Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同

李连强, 杨会侠, 丁国泉, 李虹谕, 白荣芬, 王品

李连强, 杨会侠, 丁国泉, 李虹谕, 白荣芬, 王品. 辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同[J]. 北京林业大学学报, 2023, 45(9): 83-94. DOI: 10.12171/j.1000-1522.20220055
引用本文: 李连强, 杨会侠, 丁国泉, 李虹谕, 白荣芬, 王品. 辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同[J]. 北京林业大学学报, 2023, 45(9): 83-94. DOI: 10.12171/j.1000-1522.20220055
Li Lianqiang, Yang Huixia, Ding Guoquan, Li Hongyu, Bai Rongfen, Wang Pin. Material quality assessment and trade-off synergies of forest ecological service in Xianrendong National Nature Reserve, Liaoning Province of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(9): 83-94. DOI: 10.12171/j.1000-1522.20220055
Citation: Li Lianqiang, Yang Huixia, Ding Guoquan, Li Hongyu, Bai Rongfen, Wang Pin. Material quality assessment and trade-off synergies of forest ecological service in Xianrendong National Nature Reserve, Liaoning Province of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(9): 83-94. DOI: 10.12171/j.1000-1522.20220055

辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同

基金项目: 辽宁省农业绿色发展科技创新专项(2021HQ1915)。
详细信息
    作者简介:

    李连强,中级工程师。主要研究方向:森林生态学。Email:1164629835@qq.com 地址:118003 辽宁省丹东市元宝区金山镇新建街600号

    责任作者:

    杨会侠,正高级工程师 。主要研究方向:森林生态学。Email:yhx-s@163.com 地址:同上。

  • 中图分类号: S718.5

Material quality assessment and trade-off synergies of forest ecological service in Xianrendong National Nature Reserve, Liaoning Province of northeastern China

  • 摘要:
      目的  摸清辽宁省仙人洞国家级自然保护区森林生态系统服务功能底数,能够有效提高区域环境质量,增强区域生态服务功能。
      方法  以自然保护区主要森林生态系统为研究对象,根据辽宁辽东半岛森林生态系统国家定位观测研究站2018年实测数据和森林规划调查数据,采用模型量化、分布式测算、相关分析等方法,选择支持、调节和供给3大服务6个功能类别,研究了自然保护区森林生态服务的物质量及权衡与协同作用。
      结果  (1)森林生态服务物质量:支持服务644.42 × 103 t/a,包含保育土壤量644.10 × 103 t/a、林木养分积累量323.85 t/a;调节服务41.61 × 103 t/a,包括固碳释氧量40.16 × 103 t/a、大气净化量1 454.87 t/a;供给服务中,提供水源量148.27 × 107 m3/a、供给负氧离子量274.97 × 1020个/a;表现为:保育土壤量 > 固碳释氧量 > 大气净化量> 林木养分积累量。(2)各评价指标物质量:森林保育土壤中,固土量555.15 × 103 t/a,保肥量88.95 × 103 t/a;森林积累营养量为氮固持(291.02 t/a) > 钾固持(25.33 t/a) > 磷固持(7.50 t/a);森林吸收碳28.56 × 103 t/a、释放氧11.60 × 103 t/a;森林吸收气体污染物量为二氧化硫(817.50 t/a) > 氮氧化物(255.80 t/a) > 氟化物(242.00 t/a),阻滞TSP、PM10和PM2.5分别为82.3、46.7和10.6 t/a。(3)优势树种(组)生态服务物质量前三的树种(组)有天然次生栎类林、赤松林和落叶松林,生态服务物质量与林分面积、蓄积量有显著协同性(r > 0,P < 0.05),与胸径、树高和郁闭度为协同作用(r > 0)。(4)保护区行政村生态服务物质量是管理局最高,而三架山村最低;支持与调节服务存在权衡作用(r < 0),支持与供给服务存在协同作用(r > 0),调节与供给服务同时存在协同和权衡作用。
      结论  保护区森林生态系统的保育土壤、固碳释氧、提供水源和供给负氧离子服务量突出;森林面积和蓄积量对生态服务物质量起重要作用;生态服务之间普遍存在协同和权衡作用。空间上,封山育林、防止林业用地流失;林分上,保护珍稀树种,增加树种类型,促进林分更新演替,就地保护和植树造林相结合;多措并举、遵循自然规律是提高生态服务的有效措施。
    Abstract:
      Objective  The purpose of this study was to clarify the material quality of forest ecological multi-functions in Xianrendong National Nature Reserve in Liaoning Province of northeastern China, which can effectively improve the regional environmental quality and enhance the regional ecological service function.
      Method  Taking the forest ecosystem in the nature reserve as the research object, according to the 2018 observation data of the Liaodong Peninsula Forest Ecosystem National Observation and Research Station in Liaoning and survey data of the forests, using the methods of model quantification, distributed calculation and correlation analysis, three major service categories and six functional categories of support, regulation and supply were selected to study the material quality of forest ecological services in nature reserves and their trade-offs and synergies.
      Result  (1) The material quantity of forest ecological service function was as follows: support service 644.42 × 103 t/year, including conservation soil volume 644.10 × 103 t/year, tree nutrient accumulation 323.85 t/year. Regulation service 41.61 × 103 t/year, including carbon sequestration and oxygen release of 40.16 × 103 t/year, and the air purification amount of 1 454.87 t/year. Among the material amount of the supply service, the amount of water supply was 148.27 × 107 m3/year, and the amount of negative ions supplied was 274.97 × 1020 year−1, showing as soil conservation > carbon fixation and oxygen release > air purification > forest nutrient fixation. (2) Substances of each evaluation index: the amount of forest conservation soil was 555.15 × 103 t/year for soil consolidation and 88.95 × 103 t/year for fertilizer retention; the accumulation of nutrients in forests was in the order of nitrogen retention (291.02 t/year) > potassium retention (25.33 t/year) > phosphorus retention (7.50 t/year); forest absorb carbon of 28.56 × 103 t/year and release oxygen of 11.60 × 103 t/year; forest absorb gas pollutants from large to small was sulfur dioxide (817.50 t/year) > nitrogen oxidation compound (255.80 t/year) > fluoride (242.00 t/year), blocking TSP, PM10 and PM2.5 were 82.3 t/year, 46.7 t/year and 10.6 t/year, respectively. (3) The dominant tree species (groups) with larger amounts of ecological service function substances included natural secondary oak forests, red pine forests and larch forests. The material quality of service function was significantly positively correlated with stand area and stock volume (r > 0, P < 0.05), and positively correlated with DBH, tree height and canopy density (r > 0). (4) The quality of ecological service functions in the administrative division of the protected area was the highest in the administrative department, while the lowest in Sanjiashan Village; there was a trade-off between support and adjustment services, synergy between support and supply services, and synergy and trade-off between adjustment and supply services.
      Conclusion  The forest ecosystem has outstanding quality of soil conservation, carbon sequestration and nutrient release, water supply and negative oxygen ion supply. Forest area and stock volume play an important role in the quality of ecological service. Synergies and trade-offs are common among ecological services. In terms of space, closing mountains for afforestation and preventing the loss of forestry land; on the stand, protect rare tree species, increase tree species types, promote forest regeneration and succession, and combine on-site protection with afforestation. Taking multiple measures and following natural laws is an effective measure to improve ecological services.
  • 现如今城市居住空间紧张,小户型的比例在逐渐加大。中国政府出台规定建筑面积90平方米以下户型占比必须达到70%以上[1],这预示着更多的家庭面临功能空间不足的情况,就有大量家庭有一房两用的需求,即一个房间除了卧室的主要功能外,还可通过功能家具实现客厅或书房等功能,而其中翻转床则是实现睡眠–休闲、学习空间转换的功能家具的典型代表产品。

