Material quality assessment and trade-off synergies of forest ecological service in Xianrendong National Nature Reserve, Liaoning Province
-
摘要:
目的 厘清辽宁省仙人洞国家级自然保护区森林生态多功能的物质量大小,能够有效提高区域环境质量增强区域生态服务功能。 方法 以自然保护区主要森林生态系统为研究对象,根据辽宁辽东半岛森林生态系统国家定位观测研究站2018年实测数据和森林规划调查数据,采用模型量化、分布式测算、相关分析等方法,选择支持、调节和供给3大服务6个功能类别,研究了自然保护区森林生态服务的物质量及权衡与协同作用。 结果 (1)森林生态服务物质量:支持服务644.42 × 103 t/a,包含保育土壤量644.10 × 103 t/a、林木养分积累量323.85 t/a;调节服务40.88 × 103 t/a,包括固碳释养量40.16 × 103 t/a、大气净化量719.12 t/a;供给服务中,提供水源量148.27 × 107 m3/a、供给负氧离子量274.97 × 1020个/a;保育土壤 > 固碳释氧 > 大气净化 > 林分营养固定。(2)各评价指标物质量:森林保育土壤中,固土量555.15 × 103 t/a,保肥量88.95 × 103 t/a;森林积累营养量为氮固持(291.02 t/a) > 钾固持(25.33 t/a) > 磷固持(7.50 t/a);森林吸收碳28.56 × 103 t/a、释放氧11.60 × 103 t/a;森林吸收气体污染物量为二氧化硫(817.50 t/a) > 氮氧化物(255.80 t/a) > 氟化物(242.00 t/a),阻滞TSP、PM10和PM2.5分别为82.3、46.7和10.6 t/a。(3)优势树种(组)生态服务物质量前三的树种(组)有天然次生栎类林、赤松林和落叶松林,生态服务物质量与林分面积、蓄积量有显著协同性(P < 0.05),与胸径、树高和郁闭度为协同作用(P > 0)。(4)保护区行政村生态服务物质量是管理局最高,而三架山村最低;支持与调节服务存在权衡作用(r > 0),支持与供给服务存在协同作用(r < 0),调节与供给服务同时存在协同和权衡作用(r < 0和r > 0)。 结论 保护区森林生态系统的保育土壤、固碳释养、提供水源和供给负氧离子服务量突出;森林面积和蓄积量对生态服务物质量起重要作用;生态服务之间普遍存在协同和权衡作用。空间上,封山育林、防止林业用地流失;林分上,保护珍稀树种,增加树种类型,促进林分更新演替,就地保护和植树造林相结合;多措并举、遵循自然规律是提高生态服务的有效措施。 -
关键词:
- 辽宁仙人洞国家级自然保护区 /
- 森林生态服务功能 /
- 物质量 /
- 协同与权衡
Abstract:Objective The purpose of this study is to clarify the material quality of forest ecological multi-functions in Xianrendong National Nature Reserve in Liaoning Province, which can effectively improve the regional environmental quality and enhance the regional ecological service function. Method Taking the forest ecosystem in the nature reserve as the research object. According to the 2018 observation data of the Liaodong Peninsula Forest Ecosystem National Observation and Research Station in Liaoning and survey data of the forests. Using the methods of model quantification, distributed calculation and correlation analysis, three major service categories and six functional categories of support, regulation and supply were selected to study the material quality of forest ecological services in nature reserves and their trade-offs and synergies. Result (1) The material quantity of forest ecological service function is as follows: Support service 644.42 × 103 t/year, including conservation soil volume 644.10 × 103 t/year, tree nutrient accumulation 323.85 t/year. Regulation service 40.88 × 103 t/year, including solid The carbon release amount is 40.16 × 103 t/a, and the air purification amount is 719.12 t/year. Among the material amount of the Supply service, the amount of water supply is 148.27 × 107 m3/year, and the amount of negative ions supplied is 274.97 × 1020 pcs/year. Soil conservation > carbon fixation and oxygen release > air purification > forests nutrient fixation. (2) Substances of each evaluation index: the amount of forest conservation soil is 555.15 × 103 t/year for soil consolidation and 88.95 × 103 t/year for fertilizer retention; the accumulation of nutrients in forests is in the order of nitrogen retention (291.02 t/year) > potassium retention (25.33 