高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细叶小檗不同生长部位生物碱抑菌活性研究

赵海桃 吴小杰 钟明旭 邱隽蒙 石统帅 符群

赵海桃, 吴小杰, 钟明旭, 邱隽蒙, 石统帅, 符群. 细叶小檗不同生长部位生物碱抑菌活性研究[J]. 北京林业大学学报, 2022, 44(7): 126-134. doi: 10.12171/j.1000-1522.20220090
引用本文: 赵海桃, 吴小杰, 钟明旭, 邱隽蒙, 石统帅, 符群. 细叶小檗不同生长部位生物碱抑菌活性研究[J]. 北京林业大学学报, 2022, 44(7): 126-134. doi: 10.12171/j.1000-1522.20220090
Zhao Haitao, Wu Xiaojie, Zhong Mingxu, Qiu Junmeng, Shi Tongshuai, Fu Qun. Antibacterial activity of alkaloids from different growth parts of Berberis poiretii[J]. Journal of Beijing Forestry University, 2022, 44(7): 126-134. doi: 10.12171/j.1000-1522.20220090
Citation: Zhao Haitao, Wu Xiaojie, Zhong Mingxu, Qiu Junmeng, Shi Tongshuai, Fu Qun. Antibacterial activity of alkaloids from different growth parts of Berberis poiretii[J]. Journal of Beijing Forestry University, 2022, 44(7): 126-134. doi: 10.12171/j.1000-1522.20220090

细叶小檗不同生长部位生物碱抑菌活性研究

doi: 10.12171/j.1000-1522.20220090
基金项目: 国家重点研发计划(2016YFC0500307−07)
详细信息
    作者简介:

    赵海桃。主要研究方向:食品安全与检测。Email:1446025262@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    符群,高级工程师。主要研究方向:天然产物分离与制备及功能性质研究。Email:nefufuqun@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

  • 中图分类号: Q949.746.8;R284

Antibacterial activity of alkaloids from different growth parts of Berberis poiretii

  • 摘要:   目的  对细叶小檗不同生长部位(根、茎、叶、果)生物碱抑菌活性进行对比评价,旨在筛选细叶小檗抑菌有效部位和主要抑菌成分,为拓宽其全植株应用领域及研发新型天然食品防腐剂的研究提供理论依据。  方法  以抑菌圈直径、最低抑菌质量浓度和最低杀菌质量浓度为考查指标,采用牛津杯抑菌法,研究各生长部位生物碱对4种食源性致病菌(大肠杆菌、金黄色葡萄球菌、沙门氏菌、枯草芽孢杆菌)的抑制作用,采用高效液相色谱法测定生物碱的种类和含量。  结果  纯化前后细叶小檗4种不同生长部位生物碱对大肠杆菌、金黄色葡萄球菌、沙门氏菌、枯草芽孢杆菌这4种常见食源性致病菌均呈现正相关的剂效关系。其中,纯化前细叶小檗实生物碱的抑菌效果最佳,当其生物碱质量浓度为60 g/L时,抑菌圈直径大于20 mm。通过二倍稀释法研究表明:其对大肠杆菌、沙门氏菌、枯草芽孢杆菌的最低抑菌质量浓度(MIC)均为1.25 g/L,最低杀菌质量浓度(MBC)均为2.50 g/L,对金黄色葡萄球菌的MIC为2.50 g/L,MBC为5.00 g/L。纯化后细叶小檗根生物碱的抑菌效果最佳,当其生物碱质量浓度为40 g/L时,抑菌圈直径大于20 mm。通过二倍稀释法研究表明:其对大肠杆菌、金黄色葡萄球菌的MIC均为0.31 g/L,MBC均为0.63 g/L,对枯草芽孢杆菌、沙门氏菌的MIC为0.63 g/L,MBC为1.25 g/L。液相色谱检测结果显示:纯化后生物碱构成包括小檗碱(0.28 ~ 41.69 g)、药根碱(0.32 ~ 12.67 g)、巴马汀(0.25 ~ 17.09 g)。  结论  细叶小檗根、茎和果这3个部位对供试菌株有较强的抑菌作用,叶抑菌效果稍弱。4个不同生长部位基本生物碱单体种类相同,但含量存在显著差异。当生物碱质量浓度为60 g/L时,纯化前不同部位抑菌作用强弱次序为果 > 根 > 茎 > 叶;纯化后不同部位抑菌作用强弱次序为根 > 茎 > 实 > 叶。

     

  • 图  1  纯化前细叶小檗不同生长部位生物碱对供试菌种的抑制结果

    字母相同表示同质量浓度下各部位抑菌作用差异不显著(P > 0.05),字母不相同表示同质量浓度下各部位抑菌作用差异显著(P < 0.05)。下同。The same letter indicates that there is no significant difference in bacteriostatic effect between different parts of the same concentration (P > 0.05), and different letters indicate that there is significant difference in antibacterial effect among different parts at the same concentration (P < 0.05). The same below.