    虽然翻转床有着可观的市场需求,但对于其力学性能的检测还是依赖整体破坏性试验为主要手段,目前其设计和分析尚缺乏科学的理论指导[2]。20世纪90年代气弹簧作为新型支撑出现,张琦等[3]对气弹簧的力学性能进行了计算分析;王殿武[4]研究了气弹簧力学特性并将其运用到汽车尾盖上;刘迎林等[5]对全塑车身后备箱气撑杆进行运动仿真并验证其安装位置;王定虎[6]运用力矩平衡原理和理想气体方程对汽车背门撑杆的选择及布置进行校核。截止目前,气弹簧的研究主要集中在汽车领域,而鲜有在家具领域内的研究,为了弥补翻转床气弹簧机构设计和性能分析的理论欠缺,本文从实际应用需求出发,运用静力学和力矩平衡原理对气弹簧机构进行结构分析计算和选型。

    翻转床床体翻转的目的是实现床体的收纳,以便满足房间睡眠–休闲、学习空间转换的用户功能需求。根据使用场景分析,翻转床运动功能示意图如图1所示。因为翻转床的床体框架、床板、床垫和床上用品等零部件加起来质量较大,如仅凭借人手部力量支撑则翻转困难,且在操作过程中存在砸到人的风险,所以实际翻转床产品均需要借助辅助结构实现翻转和随停的功能。由于气弹簧具有支撑、缓冲的作用,因此恰好适用于翻转床的运动功能需求。

    图  1  床体翻转功能示意图
    Figure  1.  Diagram of turnover function of foldable bed

    壁柜式翻转床的翻转功能主要由气弹簧机构实现,分析翻转床的运动本质就是分析气弹簧机构。壁柜式翻转床结构和气弹簧机构简图如图2所示,翻转床左右两侧具有相同连杆结构,其中A点为翻转床的翻转中心,由螺栓将床体翻转框架和固定柜体铰接;BC为气弹簧,气弹簧两端分别和固定柜体及床体翻转框架铰接;床体翻转存在两个极限状态,即收纳状态(图2a)和使用状态(图2b),处于收纳状态时气弹簧处在伸展状态,即B1C,处于使用状态时气弹簧处在压缩状态,即BC

    图  2  翻转床结构和气弹簧机构简图
    1. 固定柜体;2. 气弹簧;3. 床体翻转框架;A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端; l. A点到床头距离。 1, fixed cabinet; 2, gas spring; 3, rotate frame; A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring; l, the distance from A point to the head of the bed.
    Figure  2.  Diagram of foldable bed structure and gas spring mechanism

    根据国家标准GB 25751—2010压缩气弹簧技术条件、GB/T 1805—2001弹簧术语和JB/T 10418—2004气弹簧设计计算为依据,对气弹簧特性进行研究。对极限位置的床体进行平面力系的简化,并结合力矩平衡原理对床体和气弹簧机构进行受力分析。运用有限元的优化思路对气弹簧安装位置进行列表格寻最优解。运用静力学知识分析床体运动规律。

    图2所示,翻转床在收纳时气弹簧处于伸展过程,气弹簧的伸展力辅助床体的上翻过程。床体完全收纳进柜体时,此时床体重力矢量经过翻转中心A,在无外力情况下床体静止不动。翻转床展开过程中气弹簧处于压缩过程,气弹簧的压缩力为床体下翻过程提供缓冲力。

    图3为气弹簧展开长度与压缩、伸展过程曲线示意图,其中F1为最小伸展力,F2为最大伸展力,F3为最小压缩力,F4为最大压缩力,S为气弹簧的行程,t为端头长度,结合图2气弹簧初始长度BC = S + t,展开长度L = B1C = S + t + S = 2S + tt的取值一般为10 mm。

    图  3  气弹簧展开长度与压缩、伸展过程曲线示意图
    d. 活塞杆直径;D1. 缸筒内径;D2. 缸筒外径;S. 行程;L. 伸展长度;t. 端头长度;F0. 启动力;F1. 最小伸展力;F2. 最大伸展力;F3. 最小压缩力;F4. 最大压缩力;Fa. 公称力a;Fb. 公称力b;C. 采力点。图引自文献[7]。d, piston rod diameter; D1, cylinder inner diameter; D2, cylinder outer diameter; S, stroke; L, extended length; t, end length; F0, star-up force; F1, minimum extension force; F2, maximum extension force; F3, minimum compress force; F4, maximum compress force; Fa, nominal force a; Fb, nominal force b; C, measuring point. Diagram is cited from reference [7].
    Figure  3.  Diagram of expansion length of gas spring and curve of compression and stretching process

    气弹簧的选型需要的参数为气弹簧的伸展长度L和行程S以及气弹簧最小伸展力F1[8]。现以翻转床两个极限位置进行受力分析。使用状态下,当人手抬起床的边沿时以A点为旋转中心,能够将床体抬起。此时受力分析如图4所示。

    图  4  使用状态手抬床体时床体受力分析简图
    A. 翻转中心;B. 气弹簧压缩末端;C. 气弹簧固定端;F2. 气弹簧最大伸展力;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;l. A点到床头距离;FL. 手对床体的抬力;A, rotation center;B, compression end of gas spring;C, fixed end of gas spring;F2, maximum extension force;G1, bed weight on the left side of point AG2, bed weight on the right side of point AFAx, x component of point AFAy, y component of point Al, A point to the head of the bed;FL, hand lift on the bed.
    Figure  4.  Diagram of foldable bed force analysis when hand up the bed in using state

