高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刺槐苗木碳水生理参数对长期干旱及复水的响应变化

金思雨 彭祚登

金思雨, 彭祚登. 刺槐苗木碳水生理参数对长期干旱及复水的响应变化[J]. 北京林业大学学报, 2023, 45(8): 43-56. doi: 10.12171/j.1000-1522.20220096
引用本文: 金思雨, 彭祚登. 刺槐苗木碳水生理参数对长期干旱及复水的响应变化[J]. 北京林业大学学报, 2023, 45(8): 43-56. doi: 10.12171/j.1000-1522.20220096
Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. doi: 10.12171/j.1000-1522.20220096
Citation: Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. doi: 10.12171/j.1000-1522.20220096

刺槐苗木碳水生理参数对长期干旱及复水的响应变化

doi: 10.12171/j.1000-1522.20220096
基金项目: “十三五”国家重点研发计划(2017YFD0600503)
详细信息
    作者简介:

    金思雨。主要研究方向:森林培育理论与技术研究。Email:jinsiyu397775@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    彭祚登,博士,教授。主要研究方向:森林培育理论与技术研究。Email:zuodeng@sina.com 地址:同上

  • 中图分类号: S718.43

Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration

  • 摘要:   目的  探究刺槐如何应对气候变化引起的干旱与恢复,了解其在干旱及复水期间水分状况变化、非结构性碳水化合物(NSC)平衡分配策略和生理生化响应机制,为揭示全面气候变化背景下刺槐林生产力衰退的生理学机制以及为刺槐林培育的水分管理提供理论参考。  方法  本研究采用自然干旱试验方法,设置正常供水和自然干旱处理,测定1年生刺槐苗在干旱导致全部落叶期间及复水后新叶长成时苗木的水分状况、压力−容积曲线参数、非结构性碳和抗氧化酶活性等生理指标,比较不同处理及干旱时期对刺槐生理参数的影响。  结果  刺槐处于轻度干旱时期,叶中淀粉的积累和细胞维持膨压能力增加,根和叶内的渗透调节和部分抗氧化防御机制也开始启动。中度干旱时期,叶的淀粉转化为可溶性糖增加,脯氨酸(Pro)含量显著增加,以改善渗透调节和应对干旱压力;同时根内抗坏血酸过氧化物酶(APX)、超氧化物岐化酶(SOD)、过氧化物酶(POD)活性均达到峰值,渗透调节及抗氧化防御机制全面启动。刺槐处于重度干旱时期时,根内淀粉、NSC含量均呈上升趋势,NSC由可溶性糖(SS)发挥渗透调节作用逐渐转为增加淀粉(Sta)的积累。复水后根和茎储存NSC显著降低。  结论  干旱胁迫可显著抑制刺槐苗木的生长,并对其水分运输、碳代谢及其他生理生化反应产生了显著影响。当干旱胁迫超过中度干旱时,刺槐幼苗的生理适应性降低。干旱胁迫的增强,可能导致碳水化合物的净损失,重度干旱时期,刺槐苗木将更多的NSC从叶中分配到根,NSC也由主要发挥渗透调节功能逐渐转为储存功能,以用作复水后水力传导的修复与重建。

     

  • 图  1  干旱胁迫和复水期间刺槐叶片凌晨和正午水势的变化

    不同大写字母表示同一时间各处理间在0.05水平上差异显著;不同小写字母表示同一处理的不同干旱时间在0.05水平上差异显著。下同。 Different capital letters indicate significant difference at 0.05 level among different drought stress treatments at the same time; different small letters indicate significant difference at 0.05 level among different drought times in the same treatment. The same below.

    Figure  1.  Changes of predawn and midday leaf water potential of Robinia pseudoacacia during different drought stress and rehydration periods

    图  2  干旱胁迫和复水期间不同器官中非结构性碳水化合物含量的变化

    Figure  2.  Changes of non-structural carbohydrate content in different organs during drought stress and rehydration periods

    图  3  干旱胁迫和复水期间不同器官中脯氨酸含量的变化

    Figure  3.  Changes of proline carbohydrate contents in different organs during drought stress and rehydration periods

    图  4  干旱胁迫和复水期间不同器官中可溶性蛋白含量的变化

    Figure  4.  Changes of soluble protein contents in different organs during drought stress and rehydration periods

    图  5  干旱胁迫和复水期间不同器官中MDA、ASA、APX含量的变化

    Figure  5.  Changes of MDA, ASA, APX contents in different organs during drought stress and rehydration periods