    Figure  1.  Inhibitory effects of alkaloids from different growth parts of Berberis poiretii on the tested strains before purification

    图  2  纯化后细叶小檗不同生长部位生物碱对供试菌种的抑制结果

    Figure  2.  Inhibitory effects of alkaloids from different growth parts of Berberis poiretii on the tested strains after purification

    图  3  药根碱(a)、巴马汀(b)和小檗碱(c)的化学结构式

    Figure  3.  Chemical structural formulas of jatrorrhizine (a), palmatine (b) and berberine (c)

    表  1  细叶小檗不同生长部位生物碱含量和纯度比较

    Table  1.   Comparison of alkaloid content and purity in different growing parts of Berberis poiretii

    部位 Part含量 Content/g纯度 Purity/%
    纯化前 Before purification纯化后 After purification 纯化前 Before purification纯化后 After purification
    根 Root 9.40 ± 0.32a 17.86 ± 0.26a 9.82 ± 0.44a 19.00 ± 0.23a
    茎 Stem 3.85 ± 0.50c 15.34 ± 0.34b 4.45 ± 0.36b 17.73 ± 0.43ab
    叶 Leaf 4.50 ± 0.64b 11.08 ± 0.16d 4.52 ± 0.31b 11.13 ± 0.25c
    果 Fruit 3.70 ± 0.28c 14.90 ± 0.32c 4.62 ± 0.44b 18.61 ± 0.17bc
    注:本研究以每100 g细叶小檗对应的小檗碱等价质量表示生物碱含量。表中数据为平均值 ± 标准差。列字母相同表示各部位生物碱含量或纯度差异不显著(P > 0.05),字母不相同表示各部位生物碱含量或纯度差异显著(P < 0.05)。下同。Notes: in this study, the alkaloid content is expressed by the equivalent mass of berberine per 100 g of Berberis poiretii. The data in the table are mean ± SD. The same column letters indicate that there is no significant difference in the content or purity of alkaloids in each part (P > 0.05), and different letters indicate that there is significant difference in the content or purity of alkaloids in each part (P < 0.05). The same below.
    下载: 导出CSV

    表  2  纯化前不同部位细叶小檗总生物碱对4种菌最低抑菌质量浓度(MIC)和最低杀菌质量浓度(MBC)的比较

    Table  2.   Comparison of minimum inhibitory mass concentration (MIC) and minimum bactericidal mass concentration (MBC) of Berberis poiretii from different parts before purification g/L

    部位 Part大肠杆菌
    Escherichia coli
    金黄色葡萄球菌
    Staphylococcus aureus
    沙门氏菌
    Salmonella spp.
    枯草芽孢杆菌
    Bacillus subtilis
    MICMBCMICMBCMICMBCMICMBC
    果 Fruit 1.25 2.50 2.50 5.00 1.25 2.50 1.25 2.50
    叶 Leaf 5.00 10.00 5.00 10.00 5.00 10.00 10.00 20.00
    茎 Stem 1.25 2.50 1.25 2.50 1.25 2.50 2.50 5.00
    根 Root 0.63 1.25 0.63 1.25 0.63 1.25 1.25 2.50
    下载: 导出CSV

    表  3  纯化后不同部位细叶小檗总生物碱对4种菌MIC和MBC的比较

    Table  3.   Comparison of MIC and MBC of Berberis poiretii from different parts after purification g/L

    部位 Part大肠杆菌
    Escherichia coli
    金黄色葡萄球菌
    Staphylococcus aureus
    沙门氏菌
    Salmonella spp.
    枯草芽孢杆菌
    Bacillus subtilis
    MICMBCMICMBCMICMBCMICMBC