    由力矩平衡可得:

    xF2l+G1l2G2LBl2+FL(LBl)=0 (1)

    式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;G1A点左侧床体质量与重力加速度之积,单位N;G2A点右侧床体质量与重力加速度之积,单位N;lA点到床头距离,单位mm。

    设床体和床垫总质量为mG1=lLBmgG2=LBlLBmg,则可将式(1)简化得:

    xF2l(LB2l)mg+FL(LBl)=0 (2)

    式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;lA点到床头距离,单位mm;m为床体和床垫总质量,单位kg;g为重力加速度,单位N/kg。

    收纳状态下,拉手与AB1点视作在同一竖直线上。拉动床体时,人手拉动拉手的力矩能够平衡气弹簧对A点的弹力矩,此时受力分析简图如图5所示。

    图  5  收纳状态手拉床体时床体受力分析简图
    A. 翻转中心;B1. 气弹簧伸展末端;C. 气弹簧固定端;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;F0. 启动力;F0x. F0沿x轴方向分力;F0y. F0沿y轴方向分力;l. A点到床头距离;θ. F0与垂直方向夹角;FP. 手对拉手拉力。A, rotation center;B1, stretching end of gas spring;C, fixed end of gas spring;FAx, x component of point AFAy, y component of point AF0, star-up force; F0x, x component of F0; F0y. y component of F0; l, A point to the head of the bed; θ, angle of F0 with vertical direction; FP, hand pull on the handle.
    Figure  5.  Diagram of foldable bed force analysis when hand drag the bed in storage state

    因为F0yA点在水平方向上没有距离,所以F0y轴方向上的力矩为0。由力矩平衡可得:

    x(F0xl+F0y0)FP(lPl)=0 (3)

    式中:F0为气弹簧启动力,单位N;lP为拉手高度,单位mm;FP为手对拉手拉力,单位N;lA点到床头距离,单位mm;x为气弹簧个数;F0xF0沿x轴方向分力,单位N;F0yF0沿y轴方向分力,单位N。

    图5中,依据压缩气弹簧技术条件,气弹簧启动力F0略大于气弹簧最小压缩力F3,取F3值近似为F0值,由三角函数可知:

    F0=F0xsinθ=F3 (4)

    式中:θF0与垂直方向夹角,单位°;F0为气弹簧启动力,单位N;F0xF0沿x轴方向分力,单位N;F3为气弹簧最小压缩力,单位N。

    在符合人机工程的情况下,使lP尽量大可以加大手拉开床体的力矩,减小手部力量,取lP = 1 750 mm。依据人机工程学,为使得操作力比较恰当,收纳床体时推荐的操作力范围为50 ~ 80 N[9],此处取手对床体的抬力FL = 80 N,手拉拉手的力FP = 80 N。

    F1F3之间有一段由于摩擦力产生的差值,依据GB25751—2010其计算公式为Fr =(F3F1)/2,即动态摩擦力Fr是最小压缩力和最小伸展力之差的平均值[10]。气弹簧摩擦力所产生的阻力与杆的运动方向相反,其与标称力值(图样及产品上标注的力,包括F1FaF3)极限偏差应符合下表1的规定。

    表  1  标称力值极限偏差与动态摩擦力
    Table  1.  Nominal force limit deviation and dynamic friction
    标称力值 Nominal force标称力值的极限偏差 Nominal force limit deviation最大动态摩擦力 Maximum dynamic friction
    ≤ 100+ 15 − 5 25
    101 ~ 200+ 20 − 10 30
    201 ~ 400+ 30 − 15 40
    401 ~ 600+ 40 − 20 60
    601 ~ 800+ 50 − 25 80
    801 ~ 1 000+ 60 − 30100
    1 001 ~ 1 200+ 70 − 35130
    > 1 200+ 80 − 40150
    注:表1引自文献[7]。Note: Tab.1 is cited from reference [7].
    下载: 导出CSV 
    | 显示表格

    F1F2的关系可由弹性系数求得。弹性系数k表示的是单位压缩力变化的弹簧常数[10],单位为N/mm,行程S的单位是mm。伸展阶段气弹簧弹性系数公式[11]为:

    k=(F2F1)/S (5)

    其中,k的大小可由厂家进行调节,其具体值可通过实验得出。一般商家提供的气弹簧的弹性系数k介于1.05和1.8之间,弹性系数越小意味着制造难度越高。

    以市场常见的床体规格为准,此处选取宽900 mm、长1 900 mm、质量为25 kg的床垫。选取匹配的床体框架结构的材质为钢,其质量约为25 kg。刨花板密度为650 kg/m3,则18 mm(厚) × 900 mm(宽) × 1 900 mm(长)的床板质量为20 kg。则床体总重力为:(25 + 25 + 20) × 9.8 = 686 N。如固定柜体目标深度为300 mm,为了保证AC两点安装位置距离柜体板前后两边有足够的距离保证强度,则取l = 160 mm。

    依据式(2),xF2 = 2 517.1 N,选取气弹簧个数x = 4,则F2 = 629.3 N。

    图4图5可知:取l为160 mm时,以BB1为圆心,以(S + 10)、(2S + 10)为半径作圆,作交点可得C点安装位置。并结合式(3)、式(4)、表1以及k的计算方程,可将相关参数整理成表2

    表  2  气弹簧相关参数及安装位置与行程S的关系
    Table  2.  Relationship between gas spring stroke and relevant parameters and installation position
    S/mmθF3/NFr/NF1/Nk
    17018643.2
    18020581.160461.10.934
    19023508.040428.01.059
    20026453.440373.41.280
    注:S为行程;θF0与垂直方向夹角;F3为最小压缩力;Fr为最大动态摩擦力;F1为最小伸展力;k为气弹簧弹性系数。表3同此。Notes:S, stroke; θ, angle of F0 with vertical direction; F3, minimum compress force; Fr, maximum dynamic friction; F1, minimum extension force; k, gas spring modulus coefficient. Same as Tab.3.
    下载: 导出CSV 
    | 显示表格

    表2可知:θ角越大,k则越大,气弹簧的制作难度越小。为减小安装宽度,选择S为190 mm,F1 = 428 N作为最小伸展力的气弹簧,则要求厂家提供的气弹簧弹性系数k为1.06。参考表3可知F1S的参数符合设计要求。