t/year) > Phosphorus retention (7.50 t/year); forests absorb carbon 28.56 × 103 t/year and release oxygen 11.60 × 103 t/year; forests absorb gas pollutants from large to small, sulfur dioxide (817.50 t/year) > nitrogen oxidation Compound (255.80 t/year) > fluoride (242.00 t/year), blocking TSP, PM10 and PM2.5 were 82.3 t/year, 46.7 t/year and 10.6 t/year, respectively. (3) The dominant tree species (groups) with larger amounts of ecological service function substances include natural secondary oak forests, red pine forests and larch forests. The material quality of service function was significantly positively correlated with stand area and stock volume 9 (P < 0.01), and positively correlated with DBH, tree height and canopy density (P < 0.05). (4) The quality of ecological service functions in the administrative division of the protected area is the highest in the administrative department, while the lowest in Sanjiashan Village; there is a trade-off between support and adjustment services, synergy between support and supply services, and synergy and trade-off between adjustment and supply services. Conclusion The forest ecosystem has outstanding quality of Soil conservation, Carbon sequestration and nutrient release, Water supply and Negative oxygen ion supply. Forest area and stock volume play an important role in the quality of ecological service. Synergies and trade-offs are common among ecological services. In terms of space, the mountains are closed to support forests and prevent the loss of forestry land. In terms of forest stands, protect rare tree species, gradually increase the tree species group type, promote forest stand renewal and succession, and combine in situ protection with afforestation. Taking multiple measures simultaneously and following the laws of nature are effective measures to improve ecological services. -
图 1 保护区行政村森林生态功能的物质量分布
FVC.仙人洞村Fairy Cave Village;BYV.冰峪村Bingyu Village;LDV.李洞村Lidong Village;IRV.英纳河村Inner River Village;RA.管理局Reserve Authority;SJSV.三架山村Sanjiashan Village;MDKV.马道口村Madaokou Village;XYV.小峪村Xiaoyu Village
Figure 1. Material distribution of forest ecological functions in the administrative village of the protected area
表 1 森林生态功能的物质量计算公式
Table 1. Calculation formula of material quantity of forest ecological function
服务类别
Service type功能类别
Function type指标及计算公式
Calculation formula参数说明
Parameter description支持服务
Support service保育土壤
Conserve the soil$ {G_{{\text{gt}}}}=A \left( {{X_2} - {X_1}} \right) $ Ggt为林分年固土量(t/a),A为林分面积(hm2),X2为无森林土壤侵蚀模数(t/(hm2·a)),X1为有森林土壤侵蚀模数(t/(hm2·a)) Ggt is the soil consolidation (t/year); A is the forest stand area (ha); X2 is the soil erosion modulus without forest land (t/(ha·year)); X1 is the soil erosion modulus with forest land (t/(ha·year)) $ {G_{\text{N}}}=A C_{\rm{N}} \left( {{X_2} - {X_1}} \right) $ GN、GP、GK和GOM分别为林分固持土壤而减少的N、P、K和有机质流失量(t/a),CN、CP、CK和CM分别为实测土壤氮磷钾和有机质的含量(%) GN, GP, GK, and GOM are the retained N, P, K and organic mass of the stand (t/year); CN, CP, CK, CM are the content of N, P, K and organic matter in the soil (%) $ {G_{\text{P}}}=A C_{\rm{P}} \left( {{X_2} - {X_1}} \right) $ $ {G_{\text{K}}}=A C_{\rm{K}} \left( {{X_2} - {X_1}} \right) $ $ {G_{{\text{OM}}}}=A C_{\rm{M}} \left( {{X_2} - {X_1}} \right) $ 林分养分固持