    Fruit
    2.50 5.00 5.00 10.00 5.00 10.00 2.50 5.00

    Leaf
    5.00 10.00 5.00 10.00 5.00 10.00 5.00 10.00

    Stem
    0.63 1.25 1.25 2.50 0.63 1.25 1.25 2.50

    Root
    0.31 0.63 0.31 0.63 0.63 1.25 0.63 1.25
    下载: 导出CSV

    表  4  细叶小檗不同生长部位生物碱种类和含量比较

    Table  4.   Comparison of alkaloid types and contents in different growth parts of Berberis poiretii g

    部位 Part小檗碱 Berberine药根碱 Jatrorrhizine巴马汀 Palmatine
    纯化前
    Before purification
    纯化后
    After purification
    纯化前
    Before purification
    纯化后
    After purification
    纯化前
    Before purification
    纯化后
    After purification
    根 Root 20.19 ± 0.68a 41.69 ± 0.27a 8.28 ± 0.38a 12.67 ± 0.32a 10.36 ± 0.42a 17.09 ± 0.62a
    茎 Stem 4.26 ± 0.31b 10.18 ± 0.38b 4.34 ± 0.29b 10.34 ± 0.33b 4.10 ± 0.63b 10.44 ± 0.51b
    叶 Leaf 0.23 ± 0.72c 0.28 ± 0.19c 1.11 ± 0.17c 0.81 ± 0.42c 0.32 ± 0.25c 0.30 ± 0.42c
    果 Fruit 0.25 ± 0.44c 0.30 ± 0.36c 0.24 ± 0.38d 0.32 ± 0.47d 0.25 ± 0.61c 0.25 ± 0.35c
    下载: 导出CSV

    表  5  纯化前细叶小檗果典型生物碱对4种菌抑菌活性的相关系数

    Table  5.   Correlation coefficients of antibacterial activity of typical alkaloids from Berberis poiretii fruit against four bacteria before purification

    菌种 Strain小檗碱
    Berberine
    巴马汀
    Palmatine
    药根碱
    Jatrorrhizine
    大肠杆菌
    Escherichia coli
    0.972** 0.966** 0.974**
    金黄色葡萄球菌
    Staphylococcus aureus
    0.969** 0.945* 0.951*
    沙门氏菌
    Salmonella spp.
    0.972** 0.967** 0.974**
    枯草芽孢杆菌
    Bacillus subtilis
    0.972** 0.979** 0.974**
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。下同。Notes: ** is significantly correlated at 0.01 level (bilateral),and * is significantly correlated at 0.05 level (bilateral)
    下载: 导出CSV

    表  6  纯化后细叶小檗根典型生物碱对4种菌抑菌活性的相关系数

    Table  6.   Correlation coefficients of antibacterial activity of typical alkaloids from Berberis tenuifolia root against four kinds of bacteria after purification

    菌种 Strain小檗碱
    Berberine
    巴马汀 Palmatine药根碱
    Jatrorrhizine
    大肠杆菌
    Escherichia coli
    0.988** 0.985** 0.975**
    金黄色葡萄球菌
    Staphylococcus aureus
    0.976** 0.958* 0.977**
    沙门氏菌
    Salmonella spp.
    0.988** 0.987** 0.988**
    枯草芽孢杆菌
    Bacillus subtilis
    0.980** 0.943* 0.971**
    下载: 导出CSV
  • [1] 吴秋云, 黄琳, 皮真, 等. 中草药抑菌作用及其机制研究进展[J]. 中兽医医药杂志, 2018, 37(1): 25−29.

    Wu Q Y, Huang L, Pi Z, et al. Research progress of antibacterial activity and mechanism of Chinese herbal medicine[J]. Journal of Traditional Chinese Veterinary Medicine, 2018, 37(1): 25−29.
    [2] Authority E. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010−2011 part A: Listeria monocytogenes prevalence estimates[J]. EFSA Journal, 2013, 12(8): 38−110.
    [3] Ferreira V, Wiedmann M, Teixeira P, et al. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health[J]. Journal of Food Protection, 2014, 77(1): 150−170. doi: 10.4315/0362-028X.JFP-13-150
    [4] 王承瑞, 刘思思, 易有金, 等. 不同来源皂素对常见食源性致病菌的抑菌效果研究[J]. 食品工业科技, 2022, 43(3): 120−127.