    表  3  气弹簧活塞杆直径与最小伸展力大小选择范围推荐表
    Table  3.  Recommended table of minimum extension force range and stroke range of gas spring
    序号
    No.
    活塞杆
    直径 Diameter of piston rod/mm
    最小伸展力
    Minimum extension force (F1)/N
    行程范围
    Stroke range/mm
    推荐范围
    Recommended
    range
    可选范围
    Optional
    range
    1650 ~ 25050 ~ 35050 ~ 400
    28200 ~ 450100 ~ 700100 ~ 700
    310300 ~ 700100 ~ 1 200150 ~ 1 100
    412450 ~ 1 000150 ~ 1 500150 ~ 1 600
    514600 ~ 1 400200 ~ 2 5001 600 ~ 2 200
    6201 250 ~ 3 1001 000 ~ 5 2002 200 ~ 4 500
    注:表3引自文献[12]。Note: Tab.3 is cited from reference [12].
    下载: 导出CSV 
    | 显示表格

    此时C点的安装位置如图6所示,BC = S + 10 = 200 mm,B1C = 2S + 10 = 390 mm。如果床体总质量加大,可以适当改变固定柜体深度以加大l的取值,使气弹簧机构获得更大的力臂。

    图  6  C点安装位置示意图
    A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端。A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring.
    Figure  6.  Diagram of installation location of point C

    翻转床旋转到任意角度时的受力图如图7所示。取气弹簧对床体弹力FB与矩心A点的力臂为aG1与矩心A点的力臂为bG2与矩心A点的力臂为c。矩心A点右侧力矩减去左侧合力矩可列式:

    图  7  任意位置下床架受力图
    A. 翻转中心;B′. 在β旋转角度下的床尾位置;C. 气弹簧固定端;β. 床体翻转框架翻转角度;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;a. FB对矩心A点的力臂;b. G1对矩心A点的力臂;c. G2对矩心A点的力臂。A, rotation center; B′, bed tail position at β rotation angle; C, fixed end of gas spring; β, flip angle of rotate frame; G1, bed mass on the left side of point A multiply gravity acceleration; G2, bed mass on the right side of point A multiply gravity acceleration; a, FB force arm to point A; b, G1 force arm to point A; c, G2 force arm to point A.
    Figure  7.  Diagram of foldable bed force at arbitrary degree
    MA=MA(xFB)+MA(G1)MA(G2)=xFBa+G1bG2c (6)

    式中:MA为合力对A点的力矩,单位N;x为气弹簧个数;FB为气弹簧对床体弹力,单位N;G1A点左侧床体重力,单位N;G2A点右侧床体重力,单位N;aFB对矩心A点的力臂,单位mm;bG1对矩心A点的力臂,单位mm;cG2对矩心A点的力臂,单位mm;MAxFB)为单边气弹簧对A点力矩,单位N·mm;MAG1)为G1A点力矩,单位N·mm;MAG2)为G2A点力矩,单位N·mm。

    气弹簧压缩和伸展两个过程曲线中任意点的值可以用伸展长度和k值求出,在不同旋转角度β下分别量取abc的值代入式(6),并作出βMA的关系曲线如图8所示。图8两条曲线为分别代入了弹簧伸展过程力值和压缩过程力值后的曲线。由图 8可知:床体在打开18°以内会弹回收纳状态;18° ~ 24°之间床体可悬停;大于24°以后,A点右侧力矩大于A点左侧合力矩。

    图  8  βMA关系曲线
    MA. 合力对A点的力矩;β. 床体翻转框架翻转角度。MA, torque to point Aβ, flip angle of rotate frame.
    Figure  8.  Diagram of β and MA curve

    基于静力学和力矩平衡原理完成了翻转床两个极限位置的受力分析,构建了翻转床气弹簧分析计算理论,运用该理论能够通过翻转床的床身质量和尺寸得到气弹簧的最小伸展力、行程和弹性系数,从而完成气弹簧选型;运用CAD工具做两圆相交的几何法得出气弹簧安装位置的确立方法;基于力矩平衡原理构建合力矩和翻转角度β的关系式,得出翻转床悬停范围。设定床体尺寸宽900 mm、长1 900 m、固定柜体目标深度300 mm,则可得气弹簧最小伸展力为428 N,行程为190 mm,弹性系数为1.06,悬停角度范围为18° ~ 24°,翻转角大于24°后则为自由下翻。本文构建的分析方法和结果可为家具行业的壁柜式翻转床设计、选型和性能分析提供理论支撑和实践指导。

  • 图  1   保护区行政村森林生态功能的物质量分布

    FVC.仙人洞村;BYV.冰峪村;LDV.李洞村;IRV.英纳河村;RA.管理局;SJSV.三架山村;MDKV.马道口村;XYV.小峪村。FVC, Fairy Cave Village;BYV, Bingyu Village;LDV, Lidong Village;IRV, Inner River Village;RA, Reserve Authority;SJSV, Sanjiashan Village;MDKV, Madaokou Village;XYV, Xiaoyu Village.

    Figure  1.   Material distribution of forest ecological functions in the administrative village of the protected area