Tree nutrient retentionGTN$ =A {N_{\text{T}}} {B_{\text{y}}} $ GTN、GTP、GTK分别为林分N、P、K的年固持量(t/a),NT、PT、KT分别为实测林木N、P、K含量(%),By为林分年净生产力(t/(hm2·a)) GTN, GTP and GTK are the holding capacity of forest stand N、P、K (t/year); NT, PT, KT are forest tree N, P, K content (%); By is forest stand net productivity (t/(ha·year)) GTP$ =A P_{\rm{T}} {B_{\text{y}}} $ GTK$ =A K_{\rm{T}} {B_{\text{y}}} $ 调节服务
Regulated service固碳释氧
Carbon fixation and oxygen release$ {G_{\text{C}}}={G_{\text{V}}}+{G_{{\text{soil}}}} $
$ {G_{\text{V}}}=1.63{R_{\text{C}}} A {B_{\text{y}}} $
$ {G_{{\text{soil}}}}=A {S_{{\text{soil}}}} $GC、GV、Gsoil分别为林分年固碳、植被年固碳量、土壤年固碳量(t/a),RC为CO2中C的含量(27.27%),Ssoil为单位面积林分土壤的年固碳量t/(hm2·a)
GC, GV and Gsoil are the annual carbon sequestration of forest stands, vegetation, and soil (t/yr); RC is the C content in CO2(%); Ssoil is the soil per unit area Carbon sequestration (t/(ha·year))$ {G_{\text{O}}}{\text{ = 1}}{\text{.19}}A {B_{\text{y}}} $ GO为林分年氧气释放量(t/a) GO is the oxygen release (t/year) 净化大气环境
Purify the atmosphere$ {G_{{\text{S}}{{\text{O}}_{\text{2}}}}}={Q_{{\text{S}}{{\text{O}}_{\text{2}}}}} A \times {10^{ - 3}} $ GSO2、GF、GNOx分别为林分年吸收二氧化硫、氟化物和氮氧化物量(t/a),QSO2、QF和QNOx分别为单位面积林分吸收二氧化硫、氟化物和氮氧化物量(kg/(hm2·a)) GSO2, GF and GNOx are absorb the quality of SO2、fluoride and nitrogen oxides; QSO2、QF和QNOx are the masses of SO2、fluoride、nitrogen oxides absorbed by the forest stand per unit area (kg/(ha·yr)) $ {G_{\text{F}}}={Q_{\text{F}}} A \times {10^{ - 3}} $ $ {G_{{\text{N}}{{\text{O}}_{\text{x}}}}}={Q_{{\text{N}}{{\text{O}}_{\text{x}}}}} A \times {10^{ - 3}} $ $ {G_{{\text{TSP}}}}={Q_{{\text{TSP}}}} A \times {10^{ - 3}} $ GTSP、GPM10、GPM2.5分别为林分年滞纳TSP、PM10、和PM2.5量(t/a),QTSP、QPM10、QPM2.5分别为单位面积林分滞纳TSP量、林分单位叶面积滞纳PM10、PM2.5量(kg/(hm2·a))、n为年洗脱次数,ILA为叶面积指数 GTSP, GPM10 and GPM2.5 are the quality of the forest stand to absorb TSP, PM10, and PM2.5; QTSP, QPM10 and QPM2.5 are the mass of TSP, PM10, and PM2.5 absorbed per unit area of the forest stand (kg/(ha·year)); n is the number of elutions per year; ILA is the leaf area index $ {G_{{\text{P}}{{\text{M}}_{10}}}}{\text{ = 10}}n{Q_{_{{\text{P}}{{\text{M}}_{10}}}}} A I_{\rm{LA}} $ $ {G_{{\text{P}}{{\text{M}}_{2.5}}}}{\text{ = 10}}n{Q_{_{{\text{P}}{{\text{M}}_{2.5}}}}} A I_{\text{LA}} $ 供给服务
Supply service提供水源
Conserve water$ {G_{\text{S}}}{\text{ = 10}}A \times \left( {{P_{\text{W}}} - E - C} \right) $ GS为林分年持水量(m3/a),PW、E、C分别为林外降雨、林分蒸、地表径流量(mm/a) GT is the regulation water volume ((m3/year); PW, E, and C refer to rainfall outside the forest, stand evaporation, and surface runoff (mm) 提供负离子
Negative air ion$ {G_{{\text{NAI}}}}=\dfrac{{{\text{5}}{\text{.256}} \times {\text{1}}{{\text{0}}^{15}}{Q_{{\text{NAI}}}}AH}}{L} $ GNAI为林分年提供负离子数(个/a),QNAI为林分负离子浓度(g/m3),H为林分平均高(m),L为负离子寿命(min) GNAI is the number of negative ions (n/yr); QNAI is the density of negative ions (g/m3); H is the average stand height (m); L is the life of negative ions (min) 表 2 仙人洞自然保护区森林生态服务的物质量组成
