高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能微波处理辐射松木材的抗弯力学性能与损伤演化特征

邢雪峰 李善明 金菊婉 林兰英 周永东 傅峰

邢雪峰, 李善明, 金菊婉, 林兰英, 周永东, 傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220095
引用本文: 邢雪峰, 李善明, 金菊婉, 林兰英, 周永东, 傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220095
Xing Xuefeng, Li Shanming, Jin Juwan, Lin Lanying, Zhou Yongdong, Fu Feng. Bending properties and damage evolution characteristics of high-intensity microwave treated radiata pine lumber[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220095
Citation: Xing Xuefeng, Li Shanming, Jin Juwan, Lin Lanying, Zhou Yongdong, Fu Feng. Bending properties and damage evolution characteristics of high-intensity microwave treated radiata pine lumber[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220095

高能微波处理辐射松木材的抗弯力学性能与损伤演化特征

doi: 10.12171/j.1000-1522.20220095
基金项目: 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2018SY030),国家自然科学基金项目(31700641)
详细信息
    作者简介:

    邢雪峰,博士生。主要研究方向:木材科学。Email:nathanxxf@126.com 地址:100091 北京市海淀区香山路中国林科院木材工业研究所

    责任作者:

    李善明,博士,助理研究员。主要研究方向:木质功能材料。Email:lishanming@caf.ac.cn 地址:同上

  • 中图分类号: S782.31; S781.29

Bending properties and damage evolution characteristics of high-intensity microwave treated radiata pine lumber

  • 摘要:   目的  探究高能微波处理对木材抗弯弹性模量、抗弯强度和弯曲塑性功的影响,并阐明处理材在静态弯曲载荷过程中的损伤演化与破坏规律。  方法  利用高能微波设备,采用60、80、100 kW·h/m3这3组微波能量密度水平对含水率为50% ~ 70%的辐射松锯材进行处理。在声发射(AE)系统的实时监测下进行三点弯曲抗弯弹性模量、抗弯强度和弯曲塑性功的测试,并且结合试件断裂破坏截面形貌与AE参数特征分析对比处理材与未处理材在不同加载阶段的损伤演化。  结果  未处理材抗弯弹性模量和抗弯强度平均值分别为5 520和61.7 MPa,高能微波处理材的抗弯弹性模量和抗弯强度平均变化率均小于10%。但高能微波处理均显著提高了木材的弯曲塑性功。相较于未处理材,60和100 kW·h/m3处理材的弯曲塑性功分别提高了12%和16%;而80 kW·h/m3处理材的弯曲塑性功最大,相较于未处理材的提高了22%。AE测试结果显示:随着微波能量密度的增加,处理材AE信号首次出现时间不断提前,首个损伤稳定增长阶段的持续时间、塑性变形阶段的累计振铃计数增长速率、幅度和能量活跃度逐渐增加。由此表明,在弯曲载荷作用的过程中,处理材拥有更高的损伤增长速率与应力重组效率,细胞壁产生了更多的屈曲与坍塌破坏,木材内部裂纹迅速扩展,减弱了应力集中效应,因而在一定程度上增加了木材弯曲塑性功。试件破坏形貌验证了AE测试结果,与未处理材相比,处理材的拉伸区域、中性层与压缩区域的断面形貌更加粗糙。  结论  适当的高能微波处理可在仅小幅改变木材抗弯弹性模量、抗弯强度的前提下,显著提高木材弯曲塑性功,将为高能微波处理材的应用提供新思路。研究方法与结果能够有效地展示高能微波处理材的损伤演化特征,并将为木质材料损伤演化的相关研究提供参考。

     

  • 图  1  实验室自建隧道式微波处理木材设备

    Figure  1.  Self built tunnel microwave wood treatment equipment in the laboratory

    图  2  三点弯曲–声发射(AE)试验与断面形貌取样位置示意图

    Figure  2.  Schematic illustration of three-point static bending and acoustic emission (AE) testing system and sampling position of cross-section topography