    表  1   森林生态功能的物质量计算公式

    Table  1   Calculation formula of material quality of forest ecological function

    服务类别
    Service type
    功能类别
    Function type
    指标及计算公式
    Index and calculation formula
    参数说明
    Parameter description
    支持服务
    Support service
    保育土壤
    Conserving soil
    Ggt=A(X2X1) Ggt为林分年固土量(t/a);A为林分面积(hm2);X2为无森林土壤侵蚀模数(t/(hm2·a));X1为有森林土壤侵蚀模数(t/(hm2·a)) Ggt is the soil consolidation (t/year); A is the forest stand area (ha); X2 is the soil erosion modulus without forest land (t/(ha·year)); X1 is the soil erosion modulus with forest land (t/(ha·year))
    GN=ACN(X2X1) GNGPGKGOM分别为林分固持土壤而减少的N、P、K和有机质流失量(t/a);CNCPCKCM分别为实测土壤氮磷钾和有机质的含量(%) GN, GP, GK, and GOM are the retained N, P, K and organic mass of the stand (t/year); CN, CP, CK, CM are the contents of N, P, K and organic matter in the soil (%)
    GP=ACP(X2X1)
    GK=ACK(X2X1)
    GOM=ACM(X2X1)
    林分养分固持
    Stand nutrient retention
    GTN=ANTBy GTNGTPGTK分别为林分N、P、K的年固持量(t/a);NTPTKT分别为实测林木N、P、K含量(%);By为林分年净生产力(t/(hm2·a)) GTN, GTP and GTK are the holding capacity of forest stand N, P, K (t/year); NT, PT, KT are forest tree N, P, K contents (%); By is forest stand net productivity (t/(ha·year))
    GTP=APTBy
    GTK=AKTBy
    调节服务
    Regulation service
    固碳释氧
    Carbon sequestration and oxygen release
    GC=GV+Gsoil
    GV=1.63RCABy
    Gsoil=ASsoil
    GCGVGsoil分别为林分年固碳、植被年固碳量、土壤年固碳量(t/a);RC为CO2中碳的含量(27.27%);Ssoil为单位面积林分土壤的年固碳量(t/(hm2·a))
    GC, GV and Gsoil are the annual carbon sequestration of forest stands, vegetation, and soil (t/year); RC is the cabon content in CO2 (%); Ssoil is the soil carbon sequestration per unit area (t/(ha·year))
    GO = 1.19ABy GO为林分年氧气释放量(t/a) GO is the oxygen release (t/year)
    净化大气环境
    Purifying the atmosphere environment
    GSO2=QSO2A×103 GSO2GFGNOx分别为林分年吸收二氧化硫、氟化物和氮氧化物量(t/a);QSO2QFQNOx分别为单位面积林分吸收二氧化硫、氟化物和氮氧化物量(kg/(hm2·a)) GSO2, GF and GNOx are absorbing the quality of SO2, fluoride and nitrogen oxides (t/year), respectively; QSO2, QFQNOx are the masses of SO2, fluoride, nitrogen oxides, respectively absorbed by the forest stand per unit area (kg/(ha·year))
    GF=QFA×103
    GNOx=QNOxA×103
    GTSP=QTSPA×103 GTSPGPM10GPM2.5分别为林分年滞纳TSP量(t/a)、PM10和PM2.5量(kg/a);QTSP为林分单位面积滞纳TSP量(kg/(hm2·a));QPM10QPM2.5分别为林分单位叶面积滞纳PM10、PM2.5量(g/(m2));n为年洗脱次数;ILA为叶面积指数 GTSP, GPM10 and GPM2.5 are the quality of the forest stand to absorb TSP (t/year), PM10 and PM2.5(kg/year), respectively; QTSP is the amount of delayed TSP per unit area of the forest (kg/(ha·year)), QPM10 and QPM2.5 are the amount of delayed PM10 and PM2.5 per unit leaf area of forest (g/m2) ; n is the number of elutions per year; ILA is the leaf area index
    GPM10 = 10nQPM10AILA
    GPM2.5 = 10nQPM2.5AILA
    供给服务
    Supply service
    提供水源
    Providing water source
    GS = 10A×(PWEC) GS为林分年持水量(m3/a);PWE、C分别为林外降雨、林分蒸发、地表径流量(mm/a) GS is the annual water holding capacity of forest stand (m3/year); PW, E, and C refer to rainfall outside the forest, stand evaporation, and surface runoff (mm/year)
    提供负氧离子
    Providing negative
    oxygen ions
    GNAI=5.256×1015QNAIAHL GNAI为林分年提供负氧离子数(个/a),QNAI为林分负氧离子质量浓度(g/m3),H为林分平均高(m),L为负氧离子寿命(min) GNAI is the number of negative oxygen ions (year−1); QNAI is the mass concentration of negative oxygen ions (g/m3); H is the average stand height (m); L is the life of negative oxygen ions (min)
    下载: 导出CSV

    表  2   仙人洞自然保护区森林生态服务的物质量组成

    Table  2   Quality composition of forest ecological services in Xianrendong Nature Reserve

    服务类别
    Service type
    功能类别
    Function category
    指标类别
    Index category
    物质量
    Material quality
    合计
    Total
    支持服务
    Support service
    保育土壤 Conserving soil 固土/(103 t·a−1) Fixed soil/(103 t·year−1 Ggt 555.15 644.10
    保肥/(103 t·a−1
    Fertilizer preservation/(103 t·year−1
    GN 2.12
    GP 1.00
    GK 7.11
    GOM 78.72
    林分营养固持
    Stand nutrient retention
    氮固持/(t·a−1) Nitrogen retention/(t·year−1 GTN 291.02 323.85
    磷固持/(t·a−1) Phosphorus retention/(t·year−1 GTP 7.50
    钾固持/(t·a−1) Potassium retention/(t·year−1 GTK 25.33
    调节服务
    Regulation service
    固碳释氧
    Carbon sequestration and oxygen release
    固碳/(103 t·a−1) Carbon sequestration/(103 t·year−1 GC 28.56 40.16
    释氧/(103 t·a−1) Oxygen release/(103 t·year−1 GO 11.60
    大气净化
    Purifying the atmosphere
    吸收气体污染物/(t·a−1
    Absorbing gaseous pollutants/(t·year−1
    GSO2 817.50 1 454.87
    GF 242.00
    GNOx 255.80
    滞尘/(t·a−1) Dust retention/(t·year−1 GTSP 82.28
    GPM10 46.74
    GPM2.5 10.55
    供给服务
    Supply service
    提供水源 Providing water source 森林持水量/(107 m3·a−1
    Forest water capacity/(107 m3·year−1
    GS 148.27 148.27
    提供负氧离子
    Providing negative oxygen ions
    提供负氧离子量/(1020 个·a−1
    Providing negative oxygen ions/(1020·year−1
    GNAI 274.97 274.97
    下载: 导出CSV

    表  3   仙人洞自然保护区树种(组)生态功能的物质量

    Table  3   Material composition of ecological functions of the tree species (groups) of Xianrendong Nature Reserve