    Wang C R, Liu S S, Yi Y J, et al. Study on the antibacterial effects of saponin from different sources on common food-borne pathogens[J]. Science and Technology of Food Industry, 2022, 43(3): 120−127.
    [5] 刘彦辰, 初天舒, 许亮, 等. 细叶小檗的组织构造与显微特征[J]. 辽宁中医药大学学报, 2015, 17(9): 46−49.

    Liu Y C, Chu T S, Xu L, et al. The organizational structure and the microscopic characteristics of Berberis poiretii schneid[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2015, 17(9): 46−49.
    [6] 刘潇雯, 吕伟旗, 陈伟东, 等. 6省13个产地细叶小檗中盐酸小檗碱测定与相关性分析[J]. 中成药, 2021, 43(3): 713−716. doi: 10.3969/j.issn.1001-1528.2021.03.027

    Liu X W, Lü W Q, Chen W D, et al. Determination of berberine hydrochloride in Berberis poiretii from thirteen growing areas in six provinces and municipalities and correlation analysis[J]. Chinese Traditional Patent Medicine, 2021, 43(3): 713−716. doi: 10.3969/j.issn.1001-1528.2021.03.027
    [7] 符群, 张海婷. 半仿生法提取细叶小檗总生物碱及抑菌性研究[J]. 北京林业大学学报, 2018, 40(5): 117−123.

    Fu Q, Zhang H T. Using the method of semi-bionic to extract total alkaloids from Berberis poiretii and to study the antibacterial property[J]. Journal of Beijing Forestry University, 2018, 40(5): 117−123.
    [8] 李香, 汪巍, 邓莹, 等. 三颗针不同炮制、提取方法对糖尿病小鼠血糖、血脂的影响研究[J]. 天然产物研究与开发, 2019, 31(8): 1307−1316.

    Li X, Wang W, Deng Y, et al. Study the effect of Berberis diaphana maxim with different preparation and extraction methods on blood glucose and lipid lever in diabetic mice[J]. Natural Product Research and Development, 2019, 31(8): 1307−1316.
    [9] Ding Y P, Ye X L, Zhu J Y, et al. Structural modification of berberine alkaloid and their hypoglycemic activity[J]. Journal of Functional Foods, 2014, 7: 229−237. doi: 10.1016/j.jff.2014.02.007
    [10] 刘洋, 冉聪, 游桂香, 等. 川黄柏中盐酸小檗碱HPLC测定优化及其抑菌活性评价[J]. 中国农业科技导报, 2020, 22(2): 179−186.

    Liu Y, Ran C, You G X, et al. Determination of berberine hydrochloride in crystal of Phellodendron chinensis by HPLC and evaluation of bacteriostatic activity[J]. Journal of Agricultural Science and Technology, 2020, 22(2): 179−186.
    [11] 徐澜, 许朝花, 李婧菡. 忻州本地黄连小檗碱的提取及其抑菌性[J]. 分子植物育种, 2019, 17(24): 8271−8278.

    Xu L, Xu C H, Li J H. Extraction and bacteriostasis of berberine in Chinese rhizoma Coptis chinensis Franch in Xinzhou[J]. Molecular Plant Breeding, 2019, 17(24): 8271−8278.
    [12] Alam P, Parvez M K, Arbab A H, et al. Inter-species comparative antioxidant assay and HPTLC analysis of sakuranetin in the chloroform and ethanol extracts of aerial parts of Rhus retinorrhoea and Rhus tripartita[J]. Pharmaceutical Biology, 2017, 55(1): 1450−1457. doi: 10.1080/13880209.2017.1304428
    [13] 吴莉莉, 白术杰, 王书红, 等. 细叶小檗叶中总黄酮含量测定[J]. 黑龙江医药科学, 2020, 43(5): 19−20. doi: 10.3969/j.issn.1008-0104.2020.05.006

    Wu L L, Bai S J, Wang S H, et al. Determination of total flavone content in barberry leaf[J]. Heilongjiang Medicine and Pharmacy, 2020, 43(5): 19−20. doi: 10.3969/j.issn.1008-0104.2020.05.006
    [14] 席国萍, 宋国斌. 大孔吸附树脂分离纯化黄连小檗碱研究[J]. 中国医药导报, 2011, 8(5): 44−46. doi: 10.3969/j.issn.1673-7210.2011.05.020