    图  6  干旱胁迫和复水期间不同器官中抗氧化酶活性的变化

    Figure  6.  Changes of antioxidant enzymes activities in different organs during drought stress and rehydration periods

    表  1  干旱胁迫和复水期间土壤水分状况变化

    Table  1.   Changes of soil-water content during different periods of drought stress and recovery

    时期
    Stage
    取样日期
    Sampling date
    SWC/%PSWC/%水分梯度
    Water gradient
    视觉特征
    Visual symptoms
    S0 06−30 39.59 ± 0.95b 128 ± 3b 水分充足
    Moisture Sufficiency
    叶片正常
    The leaves of the plants are normally developed
    S15 07−15 20.13 ± 2.85c 65 ± 9c 轻度干旱
    Light drought
    新叶萎蔫,下部叶片发黄
    The new leaves begin to fade and their lower leaves turn yellow
    S25 07−25 16.08 ± 0.52cd 52 ± 2cd 中度干旱
    Moderate drought
    下部叶片全凋落
    The lower leaves fall off completely
    S30 07−30 15.90 ± 0.66cd 51 ± 2cd 中度干旱
    Moderate drought
    上部50%叶片萎蔫
    50% of the upper leaves wither away
    S35 08−04 12.14 ± 0.89de 39 ± 3de 重度干旱
    Severe drought
    上部50%叶片凋落
    50% of the upper leaves fall off
    S40 08−09 9.60 ± 0.58e 31 ± 2e 重度干旱
    Severe drought
    上部70%叶片凋落
    70% of the upper leaves fall off
    S60 08−29 9.49 ± 0.30e 31 ± 1e 重度干旱
    Severe drought
    几乎全部落叶
    Almost all fallen leaves
    R20 09−18 45.86 ± 4.50a 148 ± 15a 复水
    Rehydration
    基部萌发新叶
    New leaves germinating at the base
    R40 10−08 36.86 ± 3.82b 119 ± 12b 复水
    Rehydration
    上部新叶展开
    Upper new leaf unfolding
    注:SWC代表土壤质量含水量,PSWC代表植物有效土壤含水量。S0、S15、S25、S30、S35、S40、S60分别代表停止水分处理的第0、15、25、30、35、40、60天,R20、R40代表复水后的第20和40天。不同小写字母表示不同干旱时间在0.05水平上差异显著(P < 0.05)。下同。Notes: SWC stands for soil water content, and PSWC stands for plant available soil water content. S0, S15, S25, S30, S35, S40, and S60 represent the 0,15, 25, 30, 35, 40, and 60 days after stopping watering, respectively, and R20 and R40 represent the 20 and 40 days after starting rewatering. Different small letters indicate significant difference at 0.05 level among different drought periods. The same below.
    下载: 导出CSV

    表  2  干旱胁迫和复水期间苗木形态变化

    Table  2.   Morphological changes of Robinia pseudoacacia seedlings during different drought stress and rehydration periods

    时期 Stage地径
    Ground diameter/mm
    叶片数目 Leaf number
    CK干旱胁迫 Drought stressCK干旱胁迫 Drought stress
    S0 12.70 ± 0.41c 12.70 ± 0.41a 39 ± 4b 39 ± 4b
    S15 13.65 ± 0.19bc 13.84 ± 0.84a 54 ± 2ab 47 ± 6a
    S25 14.58 ± 0.39ab 14.40 ± 0.96a 60 ± 5ab 47 ± 4a
    S35 14.81 ± 0.24ab 14.42 ± 0.96a 62 ± 7a 22 ± 2c
    S40 14.89 ± 0.29ab 14.42 ± 0.97a 63 ± 7a 18 ± 5cd
    S60 15.28 ± 0.65a 14.46 ± 0.87a 67 ± 12a 1 ± 2f
    R20 15.87 ± 1.42a 14.46 ± 0.87a 70 ± 16a 5 ± 2ef
    R40 15.97 ± 0.44a 14.46 ± 1.00a 52 ± 14ab 11 ± 2de
    下载: 导出CSV

    表  3  干旱胁迫和复水期间基于P-V曲线计算的水分参数

    Table  3.   Parameters of P-V curves during different drought stress and rehydration periods