    功能类别
    Function category
    指标类别
    Index category
    LL CS LYS HTQ CY FY HS OT
    保育土壤
    Conserving soil
    固土/(103 t·a−1
    Fixed soil/(103 t·year−1)
    486.20 31.23 11.00 6.13 5.89 3.23 2.70 8.77
    占比 Proportion/% 87.58 5.63 1.98 1.10 1.06 0.58 0.49 1.58
    保肥/(103 t·a−1
    Keeping fertilizer/(103 t·year−1)
    82.98 0.38 1.00 0.75 0.59 0.34 0.33 2.58
    占比 Proportion/% 93.29 0.43 1.12 0.84 0.66 0.38 0.37 2.90
    林木积累营养物质
    Trees accumulating nutrients
    N、P、K积累/(t·a−1
    Accumulation of N, P, K/(t·year−1)
    289.21 10.53 8.67 4.19 4.15 1.88 0.84 4.38
    占比 Proportion/% 89.30 3.25 2.68 1.29 1.28 0.58 0.26 1.35
    固碳释氧
    Carbon sequestration and oxygen release
    固碳/(103 t·a−1
    Fixed carbon/(103 t·year−1)
    25.80 0.99 0.58 0.27 0.32 0.14 0.08 0.38
    占比 Proportion/% 90.34 3.47 2.03 0.95 1.12 0.49 0.28 1.33
    释氧/(103 t·a−1
    Release oxygen/(103 t·year−1)
    10.45 0.42 0.24 0.11 0.13 0.06 0.03 0.16
    占比 Proportion/% 90.09 3.62 2.07 0.95 1.12 0.52 0.26 1.38
    净化大气环境
    Purifying the atmosphere environment
    吸收气体污染物/(t·a−1
    Absorbing air pollutants/(t·year−1)
    1 000.55 175.72 28.15 60.64 11.05 5.00 6.58 27.62
    占比 Proportion/% 76.07 13.36 2.14 4.61 0.84 0.38 0.50 2.10
    滞尘/(t·a−1
    Dust retention/(t·year−1)
    107.16 16.95 6.45 0.83 0.79 0.51 1.84 5.04
    占比 Proportion/% 76.78 12.14 4.62 0.59 0.57 0.37 1.32 3.61
    提供水源
    Providing water source
    持水量/(107 m3·a−1
    Water retention/(107 m3·year−1)
    133.24 8.55 0.91 1.39 1.41 0.43 0.62 1.72
    占比 Proportion/% 89.86 5.77 0.61 0.94 0.95 0.29 0.42 1.16
    提供负氧离子
    Providing negative oxygen ions
    负氧离子/(1020个·a−1
    Negative oxygen ions/(1020·year−1)
    227.64 22.94 8.05 3.27 2.95 1.92 2.70 5.50
    占比 Proportion/% 82.79 8.34 2.93 1.19 1.07 0.70 0.98 2.00
    注:LL为栎类,CS为赤松,LYS为落叶松,HTQ为胡桃楸,CY为赤杨,FY为枫杨,HS为红松,OT为其他。Notes: LL is Quercus spp., CS is Pinus densiflora, LYS is Larix gmelinii, HTQ is Juglans mandshurica, CY is Alnus japonica, FY is Pterocarya stenoptera, HS is Pinus koraiensis, OT is the other.
    下载: 导出CSV

    表  4   行政村生态服务功能物质量的相关性

    Table  4   Correlation of the amount of ecological service functional substances in the administrative village

    生态服务功能
    Ecological service function
    支持服务
    Support services
    调节服务
    Regulation service
    供给服务 Supply service
    提供水源
    Providing water source
    提供负氧离子
    Providing negative ions
    支持服务 Support services 1
    调节服务 Regulation service −0.255 1
    供给服务
    Supply service
    提供水源 Providing water source 0.990** −0.172 1
    提供负氧离子 Providing negative oxygen ions 0.386 0.764* 0.479 1
    注:**表示在 0.01级别(双尾),相关性显著;*表示在 0.05级别(双尾),相关性显著。下同。Notes: * and ** indicate significant correlations at P < 0.05 and P < 0.01 level, respectively. The same below.
    下载: 导出CSV

    表  5   林分特征与森林生态服务功能物质量的相关性

    Table  5   Correlations between stand characteristics and the amount of forest ecological services

    生态功能指标
    Ecological functional index
    林分面积
    Stand area
    林分蓄积
    Stand volume
    单位面积蓄积量
    Volume per unit area
    平均树高
    Mean tree height
    平均胸径
    Mean DBH
    郁闭度
    Crown density
    保育土壤
    Conserving soil
    0.963** 0.926** −0.274 0.321 0.420 0.178
    林木营养积累
    Trees accumulating nutrients
    0.876** 0.909** −0.346 0.421 0.305 0.037
    固碳释氧
    Carbon sequestration and oxygen release
    0.949** 0.944** −0.297 0.407 0.403 0.102
    净化大气环境
    Purifying atmosphere environment
    0.857* 0.794* −0.209 −0.028 0.134 0.078
    提供水源
    Providing water source
    0.949** 0.867* −0.262 0.276 0.509 0.199
    提供负氧离子
    Providing negative oxygen ions
    0.978** 0.955** −0.315 0.393 0.512 0.291
    下载: 导出CSV
  • [1]

    Zhou B, Zhu J W, Lu P, et al. The service function value assessment analysis of urban wetland ecosystem: a case study of Xi’an Chan-Ba wetland[J/OL]. IOP Conference Series: Earth and Environmental Science, 2018, 191(1): 012114[2022−01−19]. https://iopscience.iop.org/article/10.1088/1755-1315/191/1/012114.

    [2] 王亚锋, 王亚磊, 黄茹, 等. 气候变化下生物交互作用对树线生态过程的影响[J]. 应用生态学报, 2021, 32(10): 3724−3732. doi: 10.13287/j.1001-9332.202110.006

    Wang Y F, Wang Y L, Huang R, et al. Effects of biotic interactions on ecological processes of treeline ecotone under climate change[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3724−3732. doi: 10.13287/j.1001-9332.202110.006

    [3]

    Ochoa-Hueso R, Munzi S, Alonso R, et al. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: current research and future directions[J]. Environmental Pollution, 2017, 227: 194−206. doi: 10.1016/j.envpol.2017.04.062

    [4] 黄龙生, 王兵, 牛香, 等. 济南市森林生态系统服务功能空间格局研究[J]. 生态学报, 2019, 39(17): 6477−6486.

    Huang L S, Wang B, Niu X, et al. Spatial pattern of the ecosystem service function of forests in Jinan City[J]. Acta Ecologica Sinica, 2019, 39(17): 6477−6486.

    [5]

    Zhang B, Li W, Xie G. Ecosystem services research in China: progress and perspective[J]. Ecological Economics, 2010, 69(7): 1389−1395. doi: 10.1016/j.ecolecon.2010.03.009

    [6]

    Tallis H, Mooney H A, Andelman S, et al. A global system for monitoring ecosystem service change[J]. Bioscience, 2012, 62(11): 977−986. doi: 10.1525/bio.2012.62.11.7

    [7] 赵士洞, 张永民. 生态系统与人类福祉: 千年生态系统评估的成就、贡献和展望[J]. 地球科学进展, 2006, 21(9): 895−902. doi: 10.3321/j.issn:1001-8166.2006.09.002

    Zhao S D, Zhang Y M. Ecosystems and human well-being: the achievements, contributions and prospects of the millennium ecosystem assessment[J]. Advances in Earth Science, 2006, 21(9): 895−902. doi: 10.3321/j.issn:1001-8166.2006.09.002

    [8] 贾毅, 张松林. 南水北调中线工程途经区生态服务价值的时空变化[J]. 生态学报, 2021, 41(18): 7226−7237.

    Jia Y, Zhang S L. Spatio-temporal changes of static and dynamic ecosystem service values in the passing area of the Middle Route of the South-to-North Water Transfer Diversion Project[J]. Acta Ecologica Sinica, 2021, 41(18): 7226−7237.