    图  3  不同微波能量密度处理的3组试件弯曲载荷–时间曲线与AE(累计)振铃计数

    Figure  3.  Loading force-time curve and AE (accumulative) ringing counts during bending test of 3 groups of specimens treated with different microwave energy densities

    图  4  不同微波能量密度处理的3组试件弯曲载荷–时间曲线与AE幅度、能量

    Figure  4.  Loading force-time curves and AE amplitude, energy during bending test of 3 groups ofspecimens under different microwave treatment conditions

    图  5  试件破坏形态与断面

    Figure  5.  Failure pattern and section of specimens

    图  6  试件破坏断面形貌图

    Figure  6.  Fracture morphology of specimens

    表  1  高能微波处理材抗弯性能和弯曲塑性功

    Table  1.   Modulus of elasticity, bending strength and bending plastic work of radiata pine underdifferent microwave treatment conditions

    能量密度
    Energy density/(kW·h·m−3)
    试件数
    Number of specimen
    密度
    Density/(g·cm−3)
    抗弯弹性模量
    Modulus of elasticity/MPa
    抗弯强度
    Bending strength/MPa
    弯曲塑性功
    Bending plastic work/mJ
    未处理 Untreated440.47 (3.0%)5 520 (15.71%)61.7 (10.35%)9 074.23 (15.27%)
    60460.48 (3.6%)6 100 (16.35%)67.4 (16.32%)10 161.80 (11.27%)
    80390.48 (4.0%)5 650 (18.7%)65.8 (12.58%)11 059.07 (12.83%)
    100410.48 (4.3%)5 010 (23.7%)59.8 (14.6%)10 530.44 (16.17%)
    注: 括号内为变异系数。Note: data in brackets are variation coefficients.
    下载: 导出CSV
  • [1] Liu H H, Wang Q W, Yang L, et al. Modification of larch wood by intensive microwave irradiation[J]. Journal of Forestry Research, 2005, 16(3): 237−240. doi: 10.1007/BF02856823
    [2] Antti A L, Perré P. A microwave applicator for on line wood drying: temperature and moisture distribution in wood[J]. Wood Science and Technology, 1999, 33(2): 123−138. doi: 10.1007/s002260050104
    [3] 宋魁彦, 李坚. 水热–微波处理对榆木软化和顺纹压缩及弯曲的影响[J]. 林业科学, 2009, 45(10): 120−125. doi: 10.11707/j.1001-7488.20091020

    Song K Y, Li J. Effect of hydrothermal-microwave treatment on softening and longitudinal compressing and bending elm wood[J]. Scientia Silvae Sinicae, 2009, 45(10): 120−125. doi: 10.11707/j.1001-7488.20091020
    [4] Peres M D, Delucis R D A, Gatto D A, et al. Mechanical behavior of wood species softened by microwave heating prior to bending[J]. European Journal of Wood & Wood Products, 2016, 74(2): 143−149.
    [5] 何盛, 于辉, 吴再兴, 等. 微波处理对樟子松木材液体浸注性能影响[J]. 微波学报, 2016, 32(6): 90−96.

    He S, Yu H, Wu Z X, et al. Effect of microwave treatment on liquid impregnate property of Pinus sylvestris L. var lumber[J]. Journal of Microwaves, 2016, 32(6): 90−96.
    [6] 胡嘉裕, 刘元, 喻胜飞, 等. 微波预处理对杨木活性染料染色效果的影响[J]. 中南林业科技大学学报, 2015, 35(12): 123−126. doi: 10.14067/j.cnki.1673-923x.2015.12.022

    Hu J Y, Liu Y, Yu S F, et al. Effects of microwave pretreatment on poplar veneer dyeing with reactive dyes[J]. Journal of Central South University of Forestry & Technology, 2015, 35(12): 123−126. doi: 10.14067/j.cnki.1673-923x.2015.12.022
    [7] 何盛, 傅峰, 林兰英, 等. 微波处理技术在木材功能化改性研究中的应用[J]. 世界林业研究, 2014, 27(1): 62−67. doi: 10.13348/j.cnki.sjlyyj.2014.01.011