    时期 StageWCinternal/%Rs/%Ra/%Ra/RsRWCtlp/%ψtlp/MPaψsat/MPa
    S0 305.0 ± 10.0b289.3 ± 10.3a15.7 ± 1.5b0.055 ± 0.006b34.2 ± 3.7bc−0.882 ± 0.075a−0.250 ± 0.013a
    S15309.1 ± 11.7b296.3 ± 13.4a12.9 ± 3.2b0.044 ± 0.012bc58.2 ± 5.9a−1.285 ± 0.186c−0.750 ± 0.064c
    S25315.8 ± 14.4b308.8 ± 14.3a7.1 ± 1.0c0.023 ± 0.004d32.1 ± 4.5c−1.696 ± 0.110d−0.494 ± 0.071b
    S35256.3 ± 9.2c249.6 ± 7.2b6.7 ± 2.1c0.027 ± 0.008cd20.0 ± 0.5d−1.035 ± 0.021ab−0.185 ± 0.006a
    R25352.9 ± 11.4a289.8 ± 8.1a63.1 ± 3.4a0.217 ± 0.007a42.7 ± 4.4b−1.207 ± 0.064bc−0.415 ± 0.035b
    注:WCinternal代表叶片组织内部饱和含水量,Rs代表叶片共质体水含量,Ra代表质外体水含量,Ra/Rs代表叶片质外体含水量和共质体含水量的比值,ψtlp代表叶片膨压损失点的渗透势,RWCtlp代表膨压损失点的相对含水量,ψsat代表叶片的饱和渗透势。Notes: WCinternal represents the saturated water content in the leaf. Rs represents the symplast water content in the leaf. Ra represents the water content in the leaf ectoplasmic body. Ra/Rs represents the ratio of the water content in the leaf extoplasmic body to the water content in the symplast. ψtlp represents the osmotic potential at the turgor pressure loss point of the leaf. RWCtlp represents the relative water content at the turgor pressure loss point. ψsat represents the saturated permeation potential of the blade.
    下载: 导出CSV
  • [1] Dai A G. Drought under global warming: a review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45−65. doi: 10.1002/wcc.81
    [2] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660−684. doi: 10.1016/j.foreco.2009.09.001
    [3] Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality[J]. Nature Ecology & Evolution, 2017, 1(9): 1285−1291.
    [4] Adams H D, Guardiola-Claramonte M, Barron-Gafford G A, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J]. Proceedings of the National Academy of Sciences, 2009, 106(17): 7063−7066. doi: 10.1073/pnas.0901438106
    [5] Savi T, Casolo V, Luglio J, et al. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars[J]. Plant Physiology and Biochemistry, 2016, 106: 198−207. doi: 10.1016/j.plaphy.2016.04.051
    [6] Trifilò P, Casolo V, Raimondo F, et al. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: the possible link between carbon starvation and hydraulic failure[J]. Plant Physiology and Biochemistry, 2017, 120: 232−241. doi: 10.1016/j.plaphy.2017.10.003
    [7] Nate G M, Sanna S. The mechanisms of carbon starvation: how, when, or does it even occur at all?[J]. New Phytologist, 2010, 186(2): 263−264.
    [8] Anna S, Frida P, Günter H. Physiological mechanisms of drought-induced tree mortality are far from being resolved[J]. New Phytologist, 2010, 186(2): 274−281.
    [9] Guo X, Peng C, Li T, et al. The effects of drought and re-watering on non-structural carbohydrates of Pinus tabulaeformis seedlings[J]. Biology, 2021, 10(4): 281.
    [10] Anderegg W R L, Anderegg L D L. Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species[J]. Tree Physiology, 2013, 33(3): 252−260. doi: 10.1093/treephys/tpt016
    [11] Yan W, Zhong Y, Shangguan Z. Rapid response of the carbon balance strategy in Robinia pseudoacacia and Amorpha fruticosa to recurrent drought[J]. Environmental and Experimental Botany, 2017, 138: 46−56. doi: 10.1016/j.envexpbot.2017.03.009
    [12] 刘存海, 李秧秧. 黄龙山南缘典型木本植物叶性状与叶压力−容积曲线参数间的关系[J]. 西北林学院学报, 2013, 28(6): 1−5. doi: 10.3969/j.issn.1001-7461.2013.06.01