Table 2. Quality composition of forest ecological services in Xianrendong Nature Reserve
服务类别
Service type功能类别
Function category指标类别
Index category物质量
Material quality合计
Total支持服务
Support service保育土壤 Conserve the soil 固土/(103 t·a−1) Fixed soil/(103 t·year−1) Ggt 555.15 644.10 保肥/(103 t·a−1)
Fertilizer preservation/(103 t·year−1)GN 2.12 GP 1.00 GK 7.11 GOM 78.72 林分营养固持
Forests nutrient retention氮固持/(t·a−1) Nitrogen retention/(t·year−1) GTN 291.02 323.85 磷固持/(t·a−1) Phosphorus retention/(t·year−1) GTP 7.50 钾固持/(t·a−1) Potassium retention/(t·year−1) GTK 25.33 调节服务
Regulated service固碳释氧
Absorb carbon release oxygen固碳/(103 t·a−1) Carbon sequestration/(103 t·year−1) GC 28.56 40.16 释氧/(103 t·a−1) Oxygen release/(103 t·year−1) GO 11.60 大气净化
Purify the atmosphere吸收气体污染物/(t·a−1)
Absorb gaseous pollutants/(t·year−1)GSO2 81.75 719.12 GF 242.00 GNOx 255.80 滞尘/(t·a−1) Dust retention/(t·year−1) GTSP 82.28 GPM10 46.74 GPM2.5 10.55 供给服务
Supply service提供水源 Conserve water 森林持水量/(107 m3·a−1)
Regulated of water source/(107 m3·year−1)GS 148.27 148.27 提供负离子 Negative air ion 提供负离子/(1020·a−1)
Provide negative ions/(1020·year−1)GNAI 274.97 274.97 表 3 仙人洞自然保护区树种(组)生态功能的物质量
Table 3. The material composition of ecological functions of the tree species (groups) of Xianrendong Nature Reserve
功能类别
Function category指标类别
Index categoryLL CS LYS HTQ CY FY HS OT 保育土壤
Conserve the soil固土/(103 t·a−1)
Fixed soil/(103 t·year−1)486.20 31.23 11.00 6.13 5.89 3.23 2.70 8.77 占比 Proportion/% 87.58 5.63 1.98 1.10 1.06 0.58 0.49 1.58 保肥/(103 t·a−1)
Keep fertilizer/(103 t·year−1)82.98 0.38 1.00 0.75 0.59 0.34 0.33 2.58 占比 Proportion/% 93.29 0.43 1.12 0.84 0.66 0.38 0.37 2.90 林木积累营养物质
Trees accumulate nutrientsN、P、K积累/(t·a−1)
Accumulation of N, P, K/(t·year−1)289.21 10.53 8.67 4.19 4.15 1.88 0.84 4.38 占比 Proportion/% 89.30 3.25 2.68 1.29 1.28 0.58 0.26 1.35 固碳释氧
Fix carbon and release oxygen固碳/(103 t·a−1)
Fixed carbon/(103 t·year−1)25.80 0.99 0.58 0.27 0.32 0.14 0.08 0.38 占比 Proportion/% 90.34 3.47 2.03 0.95 1.12 0.49 0.28 1.33 释氧/(103 t·a−1)
Release oxygen/(103 t·year−1)10.45 0.42 0.24 0.11 0.13 0.06 0.03 0.16 占比 Proportion/% 90.09 3.62 2.07 0.95 1.12 0.52 0.26 1.38 净化大气环境
Purify the atmosphere吸收气体污染物/(t·a−1)
Absorb pollutants/(t·year−1)440.72 44.20 15.06 29.13 11.03 5.04 6.52 27.65 占比 Proportion/% 76.07 3.36 1.14 2.21 0.84 0.38 0.50 2.10 滞尘/(t·a−1)
Dust retention/(t·year−1)107.16 16.95 6.45 0.83 0.79 0.51 1.84 5.04 占比 Proportion/% 76.78 12.14 4.62 0.59 0.57 0.37 1.32 3.61 提供水源
Provide water持水量/(107 m3·a−1)
Water retention/(107 m3·year−1)133.24 8.55 0.91 1.39 1.41 0.43 0.62 1.72 占比 Proportion/% 89.86 5.77 0.61 0.94 0.95 0.29 0.42 1.16 提供负离子
Provide negative ions负离子/(1020个·a−1)
Negative ions/(1020·year−1)227.64 22.94 8.05 3.27 2.95 1.92 2.70 5.50 占比 Proportion/% 82.79 8.34 2.93 1.19 1.07 0.70 0.98 2.00 注:LL为栎类,CS为赤松,LYS为落叶松,HTQ为胡桃楸,CY为赤杨,FY为枫杨,HS为红松,OT为其他。Notes: LL is the Quercus spp, CS is the Pinus densiflora, LYS is the Larix gmelinii, HTQ is the Juglans mandshurica, CY is the Alnus japonica, FY is the Pterocarya stenoptera, HS is the Pinus koraiensis, OT is the other. 表 4 行政村生态服务功能物质量的相关性