    Xi G P, Song G B. Study on separation and purification of berberine in Coptis chinensis by macroporous adsorption resin[J]. China Medical Herald, 2011, 8(5): 44−46. doi: 10.3969/j.issn.1673-7210.2011.05.020
    [15] 罗佳, 马若克, 符韵林, 等. 观光木果实黄酮类成分的初步鉴定及抗氧化活性分析[J]. 森林工程, 2021, 37(6): 53−61. doi: 10.3969/j.issn.1006-8023.2021.06.008

    Luo J, Ma R K, Fu Y L, et al. Preliminary identification and antioxidant activity analysis of flavonoids in the fruit of Tsoongiodendron odorum[J]. Forest Engineering, 2021, 37(6): 53−61. doi: 10.3969/j.issn.1006-8023.2021.06.008
    [16] 胡冬华, 袁绪富. 黄连素的提取及分子活性部位研究[J]. 长春中医学院学报, 2006, 22(1): 67.

    Hu D H, Yuan X F. Study on extraction and molecular active sites of berberine[J]. Academic Periodical of Changchun College of Traditional Chinese Medicine, 2006, 22(1): 67.
    [17] 包怡红, 曹伟华, 符群, 等. 细叶小檗总生物碱的抑菌活性及热降解动力学[J]. 现代食品科技, 2020, 36(3): 29−37.

    Bao Y H, Cao W H, Fu Q, et al. Antimicrobial activity and thermal degradation kinetics of total alkaloids from Berberis poiretii[J]. Modern Food Science & Technology, 2020, 36(3): 29−37.
    [18] 樊梓鸾, 张艳东, 张华, 等. 红松松针精油抗氧化和抑菌活性研究[J]. 北京林业大学学报, 2017, 39(8): 98−103.

    Fan Z L, Zhang Y D, Zhang H, et al. Antioxidant and antibacterial activity of essential oil from Pinus koraiensis needles[J]. Journal of Beijing Forestry University, 2017, 39(8): 98−103.
    [19] 吴惠香, 杨华, 赵登奇, 等. 三甲胺柱[5]芳烃的合成及其抑菌性能[J/OL]. 食品科学[2022−02−11]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220125.1901.014.html

    Wu H X, Yang H, Zhao D Q, et al. Synthesis of trimethylamine based cationic pillar[5]arene and study on antibacterial properties[J/OL]. Food Science [2022−02−11]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220125.1901.014.html
    [20] 刘颖, 李世颂, 刘娟. HPLC测定关黄柏中生物碱的含量[J]. 中国实验方剂学杂志, 2013, 19(16): 88−91.

    Liu Y, Li S S, Liu J. Determination of alkaloids in Phellodendri amurensis cortex by HPLC[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2013, 19(16): 88−91.
    [21] 陈祥云, 彭财英, 卢健, 等. 含小檗碱类中草药总生物碱的提取工艺及其药理研究进展[J]. 江西中医药, 2018, 49(9): 68−72.

    Chen X Y, Peng C Y, Lu J, et al. Research progress in extraction technology and pharmacology of total alkaloids from berberine-containing Chinese herbal medicines[J]. Jiangxi Journal of Traditional Chinese Medicine, 2018, 49(9): 68−72.
    [22] 张琳, 陈思含, 任小艳, 等. 不同部位镇坪黄连小檗碱、总生物碱提取与含量测定[J]. 山东化工, 2021, 50(4): 116−119. doi: 10.3969/j.issn.1008-021X.2021.04.040

    Zhang L, Chen S H, Ren X Y, et al. Extraction and determination of total alkaloids and berberine from different parts of Zhenping Coptis chinensis[J]. Shandong Chemical Industry, 2021, 50(4): 116−119. doi: 10.3969/j.issn.1008-021X.2021.04.040
    [23] 黎代余, 冯图, 陈志怡, 等. 毕节产小檗药材不同部位生物碱的含量差异[J]. 贵州农业科学, 2018, 46(12): 113−115. doi: 10.3969/j.issn.1001-3601.2018.12.025

    Li D Y, Feng T, Chen Z Y, et al. Study on the difference of alkaloids content in different parts of Berberis thunbergii in Bijie City[J]. Guizhou Agricultural Sciences, 2018, 46(12): 113−115. doi: 10.3969/j.issn.1001-3601.2018.12.025
    [24] 向前胜, 王宁, 赵越, 等. 青海省3种小檗不同地区、不同部位小檗碱含量的比较研究[J]. 西南农业学报, 2016, 29(1): 54−58.