    Liu C H, Li Y Y. Relationships between leaf traits and p-v curve parameters in the typical deciduous woody plants occurring in southern Huanglong Mountain[J]. Journal of Northwest Forestry University, 2013, 28(6): 1−5. doi: 10.3969/j.issn.1001-7461.2013.06.01
    [13] Zhang Z, Huang M, Yang Y, et al. Evaluating drought-induced mortality risk for Robinia pseudoacacia plantations along the precipitation gradient on the Chinese Loess Plateau[J]. Agricultural and Forest Meteorology, 2020, 284: 107897. doi: 10.1016/j.agrformet.2019.107897
    [14] Zou X, Zhai P, Zhang Q. Variations in droughts over China: 1951−2003[J]. Geophysical Research Letters, 2005, 32(4): L04707.
    [15] Tyree M T, Hammel H T. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique[J]. Journal of Experimental Botany, 1972, 1(23): 267−282.
    [16] 张晋岚, 张祥雪, 冉苒, 等. 基于植物分割理论的毛白杨干旱落叶研究[J]. 北京林业大学学报, 2020, 42(9): 19−27. doi: 10.12171/j.1000-1522.20190411

    Zhang J L, Zhang X X, Ran R, et al. Leaf shedding of Populus tomentosa under drought stress based on the theory of plant segmentation hypothesis[J]. Journal of Beijing Forestry University, 2020, 42(9): 19−27. doi: 10.12171/j.1000-1522.20190411
    [17] 金鹰. 东北温带森林10种树种叶−茎−根水力和经济性状耦联关系研究[D]. 哈尔滨: 东北林业大学, 2017.

    Jin Y. Coupling relationships of hydraulic and economic traits of leaf-stem-root for 10 tree species in the temperate forest of northeastern China[D]. Harbin: Northeast Forestry University, 2017.
    [18] Schulte P J, Hinckly T M. A comparison of pressure-volume curve data analysis techniques[J]. Journal of Experimental Botany, 1985, 171(36): 1590−1602.
    [19] 段瑞兵, 孙慧珍. 确定P-V曲线中质壁分离点的方法比较[J]. 南京林业大学学报(自然科学版), 2016, 40(4): 89−94.

    Duan R B, Sun H Z. Comparison of different methods for determining the turgor loss point in pressure-volume curves[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(4): 89−94.
    [20] 李彦瑾. 干旱胁迫对六种旱生灌木生长及水分生理特征的影响[D]. 杨凌: 西北农林科技大学, 2008.

    Li Y J. Effects of drought stress on growth and water physiology of six desert shrubs[D]. Yangling: Northwest A&F University, 2008.
    [21] 董琳琳, 普晓妍, 张璐璐, 等. 亚热带森林附生地衣压力−体积曲线分析及其适用性[J]. 植物生态学报, 2021, 3(45): 274−285.

    Dong L L, Pu X Y, Zhang L L, et al. Pressure-volume curve analysis of epiphytic lichens and its applicability in subtropical forests[J]. Chinese Journal of Plant Ecology, 2021, 3(45): 274−285.
    [22] 何兴东, 丛培芳, 高玉葆, 等. 利用压力容积曲线研究四种草本植物的抗旱性[J]. 南开大学学报(自然科学版), 2006, 39(3): 16−22.

    He X D, Cong P F, Gao Y B, et al. Study on drought resistance of four herbs using pressure-volume curve[J]. Acta Scientiarum Naturalium Universities Nankaiensis, 2006, 39(3): 16−22.
    [23] 张婷. 干旱胁迫对刺槐和油松幼苗非结构性碳水化合物的影响[D]. 杨陵: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.

    Zhang T. Effects of drought stress on nonstructural carbohydrates in Robinia pseudoacacia and Pinus tabuliformis saplings[D]. Yangling: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), 2018.
    [24] 孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008.

    Kong X S, Yi X F. Experimental techniques of plant physiology[M]. Beijing: China Agriculture Press, 2008.
    [25] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009.

    Zhang Z L, Qu W J, Li X F. Experimental guidance of plant physiology[M]. Beijing: Higher Education Press, 2009.
    [26] Gutteridge J M C, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems[J]. Trends in Biochemical Science, 1990, 4(15): 129−135.
    [27] 薛设, 王进鑫, 吉增宝, 等. 旱后复水对刺槐苗木叶片保护酶活性和膜质过氧化的影响[J]. 西北农林科技大学学报(自然科学版), 2009, 37(7): 81−85. doi: 10.13207/j.cnki.jnwafu.2009.07.030

    Xue S, Wang J X, Ji Z B, et al. Effect of rewatering on activity of protect enzymes and membrane peroxidation in Robinia pseudoacacia seedling[J]. Journal of Northwest A&F University (Natural Science Edition), 2009, 37(7): 81−85. doi: 10.13207/j.cnki.jnwafu.2009.07.030
    [28] 杨建伟, 梁宗锁, 韩蕊莲. 不同土壤水分状况对刺槐的生长及水分利用特征的影响[J]. 林业科学, 2004,40 (5): 93−98. doi: 10.3321/j.issn:1001-7488.2004.05.015

    Yang J W, Liang Z S, Han R L. Characteristics of growth and water use of Robinia pseudoacacia under different soil water conditions[J]. Scientia Silvae Sinicae, 2004,40 (5): 93−98. doi: 10.3321/j.issn:1001-7488.2004.05.015
    [29] 吴俊文, 刘珊, 李吉跃, 等. 干旱胁迫下广东石漠化地区造林树种光合和耗水特性[J]. 生态学报, 2016, 36(11): 3429−3440.