    [9]

    Shimada M, Itoh T, Motooka T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010)[J]. Remote Sensing of Environment, 2014, 155: 13−31. doi: 10.1016/j.rse.2014.04.014

    [10]

    Parson E A, Haas P M, Levy M A. A summary of the major documents signed at the earth summit and the global forum [J]. Environment Science & Policy for Sustainable Development, 1992, 34(8): 12−36.

    [11]

    Lambini C K, Nguyen T T, Abildtrup J, et al. Are ecosystem services complementary or competitive? An econometric analysis of cost functions of private forests in Vietnam[J]. Ecological Economics, 2018, 147: 343−352. doi: 10.1016/j.ecolecon.2018.01.029

    [12]

    Jian Z A, Xzz A, Rui Z B, et al. Labor force transfer, vegetation restoration and ecosystem service in the Qilian Mountains-ScienceDirect[J]. Journal of Environmental Management, 2021, 288: 112387. doi: 10.1016/j.jenvman.2021.112387

    [13] 王兵, 任晓旭, 胡文. 中国森林生态系统服务功能及其价值评估[J]. 林业科学, 2011, 47(2): 145−153. doi: 10.11707/j.1001-7488.20110220

    Wang B, Ren X X, Hu W. Assessment of forest ecosystem services value in China[J]. Scientia Silvae Sinicae, 2011, 47(2): 145−153. doi: 10.11707/j.1001-7488.20110220

    [14] 许庭毓, 牛香, 王兵, 等. 自然解决方案背景下的辽宁省森林生态系统服务主导功能评估[J]. 水土保持通报, 2021, 41(5): 191−197. doi: 10.13961/j.cnki.stbctb.2021.05.026

    Xu T Y, Niu X, Wang B, et al. Evaluation on leading functions of forest ecosystem services in Liaoning Province based on nature-based solutions[J]. Bulletin of Soil and Water Conservation, 2021, 41(5): 191−197. doi: 10.13961/j.cnki.stbctb.2021.05.026

    [15] 柳嘉佳, 王普昶, 王志伟, 等. 基于InVEST模型的贵州喀斯特生态系统服务功能评估研究进展[J]. 安徽农业科学, 2021, 49(20): 25−27, 53. doi: 10.3969/j.issn.0517-6611.2021.20.007

    Liu J J, Wang P C, Wang Z W, et al. Research progress of Guizhou Karst ecosystem service function evaluation based on InVEST model[J]. Journal of Anhui Agricultural Sciences, 2021, 49(20): 25−27, 53. doi: 10.3969/j.issn.0517-6611.2021.20.007

    [16] 宋庆丰, 牛香, 王兵. 基于大数据的森林生态系统服务功能评估进展[J]. 生态学杂志, 2015, 34(10): 2914−2921. doi: 10.13292/j.1000-4890.2015.0278

    Song Q F, Niu X, Wang B. Review on forest ecosystem services assessment based on big data [J]. Chinese Journal of Ecology, 2015, 34(10): 2914−2921. doi: 10.13292/j.1000-4890.2015.0278

    [17] 宋文璐, 张华, 伏捷, 等. 辽宁仙人洞国家级自然保护区森林群落稳定性评价[J]. 浙江农林大学学报, 2022, 39 (3): 505−515. doi: 10.11833/j.issn.2095-0756.20210330

    Song W L, Zhang H, Fu J, et al. Evaluation of forest community stability in Xianrendong National Nature Reserve, Liaoning[J]. Journal of Zhejiang A&F University, 2022, 39(3): 505−515. doi: 10.11833/j.issn.2095-0756.20210330

    [18] 李连强, 杨会侠, 丁国泉, 等. 辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析[J]. 北京林业大学学报, 2020, 42 (11): 47−55.

    Li L Q, Yang H X, Ding G Q, et al. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42 (11): 47−55.

    [19] 王兵, 蒋有绪, 牛香, 等. 森林生态系统服务功能评估规范GB/T 38582—2020[S]. 北京: 中国标准出版社 , 2020: 1−19.

    Wang B, Jiang Y X, Niu X, et al. Specifications for assessment of forest ecosystem services GB/T 38582−2020[S]. Beijing: Standards Press of China, 2020: 1−19

    [20] 潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报, 2013, 24(1): 183−189. doi: 10.13287/j.1001-9332.2013.0140

    Pan T, Wu S H, Dai E F, et al. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 183−189. doi: 10.13287/j.1001-9332.2013.0140

    [21] 罗佳, 田育新, 朱昕, 等. 湖南省公益林生态系统服务功能评估[J]. 湖南林业科技, 2020, 47(4): 26−35. doi: 10.3969/j.issn.1003-5710.2020.04.004

    Luo J, Tian Y X, Zhu X, et al. Evaluation of the service function of the public welfare forest ecosystem in Hunan Province[J]. Hunan Forestry Science & Technology, 2020, 47(4): 26−35. doi: 10.3969/j.issn.1003-5710.2020.04.004

    [22] 徐少君, 类淑桐, 曾波. 三峡库区4种库岸边坡的植被根系固土效应研究[J]. 水土保持研究, 2017, 24(2): 119−123, 131. doi: 10.13869/j.cnki.rswc.2017.02.020

    Xu S J, Lei S T, Zeng B. Stability of root-fixed soil on 4 different slopes in the Three Gorges Reservoir Region[J]. Research of Soil and Water Conservation, 2017, 24(2): 119−123, 131. doi: 10.13869/j.cnki.rswc.2017.02.020

    [23] 丛日征, 王兵, 谷建才, 等. 宁夏贺兰山国家级自然保护区森林生态系统服务价值评估[J]. 干旱区资源与环境, 2017, 31(11): 136−140. doi: 10.13448/j.cnki.jalre.2017.360

    Cong R Z, Wang B, Gu J C, et al. Evaluation of forest ecosystem services values of Helan Mountain National Nature Reserve, Ningxia[J]. Journal of Arid Land Resources and Environment, 2017, 31(11): 136−140. doi: 10.13448/j.cnki.jalre.2017.360

    [24] 丛日征, 王兵, 牛香, 等. 陕西省森林生态系统净化大气环境功能价值评估[J]. 西北林学院学报, 2017, 32(5): 75−82. doi: 10.3969/j.issn.1001-7461.2017.05.14

    Cong R Z, Wang B, Niu X, et al. Assessment on the atmosphere purification function of forest ecosystem in Shaanxi Province[J]. Journal of Northwest Forestry University, 2017, 32(5): 75−82. doi: 10.3969/j.issn.1001-7461.2017.05.14

    [25] 刘林馨, 刘传照, 毛子军. 丰林世界生物圈自然保护区森林生态系统服务功能价值评估[J]. 北京林业大学学报, 2011, 33(3): 38−44. doi: 10.13332/j.1000-1522.2011.03.020

    Liu L X, Liu C Z, Mao Z J. Evaluation of forest ecosystem service functions in Fenglin Biosphere Nature Reserve, Heilongjiang Province[J]. Journal of Beijing Forestry University, 2011, 33(3): 38−44. doi: 10.13332/j.1000-1522.2011.03.020

    [26] 崔景轩, 李秀芬, 郑海峰, 等. 典型气候条件下东北地区生态系统水源涵养功能特征[J]. 生态学报, 2019, 39(9): 3026−3038.