    He S, Fu F, Lin L Y, et al. Research progress in functional modification of microwave treated wood[J]. World Forestry Research, 2014, 27(1): 62−67. doi: 10.13348/j.cnki.sjlyyj.2014.01.011
    [8] 徐恩光, 林兰英, 李善明, 等. 木材微波处理技术与应用进展[J]. 木材工业, 2020, 34(1): 20−24, 29. doi: 10.19455/j.mcgy.20200105

    Xu E G, Lin L Y, Li S M, et al. Wood microwave treatment technology and its applications[J]. China Wood Industry, 2020, 34(1): 20−24, 29. doi: 10.19455/j.mcgy.20200105
    [9] 方瑞, 陈金永, 师希望, 等. 五种木材顺纹抗弯性能试验研究[J]. 四川建筑科学研究, 2016, 42(6): 16−20. doi: 10.3969/j.issn.1008-1933.2016.06.004

    Fang R, Chen J Y, Shi X W, et al. Experimental study of bending properties parallel to grain of five wood species[J]. Sichuan Building Science, 2016, 42(6): 16−20. doi: 10.3969/j.issn.1008-1933.2016.06.004
    [10] Koman S, Feher S, Abraham J, et al. Effect of knots on the bending strength and the modulus of elasticity of wood[J]. Wood Research, 2013, 58(4): 617−626.
    [11] 冯上环. 不同温度条件下白桦和水曲柳木材横纹弯曲及应力松弛性能研究[D]. 北京: 中国林业科学研究院, 2010.

    Feng S H. Bending properties perpendicular to grain and stress relaxation of birch and ash at different temperature conditions[D]. Beijing: Chinese Academy of Forestry, 2010.
    [12] 高珊, 王立海, 王喜平. 温度及水分状态对美国红松弯曲弹性模量的影响[J]. 林业科技开发, 2014, 28(4): 38−42. doi: 10.13360/j.issn.1000-8101.2014.04.010

    Gao S, Wang L H, Wang X P. The influence of temperature and moisture contents on modulus of elasticity of Pinus koraicnsis wood[J]. China Forestry Science and Technology, 2014, 28(4): 38−42. doi: 10.13360/j.issn.1000-8101.2014.04.010
    [13] 李珠, 蒋佳荔. 木材湿−热−力改性技术研究进展[J]. 世界林业研究, 2018, 31(6): 31−35.

    Li Z, Jiang J L. Research progress in thermo-hydro-mechanical processing of wood[J]. World Forestry Research, 2018, 31(6): 31−35.
    [14] Bi W Z, Li H T, Hui D, et al. Effects of chemical modification and nanotechnology on wood properties[J]. Nanotechnology Reviews, 2021, 10(1): 978−1008. doi: 10.1515/ntrev-2021-0065
    [15] 徐恩光, 林兰英, 李善明, 等. 微波处理对樟子松木材化学组分含量影响[J]. 木材工业, 2020, 34(4): 31−37. doi: 10.19455/j.mcgy.20200408

    Xu E G, Lin L Y, Li S M, et al. Effect of microwave treatment on chemical composition of Mongolian scotch pine (Pinus sylvestris var. mongolica Litv.)[J]. China Wood Industry, 2020, 34(4): 31−37. doi: 10.19455/j.mcgy.20200408
    [16] 李善明, 邢雪峰, 林兰英, 等. 高能微波预处理辐射松木材的弯曲性能研究[J]. 木材工业, 2020, 34(5): 1−6. doi: 10.19455/j.mcgy.20200501

    Li S M, Xing X F, Lin L Y, et al. Effect of high energy density microwave pretreatment on bendability of radiata pine (Pinus radiate) wood[J]. China Wood Industry, 2020, 34(5): 1−6. doi: 10.19455/j.mcgy.20200501
    [17] Lamy F, Takarli M, Angellier N, et al. Acoustic emission technique for fracture analysis in wood materials[J]. International Journal of Fracture, 2015, 192(1): 57−70. doi: 10.1007/s10704-014-9985-x
    [18] 涂郡成, 赵东, 赵健. 含LT型裂纹木梁起裂载荷确定方法的试验研究[J]. 林业工程学报, 2020, 5(3): 149−154.