Table 4. Correlation of the amount of ecological service functional substances in the administrative village
生态服务功能
Ecological service function支持服务
Support Services调解服务
Regulated service供给服务 Supply service 提供水源
Provide water提供负氧离子
Provide negative ions支持服务 Support Services 1 调节服务 Regulated service −0.255 1 供给服务
Supply service提供水源 Provide water 0.990** −0.172 1 提供负离子 Provide negative ions 0.386 0.764* 0.479 1 注:**. 在 0.01级别(双尾),相关性显著;*. 在 0.05级别(双尾),相关性显著。下同。Notes: * and ** indicate significant correlations at P < 0.05 and P < 0.01 level, respectively. The same below. 表 5 林分特征与森林生态服务功能物质量的相关性
Table 5. Correlation between stand characteristics and the amount of forest ecological services
生态功能指标
Functional indicators林分面积
Stand area林分蓄积
Stand accumulation单位面积蓄积量
Volume per unit area平均树高
Mean tree H平均胸径
Mean diameter郁闭度
Crown density保育土壤
Conserve the soil0.963** 0.926** −0.274 0.321 0.420 0.178 林木营养积累
Trees accumulate nutrients0.876** 0.909** −0.346 0.421 0.305 0.037 固碳释养
Fix carbon release oxygen0.949** 0.944** −0.297 0.407 0.403 0.102 净化大气环境
Purify the atmosphere0.857* 0.794* −0.209 −0.028 0.134 0.078 提供水源
Provide water0.949** 0.867* −0.262 0.276 0.509 0.199 提供负离子
Provide negative ions0.978** 0.955** −0.315 0.393 0.512 0.291 -
[1] Zhou B, Zhu J W, Lu P, et al. The service function value assessment analysis of urban wetland ecosystem, a case study of Xi’an Chan-Ba wetland[J]. IOP Conference Series: Earth and Environmental Science, 2018, 191(1): 012114 (8pp). [2] 王亚锋, 王亚磊, 黄茹, 等. 气候变化下生物交互作用对树线生态过程的影响[J]. 应用生态学报, 2021, 32(10): 3724−3732. doi: 10.13287/j.1001-9332.202110.006Wang Y F, Wang Y L, Huang R, et al. Effects of biotic interactions on ecological processes of treeline ecotone under climate change[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3724−3732. doi: 10.13287/j.1001-9332.202110.006 [3] Ochoa-Hueso R, Munzi S, Alonso R, et al. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean basin: current research and future directions[J]. Environmental Pollution, 2017, 227: 194−206. doi: 10.1016/j.envpol.2017.04.062 [4] 黄龙生, 王兵, 牛香, 等. 济南市森林生态系统服务功能空间格局研究[J]. 生态学报, 2019, 39(17): 6477−6486.Huang L S, Wang B, Niu X, et al. Spatial pattern of the ecosystem service function of forests in Jinan City[J]. Acta Ecologica Sinica, 2019, 39(17): 6477−6486. [5] Zhang B, Li W, Xie G. Ecosystem services research in China: progress and perspective[J]. Ecological Economics, 2010, 69(7): 1389−1395. doi: 10.1016/j.ecolecon.2010.03.009 [6] Tallis, H, Mooney HA, Andelman S, et al. A global system for monitoring ecosystem service change[J]. Bioscience, 2012, 62(11): 977−986. doi: 10.1525/bio.2012.62.11.7 [7] 赵士洞, 张永民. 生态系统与人类福祉: 千年生态系统评估的成就、贡献和展望[J]. 地球科学进展, 2006, 21(9): 895−902. doi: 10.3321/j.issn:1001-8166.2006.09.002Zhao S D, Zhang Y M. Ecosystems and human well-being: the achievements, contributions and prospects of the millennium ecosystem assessment[J]. Advances in Earth Science, 2006, 21(9): 895−902. doi: 10.3321/j.issn:1001-8166.2006.09.002 [8] 贾毅, 张松林. 