    Cui J X, Li X F, Zheng H F, et al. Spatial analysis of water conservation function in northeast China under different climatic conditions[J]. Acta Ecologica Sinica, 2019, 39(9): 3026−3038.

    [27] 赵欣, 张杰, 钟林东. 黑龙江丰林国家级自然保护区生态系统服务价值评估与分析[J]. 北京林业大学学报, 2021, 43(7): 100−110. doi: 10.12171/j.1000-1522.20210041

    Zhao X, Zhang J, Zhong L D. Evaluation and analysis on ecosystem service value of Fenglin National Nature Reserve in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 100−110. doi: 10.12171/j.1000-1522.20210041

    [28] 齐娜, 孙威威, 阚海明, 等. 密云水库2008—2019年水生态服务功能评价[J]. 水土保持通报, 2021, 41(4): 276−283, 291.

    Qi N, Sun W W, Kan H M, et al. Evaluation on water-related ecosystem services of Minyun Reservoir during 2008−2019[J]. Bulletin of Soil and Water Conservation, 2021, 41(4): 276−283, 291.

    [29]

    Wu Y F, Zhang X, Li C, et al. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China[J]. Ecological Engineering, 2021, 159: 106083. doi: 10.1016/j.ecoleng.2020.106083

    [30]

    Bennett E M, Peterson G D, Gordon L J. Understanding relationships among multiple ecosystem services [J]. Ecology Letters, 2009, 12(12): 1394−1404. doi: 10.1111/j.1461-0248.2009.01387.x

    [31] 胡秀芳, 赵军, 王蓓, 等. 黑河流域生态系统服务空间协同与权衡变化[J]. 生态学杂志, 2022, 41 (3): 580−588.

    Hu X F, Zhao J, Wang B, et al. Changes of spatial synergies or trade-offs of ecosystem services in Heihe River Basin [J]. Chinese Journal of Ecology, 2022, 41 (3): 580−588.

    [32] 陈心盟, 王晓峰, 冯晓明, 等. 青藏高原生态系统服务权衡与协同关系[J]. 地理研究, 2021, 40(1): 18−34. doi: 10.11821/dlyj020200399

    Chen X M, Wang X F, Feng X M, et al. Ecosystem service trade-off and synergy on Qinghai-Tibet Plateau[J]. Geographical Research, 2021, 40(1): 18−34. doi: 10.11821/dlyj020200399

    [33]

    Butler J R A, Wong G Y, Metcalfe D J, et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia[J]. Agriculture Ecosystems & Environment, 2013, 180: 176−191.

    [34] 祝汉收, 翟俊, 侯鹏, 等. 生态系统服务权衡与协同视角下的重点生态功能区保护特征[J]. 地理学报, 2022, 77(5): 1275−1288.

    Zhu H S, Zhai J, Hou P, et al. The protection characteristics of key ecological functional zones from the perspective of ecosystem service trade-off and synergy[J]. Acta Geographica Sinica, 2022, 77(5): 1275−1288.

    [35]

    Vauhkonen J, Ruotsalainen R. Assessing the provisioning potential of ecosystem services in a Scandinavian boreal forest: suitability and tradeoff analyses on grid-based wall-to-wall forest inventory data[J]. Forest Ecology and Management, 2017, 389: 272−284. doi: 10.1016/j.foreco.2016.12.005

    [36] 兰洁, 雷相东, 张毓涛. 天山中部雪岭云杉林多功能权衡与协同关系[J]. 林业科学, 2019, 55(11): 9−18. doi: 10.11707/j.1001-7488.20191102

    Lan J, Lei X D, Zhang Y T, et al. Analysis on trade-offs and synergies of multiple functions of Picea schrenkiana forests in Central Tianshan Mountains[J]. Scientia Silvae Sinicae, 2019, 55(11): 9−18. doi: 10.11707/j.1001-7488.20191102

    [37] 兰紫橙, 贾岚, 程煜. 闽江流域生态系统服务价值评估及权衡协同关系[J]. 生态学报, 2020, 40(12): 3909−3920.

    Lan Z C, Jia L, Cheng Y. The ecosystem services evaluation and trade-off synergy in Min River Basin[J]. Acta Ecologica Sinica, 2020, 40(12): 3909−3920.

    [38] 廖雨辰, 史雪威, 刘俊雁, 等. 九寨沟国家级自然保护区地震前后生态系统服务价值评估[J]. 生态学报, 2022, 42(6): 2063−2073.

    Liao Y C, Shi X W, Liu J Y, et al. Ecosystem service values assessment before and after earthquake in Jiuzhaigou National Nature Reserve[J]. Acta Ecologica Sinica, 2022, 42(6): 2063−2073.

    [39] 李左玉, 董红先, 刘雷雷, 等. 浙江乌岩岭国家级自然保护区森林生态系统服务价值评估[J]. 浙江农林大学学报, 2020, 37(5): 891−897. doi: 10.11833/j.issn.2095-0756.20190573

    Li Z Y, Dong H X, Liu L L, et al. Evaluation of forest ecosystem service value in Wuyanling National Nature Reserve of Zhejiang Province [J]. Journal of Zhejiang A&F University, 2020, 37(5): 891−897. doi: 10.11833/j.issn.2095-0756.20190573

  • 期刊类型引用(2)

    1. 李红晨,杨洋,霍鸿飞,何盛,张仲凤. 水热处理黄杨木的成分变化分析. 林产工业. 2022(04): 14-19 . 百度学术
    2. 邓祥胜,李明蔓,何鹏,杨梅,申露,刘海宇,王超,程飞. 桉树伐桩分解过程中木质纤维素成分的变化特征. 中南林业科技大学学报. 2022(05): 160-169 . 百度学术

    其他类型引用(4)

图(1)  /  表(5)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  126
  • PDF下载量:  78
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-07-16
  • 录用日期:  2023-08-23
  • 网络出版日期:  2023-08-25
  • 发布日期:  2023-09-24

目录

/

返回文章
返回