    Wu J W, Liu S, Li J Y, et al. Photosynthetic and water consumption of tree species utilized for afforestation of rocky desert in Guangdong Province[J]. Acta Ecologica Sinica, 2016, 36(11): 3429−3440.
    [30] 李吉跃. PV技术在油松侧柏苗木抗旱特性研究中的应用[J]. 北京林业大学学报, 1989(1): 3−11.

    Li J Y. Application of pressure-volume curve technology in drought resistance characteristics of Pinus tabulaeformis seedlings[J]. Journal of Beijing Forestry University, 1989(1): 3−11.
    [31] 张林森, 张海亭, 胡景江, 等. 两种苹果砧木根系水力结构及其PV曲线水分参数对干旱胁迫的响应[J]. 生态学报, 2013, 33(11): 3324−3331. doi: 10.5846/stxb201203180367

    Zhang L S, Zhang H T, Hu J J, et al. The response of pressure volume curve water parameters and root system hydraulic architecture of two apple rootstocks to drought stress.[J]. Acta Ecologica Sinica, 2013, 33(11): 3324−3331. doi: 10.5846/stxb201203180367
    [32] 赵亚萍, 赵学敏, 王俊杰, 等. 铅笔柏、侧柏幼树P-V曲线的制作及其应用[J]. 林业科技通讯, 2017(2): 22−25. doi: 10.13456/j.cnki.lykt.2017.02.005

    Zhao Y P, Zhao X M, Wang J J, et al. Producing and applying of P-V curve of young trees of Sabina virginiana and Platycladus orientalis[J]. Forestry Science and Technology, 2017(2): 22−25. doi: 10.13456/j.cnki.lykt.2017.02.005
    [33] Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant, Cell & Environment, 2017, 40(1): 4−10.
    [34] Mitchell P J, O’grady A P, Tissue D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. New phytologist, 2013, 197(3): 862−872. doi: 10.1111/nph.12064
    [35] Nardini A, Gullo M A L, Salleo S. Refilling embolized xylem conduits: is it a matter of phloem unloading?[J]. Plant science (Limerick), 2011, 180(4): 604−611. doi: 10.1016/j.plantsci.2010.12.011
    [36] 张婷, 曹扬, 陈云明, 等. 生长季末期干旱胁迫对刺槐幼苗非结构性碳水化合物的影响[J]. 水土保持学报, 2016, 30(5): 297−304. doi: 10.13870/j.cnki.stbcxb.2016.05.049

    Zhang T, Cao Y, Chen Y M, et al. Effects of drought stress on non-structural carbohydrates of Robinia pseudoacacia saplings at the end of growing season[J]. Journal of Soil and Water Conservation, 2016, 30(5): 297−304. doi: 10.13870/j.cnki.stbcxb.2016.05.049
    [37] Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673−689. doi: 10.1007/s00018-014-1767-0
    [38] Siswoyo T A, Arum L S, Sanjaya B R L, et al. The growth responses and antioxidant capabilities of melinjo (Gnetum gnemon L.) in different durations of drought stress[J]. Annals of Agricultural Sciences, 2021, 66(1): 81−86. doi: 10.1016/j.aoas.2021.05.003
    [39] Qayyum A, Ayoubi S A, Sher A, et al. Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange[J]. Saudi Journal of Biological Sciences, 2021, 28(9): 5238−5249. doi: 10.1016/j.sjbs.2021.05.040
    [40] Laxa M, Liebthal M, Telman W, et al. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants, 2019, 8(4): 94.
    [41] Álvarez S, Rodrìguez P, Broetto F, et al. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity[J]. Agricultural Water Management, 2018, 202: 253−262. doi: 10.1016/j.agwat.2018.01.006
    [42] 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 2014, 34(15): 4223−4233.