南水北调中线工程途经区生态服务价值的时空变化[J]. 生态学报, 2021, 41(18): 7226−7237.Jia Y, Zhang S L. Spatio-temporal changes of static and dynamic ecosystem service values in the passing area of the Middle Route of the South-to-North Water Transfer Diversion Project[J]. Acta Ecologica Sinica, 2021, 41(18): 7226−7237. [9] Shimada M, Itoh T, Motooka T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010)[J]. Remote Sensing of Environment, 2014, 155: 13−31. doi: 10.1016/j.rse.2014.04.014 [10] Parson E A, Haas P M, Levy M A. A summary of the major documents signed at the earth summit and the global forum [J]. Environment Science & Policy for Sustainable Development, 1992, 34(8): 12−36. [11] Lambini C K, Nguyen T T, Abildtrup J, et al. Are ecosystem services complementary or competitive? An econometric analysis of cost functions of private forests in Vietnam[J]. Ecological Economics, 2018, 147: 343−352. doi: 10.1016/j.ecolecon.2018.01.029 [12] Jian Z A, Xzz A, Rui Z B, et al. Labor force transfer, vegetation restoration and ecosystem service in the Qilian Mountains - ScienceDirect[J]. Journal of Environmental Management, 2021, 288: 112387. doi: 10.1016/j.jenvman.2021.112387 [13] 王兵, 任晓旭, 胡文. 中国森林生态系统服务功能及其价值评估[J]. 林业科学, 2011, 47(2): 145−153. doi: 10.11707/j.1001-7488.20110220Wang B, Ren X X, Hu W. Assessment of forest ecosystem services value in China[J]. Scientia Silvae Sinicae, 2011, 47(2): 145−153. doi: 10.11707/j.1001-7488.20110220 [14] 许庭毓, 牛香, 王兵, 等. 自然解决方案背景下的辽宁省森林生态系统服务主导功能评估[J]. 水土保持通报, 2021, 41(5): 191−197. doi: 10.13961/j.cnki.stbctb.2021.05.026Xu Tingyu, Niu Xiang, Wang Bing, et al. Evaluation on leading functions of forest ecosystem services in Liaoning Province based on nature-based solutions[J]. Bulletin of Soil and Water Conservation, 2021, 41(5): 191−197. doi: 10.13961/j.cnki.stbctb.2021.05.026 [15] 柳嘉佳, 王普昶, 王志伟, 等. 基于InVEST模型的贵州喀斯特生态系统服务功能评估研究进展[J]. 安徽农业科学, 2021, 49(20): 25−27, 53. doi: 10.3969/j.issn.0517-6611.2021.20.007Liu J J, Wang P C, Wang Z W, et al. Research progress of Guizhou Karst ecosystem service function evaluation based on InVEST model[J]. Journal of Anhui Agricultural Sciences, 2021, 49(20): 25−27, 53. doi: 10.3969/j.issn.0517-6611.2021.20.007 [16] 宋庆丰, 牛香, 王兵. 基于大数据的森林生态系统服务功能评估进展[J]. 生态学杂志, 2015, 34(10): 2914−2921. doi: 10.13292/j.1000-4890.2015.0278Song Q F, Niu X, Wang B. Review on forest ecosystem services assessment based on big data [J]. Chinese Journal of Ecology, 2015, 34(10): 2914−2921. doi: 10.13292/j.1000-4890.2015.0278 [17] 宋文璐, 张华, 伏捷, 等. 辽宁仙人洞国家级自然保护区森林群落稳定性评价[J]. 浙江农林大学学报, 2022: 39 (3): 505−515. doi: 10.11833/j.issn.2095-0756.20210330SONG Wenlu, ZHANG Hua, FU Jie, et al. Evaluation of forest community stability in Xianrendong National Nature Reserve, Liaoning[J]. Journal of Zhejiang A&F University, 2022, 39(3): 505−515. doi: 10.11833/j.issn.2095-0756.20210330 [18] 李连强, 杨会侠, 丁国泉, 等. 辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析[J]. 