murai in the young stands infested with Phassus excrescens Bulter[J]. Journal of the Japanese Forestry Society, 1968, 50(10): 312−314.
    [30] Sciarretta A, Trematerra P. Geostatistical tools for the study of insect spatial distribution: practical implications in the integrated management of orchard and vineyard pests[J]. Plant Protection Science, 2015, 50(2): 97−110.
    [31] Reay-Jones F P F, Greene J K, Bauer P J. Spatial distributions of thrips (Thysanoptera: Thripidae) in cotton[J]. Journal of Insect Science, 2019, 19(6): 1−12. doi: 10.1093/jisesa/iez102
    [32] Tobi D, Grehan J, Parker B. Review of the ecological and economic significance of forest Hepialidae (Insecta: Lepidoptera)[J]. Forest Ecology and Management, 1993, 56(1−4): 1−12. doi: 10.1016/0378-1127(93)90099-9
    [33] Utsumi S, Ohgushi T. Plant regrowth response to a stem-boring insect: a swift moth-willow system[J]. Population Ecology, 2007, 49: 241−248. doi: 10.1007/s10144-007-0042-8
    [34] Fred M S, Brommer J E. Olfaction and vision in host plant location by Parnassius apollo larvae: consequences for survival and dynamics[J]. Animal Behaviour, 2010, 79(2): 313−320. doi: 10.1016/j.anbehav.2009.11.001
    [35] Sun F, Bao C, Jing T Z. Locating host plants via orientation to standing visual targets has dispersal benefits for the monophagous leaf beetle Ambrostoma quadriimpressum[J]. Entomologia Experimentalis et Applicata, 2016, 158(3): 229−235. doi: 10.1111/eea.12398
    [36] Balogh S L, Björklund N, Huber D P W, et al. Random and directed movement by warren root collar weevils (Coleoptera: Curculionidae), relative to size and distance of host lodgepole pine trees[J]. Journal of Insect Science, 2020, 20(4): 1−12. doi: 10.1093/jisesa/ieaa060
    [37] Nelson T D, Sweeney J D, Hillier N K. Do visual cues associated with larger diameter trees influence host selection by Tetropium fuscum (Coleoptera: Cerambycidae)?[J]. The Canadian Entomologist, 2017, 149(4): 487−490. doi: 10.4039/tce.2017.22
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  41
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-03-13
  • 录用日期:  2023-04-19
  • 网络出版日期:  2023-04-20

目录

    /

    返回文章
    返回