    Xiang Q S, Wang N, Zhao Y, et al. Comparative study of berberine in various organs of three kinds of Berberis in different areas of Qinghai Province[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(1): 54−58.
    [25] 陈晓斌, 周琴妹, 刘顺, 等. D101型大孔树脂纯化山豆根总生物碱的工艺优选[J]. 中国实验方剂学杂志, 2015, 21(3): 21−23.

    Chen X B, Zhou Q M, Liu S, et al. Optimization of purification technology of total alkaloids from Sophorae tonkinensis radix et rhizoma by D101 macroporous resin[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(3): 21−23.
    [26] 扶雅芬. 工业大麻叶提取物的抑菌活性及其作用机理[D]. 北京: 中国农业科学院, 2021.

    Fu Y F. The antibacterial activity and its principle of the leaf extract from industrial hemp[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
    [27] 张俊顺, 高铭坤, 郭阳, 等. 细叶小檗碱的抑菌稳定性及其对细菌蛋白质的影响[J]. 中国食品学报, 2021, 21(12): 81−87.

    Zhang J S, Gao M K, Guo Y, et al. The antibacterial stability of Berberis poiretii and its effect on bacterial protein[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 81−87.
    [28] Yang C L, Li B, Ge M Y, et al. Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae RS-1[J]. Carbohydrate Research, 2014, 391: 48−54. doi: 10.1016/j.carres.2014.02.025
    [29] 阚玉红, 谢笔钧, 孙智达. 胭脂红番石榴叶黄酮提取物的抑菌活性及其机理[J]. 中国调味品, 2021, 46(12): 159−166,188. doi: 10.3969/j.issn.1000-9973.2021.12.030

    Kan Y H, Xie B Y, Sun Z D. Antibacterial activity and mechanism of flavonoids extracted from leaves of Psidium guajava[J]. China Condiment, 2021, 46(12): 159−166,188. doi: 10.3969/j.issn.1000-9973.2021.12.030
    [30] 杨勇, 叶小利, 李学刚. 4种黄连生物碱的抑菌作用[J]. 时珍国医国药, 2007, 18(12): 3013−3014. doi: 10.3969/j.issn.1008-0805.2007.12.069

    Yang Y, Ye X L, Li X G. Antimicrobial effect of four alkaloids from Coptidis rhizome[J]. Lishizhen Medicine and Materia Medica Research, 2007, 18(12): 3013−3014. doi: 10.3969/j.issn.1008-0805.2007.12.069
    [31] 鄢丹, 肖小河, 金城, 等. 微量量热法研究黄连中小檗碱类生物碱对金黄色葡萄球菌生长代谢的影响[J]. 中国科学: 化学, 2008, 38(6): 487−491.

    Yan D, Xiao X H, Jin C, et al. Effects of berberine alkaloids in Coptis chinensis on growth and metabolism of Staphylococcus aureus by microcalorimetry[J]. Scientia Sinica (Chimica), 2008, 38(6): 487−491.
    [32] 代春美, 彭成, 王伽伯, 等. 微量热法对小檗碱类生物碱抑菌作用的量效关系研究[J]. 中草药, 2010, 41(7): 1136−1139.

    Dai C M, Peng C, Wang J B, et al. Dose-effect relationship of berberine and analogues on antibacterial metabolism of Bacillus shigae by microcalorimetry[J]. Chinese Traditional and Herbal Drugs, 2010, 41(7): 1136−1139.
    [33] 陈巍, 武洲, 田原, 等. 细叶小檗果实的化学成分研究[J]. 亚太传统医药, 2012, 8(3): 23−24. doi: 10.3969/j.issn.1673-2197.2012.03.012

    Chen W, Wu Z, Tian Y, et al. Study on chemical constituents of the fruit of Berberis poiretii Schneid[J]. Asia-Pacific Traditional Medicine, 2012, 8(3): 23−24. doi: 10.3969/j.issn.1673-2197.2012.03.012
    [34] 苏婷. 乌拉草抑菌活性物质及作用机制研究[D]. 长春: 长春中医药大学, 2021.

    Su T. Study on the antimicrobial active substance and its mechanism of action of Carex meyeriana Kunth [D]. Changchun: Changchun University of Chinese Medicine, 2021.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  12
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-06-04
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回