北京林业大学学报, 2020: 42 (11): 47−55.Li Lianqiang;Yang Huixia, Ding Guoquan, et al. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020: 42 (11): 47−55. [19] 王兵, 蒋有绪, 牛香, 等. 森林生态系统服务功能评估规范GB/T 38582—2020[S]. 北京: 中国标准出版社 , 2020: 1−19.Wang B, Jiang YX, Niu X, et al. Specifications for assessment of forest ecosystem services GB/T 38582−2020[S]. Standards Press of China, 2020: 1−19 [20] 潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报, 2013, 24(1): 183−189. doi: 10.13287/j.1001-9332.2013.0140Tao P, Wu S H, Dai E F, et al. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 183−189. doi: 10.13287/j.1001-9332.2013.0140 [21] 罗佳, 田育新, 朱昕, 等. 湖南省公益林生态系统服务功能评估[J]. 湖南林业科技, 2020, 47(4): 26−35. doi: 10.3969/j.issn.1003-5710.2020.04.004LUO Jia, TIAN Yuxin, ZHU Xin, et al. Evaluation of the service function of the public welfare forest ecosystem in Hunan Province[J]. Hunan Forestry Science & Technology, 2020, 47(4): 26−35. doi: 10.3969/j.issn.1003-5710.2020.04.004 [22] 徐少君, 类淑桐, 曾波. 三峡库区4种库岸边坡的植被根系固土效应研究[J]. 水土保持研究, 2017, 24(02): 119−123, 131. doi: 10.13869/j.cnki.rswc.2017.02.020Xu S J, Lei S T, Zeng B. Stability of root-fixed soil on 4 different slopes in the Three Gorges Reservoir Region[J]. Research of Soil and Water Conservation, 2017, 24(2): 119−123, 131. doi: 10.13869/j.cnki.rswc.2017.02.020 [23] 丛日征, 王兵, 谷建才, 等. 宁夏贺兰山国家级自然保护区森林生态系统服务价值评估[J]. 干旱区资源与环境, 2017, 31(11): 136−140. doi: 10.13448/j.cnki.jalre.2017.360Cong R Z, Wang b, Gu J C, et al. Evaluation of forest ecosystem services values of Helan Mountain National Nature Reserve, Ningxia[J]. Journal of Arid Land Resources and Environment, 2017, 31(11): 136−140. doi: 10.13448/j.cnki.jalre.2017.360 [24] 丛日征, 王兵, 牛香, 等. 陕西省森林生态系统净化大气环境功能价值评估[J]. 西北林学院学报, 2017, 32(5): 75−82. doi: 10.3969/j.issn.1001-7461.2017.05.14Cong R Z, Wang B, Niu X, et al. Assessment on the atmosphere purification function of forest ecosystem in Shaanxi Province[J]. Journal of Northwest Forestry University, 2017, 32(5): 75−82. doi: 10.3969/j.issn.1001-7461.2017.05.14 [25] 刘林馨, 刘传照, 毛子军. 丰林世界生物圈自然保护区森林生态系统服务功能价值评估[J]. 北京林业大学学报, 2011, 33(3): 38−44. doi: 10.13332/j.1000-1522.2011.03.020Liu L X, Liu C Z, Mao Z J. Evaluation of forest ecosystem service functions in Fenglin Biosphere Nature Reserve, Heilongjiang Province[J]. Journal of Beijing Forestry University, 2011, 33(3): 38−44. doi: 10.13332/j.1000-1522.2011.03.020 [26] 崔景轩, 李秀芬, 郑海峰, 等. 典型气候条件下东北地区生态系统水源涵养功能特征[J]. 生态学报, 2019, 39(9): 3026−3038.Cui J X, Li X F, Zheng H F, et al. Spatial analysis of water conservation function in northeast China under different climatic conditions[J]. Acta Ecologica Sinica, 2019, 39(9): 3026−3038. [27] 赵欣, 张杰, 钟林东. 黑龙江丰林国家级自然保护区生态系统服务价值评估与分析[J]. 北京林业大学学报, 2021, 43(7): 100−110. doi: 10.12171/j.1000-1522.20210041Zhao X, Zhang J, Zhong L D. Evaluation and analysis on ecosystem service value of Fenglin National Nature Reserve in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 100−110. doi: 10.12171/j.1000-1522.20210041 [28] 齐娜, 孙威威, 阚海明, 等. 密云水库2008—2019年水生态服务功能评价[J]. 