    Tu J C, Zhao D, Zhao J. Experimental study for determining method of cracking load of wooden beams with LT crack[J]. Journal of Forestry Engineering, 2020, 5(3): 149−154.
    [19] Zhang M, Zhang Q, Li J, et al. Classification of acoustic emission signals in wood damage and fracture process based on empirical mode decomposition, discrete wavelet transform methods, and selected features[J]. Journal of Wood Science, 2021, 67(1): 1−13. doi: 10.1186/s10086-021-01990-8
    [20] Wang T, Wang Z, Yang Y, et al. Acoustic emission characteristics of different bamboo and wood materials in bending failure process[J]. Journal of Renewable Materials, 2022, 10(2): 527. doi: 10.32604/jrm.2022.017955
    [21] 赵亓. 出水木质文物损伤演化声发射特征与失稳预测方法及装置研究[D]. 北京: 北京林业大学, 2020.

    Zhao Q. Study on the evolution characteristics and prediction methods of acoustic emission of waterlogged archaeological wooden relic and equipment development[D]. Beijing: Beijing Forestry University, 2020.
    [22] Gaff M, Babiak M. Methods for determining the plastic work in bending and impact of selected factors on its value[J]. Composite Structures, 2018, 202: 66−76. doi: 10.1016/j.compstruct.2017.11.036
    [23] Torgovnikov G, Vinden P. High-intensity microwave wood modification for increasing permeability[J]. Forest Products Journal, 2009, 59(4): 84.
    [24] Chen Z, Gabbitas B, Hunt D. Monitoring the fracture of wood in torsion using acoustic emission[J]. Journal of Materials Science, 2006, 41(12): 3645−3655. doi: 10.1007/s10853-006-6292-6
    [25] 涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142−148. doi: 10.12171/j.1000-1522.20190276

    Tu J C, Zhao D, Zhao J. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142−148. doi: 10.12171/j.1000-1522.20190276
    [26] Baensch F, Sause M G R, Brunner A J, et al. Damage evolution in wood–pattern recognition based on acoustic emission (AE) frequency spectra[J]. Holzforschung, 2015, 69(3): 357−365. doi: 10.1515/hf-2014-0072
    [27] Diakhate M, Bastidas-Arteaga E, Moutou P R, et al. Cluster analysis of acoustic emission activity within wood material: towards a real-time monitoring of crack tip propagation[J]. Engineering Fracture Mechanics, 2017, 180: 254−267. doi: 10.1016/j.engfracmech.2017.06.006
    [28] Varner D, Černý M, Varner M, et al. Possible sources of acoustic emission during static bending test of wood specimens[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2013, 60(3): 199−206. doi: 10.11118/actaun201260030199
    [29] Luimes R A, Suiker A S J, Verhoosel C V, et al. Fracture behaviour of historic and new oak wood[J]. Wood Science and Technology, 2018, 52(5): 1243−1269. doi: 10.1007/s00226-018-1038-6
    [30] Rescalvo F J, Morillas L, Valverde-Palacios I, et al. Acoustic emission in I-214 poplar wood under compressive loading[J]. European Journal of Wood and Wood Products, 2020, 78(1): 723−732.
    [31] Wang D, Lin L, Fu F, et al. The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading[J]. Wood Science and Technology, 2019, 53(6): 1295−1310. doi: 10.1007/s00226-019-01132-w
    [32] Liu M, Li C, Wang Q. Microstructural characteristics of larch wood treated by high-intensity microwave[J]. BioResources, 2019, 14(1): 1174−1184.
    [33] 翁翔. 微波处理对杉木干燥特性的影响机制研究[D]. 北京: 中国林业科学研究院, 2020.

    Weng X. Study on the influence mechanism of microwave treatment on drying characteristics of Chinese fir wood [D]. Beijing: Chinese Academy of Forestry, 2020.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  11
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 录用日期:  2022-07-13
  • 修回日期:  2022-07-13
  • 网络出版日期:  2022-07-18

目录

    /

    返回文章
    返回