水土保持通报, 2021, 41(4): 276−283, 291.Qi N, Sun W W, Kan H M, et al. Evaluation on water-related ecosystem services of Minyun Reservoir During 2008−2019[J]. Bulletin of Soil and Water Conservation, 2021, 41(4): 276−283, 291. [29] Wu Y F, Zhang X, Li C, et al. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China[J]. Ecological Engineering, 2021, 159: 106083. doi: 10.1016/j.ecoleng.2020.106083 [30] Bennett E M, Peterson G D, Gordon L J. Understanding relationships among multiple ecosystem services. [J]. Ecology Letters, 2009, 12(12): 1394−1404. doi: 10.1111/j.1461-0248.2009.01387.x [31] 胡秀芳, 赵军, 王蓓, 等. 黑河流域生态系统服务空间协同与权衡变化[J]. 生态学杂志, 2022: 41 (3): 580−588.Hu XF, Zhao J, Wang B, Gao C. Changes of spatial synergies or trade-offs of ecosystem services in Heihe River Basin[J]. Chinese Journal of Ecology, 2022: 41 (3): 580−588. [32] 陈心盟, 王晓峰, 冯晓明, 等. 青藏高原生态系统服务权衡与协同关系[J]. 地理研究, 2021, 40(1): 18−34. doi: 10.11821/dlyj020200399Chen X M, Wang X F, Feng X M, et al. Ecosystem service trade-off and synergy on Qinghai-Tibet Plateau[J]. Geographical Research, 2021, 40(1): 18−34. doi: 10.11821/dlyj020200399 [33] Butler J R A, Wong G Y, Metcalfe D J, et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia[J]. Agriculture Ecosystems & Environment, 2013, 180: 176−191. [34] 祝汉收, 翟俊, 侯鹏, 等. 生态系统服务权衡与协同视角下的重点生态功能区保护特征[J]. 地理学报, 2022, 77(5): 1275−1288.Zhu H S, Zhai J, Hou P, et al. The protection characteristics of key ecological functional zones from the perspective of ecosystem service trade-off and synergy[J]. Acta Geographica Sinica, 2022, 77(5): 1275−1288. [35] Vauhkonen J, Ruotsalainen R. Assessing the provisioning potential of ecosystem services in a Scandinavian boreal forest: Suitability and tradeoff analyses on grid-based wall-to-wall forest inventory data[J]. Forest Ecology and Management, 2017, 389: 272−284. doi: 10.1016/j.foreco.2016.12.005 [36] 兰洁, 雷相东, 张毓涛. 天山中部雪岭云杉林多功能权衡与协同关系[J]. 林业科学, 2019, 55(11): 9−18. doi: 10.11707/j.1001-7488.20191102Lan J, Lei X D, Zhang Y T, et al. Analysis on Trade-offs and Synergies of Multiple Functions of Picea schrenkiana Forests in Central Tianshan Mountains[J]. Scientia Silvae Sinicae, 2019, 55(11): 9−18. doi: 10.11707/j.1001-7488.20191102 [37] 兰紫橙, 贾岚, 程煜. 闽江流域生态系统服务价值评估及权衡协同关系[J]. 生态学报, 2020, 40(12): 3909−3920.Lan Z C, Jia L, Cheng Y. The ecosystem services evaluation and trade-off synergy in Min River Basin[J]. Acta Ecologica Sinica, 2020, 40(12): 3909−3920. [38] 廖雨辰, 史雪威, 刘俊雁, 等. 九寨沟国家级自然保护区地震前后生态系统服务价值评估[J/OL]. 生态学报, 2022, 42(6): 2063−2073.Liao Y C, Shi X W, Liu J Y, et al. Ecosystem service values assessment before and after earthquake in Jiu zhai gou National Nature Reserve[J/OL]. Acta Ecologica Sinica, 2022, 42(6): 2063−2073. [39] 李左玉, 董红先, 刘雷雷, 等. 浙江乌岩岭国家级自然保护区森林生态系统服务价值评估[J]. 浙江农林大学学报, 2020, 37(5): 891−897. doi: 10.11833/j.issn.2095-0756.20190573Li Z Y, Dong H X, Liu L L, et al. Evaluation of forest ecosystem service value in Wuyanling National Nature Reserve of Zhejiang Province [J]. Journal of Zhejiang A&F University, 2020, 37(5): 891−897. doi: 10.11833/j.issn.2095-0756.20190573 -