    Wu M, Zhang W H, Zhou J Y, et al. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings[J]. Acta Ecologica Sinica, 2014, 34(15): 4223−4233.
    [43] 单长卷, 梁宗锁, 郝文芳, 等. 黄土高原不同立地条件下刺槐生长与水分关系研究[J]. 西北林学院学报, 2004, 19(2): 9−14. doi: 10.3969/j.issn.1001-7461.2004.02.003

    Shan C J, Liang Z S, Hao W F, et al. Relationship between growth of Locust and soil water in the different habitats on the Loess Plateau[J]. Journal of Northwest Forestry University, 2004, 19(2): 9−14. doi: 10.3969/j.issn.1001-7461.2004.02.003
    [44] 张蒙蒙. 干旱胁迫下3个刺槐类型植物叶脉网络结构与光合特性的变化[D]. 合肥: 安徽农业大学, 2019.

    Zhang M M. The changes of leaf vein network structure and photosynthetic characteristics of three Robinia pseudoacacia types under drought stress[D]. Hefei: Anhui Agricultural University, 2019.
    [45] 唐洋, 温仲明, 王杨, 等. 土壤水分胁迫对刺槐幼苗生长、根叶性状和生物量分配的影响[J]. 水土保持通报, 2019, 39(6): 98−105. doi: 10.13961/j.cnki.stbctb.2019.06.014

    Tang Y, Wen Z M, Wang Y, et al. Effects of soil water stress on growth, root and leaf traits, and biomass allocation of Robinia pseudoacacia seedlings[J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 98−105. doi: 10.13961/j.cnki.stbctb.2019.06.014
    [46] 王林, 代永欣, 郭晋平, 等. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用[J]. 林业科学, 2016, 52(6): 1−9.

    Wang L, Dai Y X, Guo J P, et al. Interaction of hydraulic failure and carbon starvation on Robinia pseudoacacia seedlings during drought[J]. Scientia Silvae Sinicae, 2016, 52(6): 1−9.
    [47] Blackman C J, Brodribb T J, Jordan G J. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species[J]. Plant, Cell & Environment, 2009, 32(11): 1584−1595.
    [48] 杨斌. 刺槐幼苗对水分胁迫的响应: 基于生长、生理及非结构性碳的分配与动态[D]. 杨凌: 西北农林科技大学, 2019.

    Yang B. Response of Robinia pseudoacacia seedlings to soil water stress: based on growth, physiology and the allocation and dynamics of non-structural carbohydrates[D]. Yangling: Northwest A&F University, 2019.
    [49] Yang B, Peng C, Zhu Q, et al. The effects of persistent drought and waterlogging on the dynamics of nonstructural carbohydrates of Robinia pseudoacacia L. seedlings in Northwest China[J]. Forest Ecosystems, 2019, 6(1): 23.
    [50] 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理[J]. 生态学报, 2013, 33(18): 5477−5483. doi: 10.5846/stxb201304270839

    Dong L, Li J Y. Relationship among drought, hydraulic metabolic, carbon starvation and vegetation mortality[J]. Acta Ecologica Sinica, 2013, 33(18): 5477−5483. doi: 10.5846/stxb201304270839
    [51] 梁宽, 樊燕, 冯火炬, 等. 不同石灰岩生境淡竹非结构性碳水化合物含量及分配特征[J]. 林业科学, 2019, 55(6): 22−27. doi: 10.11707/j.1001-7488.20190603

    Liang K, Fan Y, Feng H J, et al. Concentration and distribution pattern of non-structural carbohydrate of Phyllostachys glauca in different limestone habitats[J]. Scientia Silvae Sinicae, 2019, 55(6): 22−27. doi: 10.11707/j.1001-7488.20190603
    [52] Mcdowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719−739. doi: 10.1111/j.1469-8137.2008.02436.x
    [53] He W, Liu H, Qi Y, et al. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration[J]. Global Change Biology, 2020, 26(6): 3627−3638. doi: 10.1111/gcb.15078
    [54] 高小锋, 王进鑫, 张波, 等. 不同生长期干旱胁迫对刺槐幼树干物质分配的影响[J]. 生态学杂志, 2010, 29(6): 1103−1108.

    Gao X F, Wang J X, Zhang B, et al. Effects of drought stress on dry matter partitioning of yong Robinia pseudoacacia at its different growth stages[J]. Chinese Journal of Ecology, 2010, 29(6): 1103−1108.
    [55] Galvez D A, Landhausser S M, Tyree M T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation?[J]. Tree Physiology, 2011, 31(3): 250−257. doi: 10.1093/treephys/tpr012
    [56] 唐洋. 黄土丘陵区刺槐关键功能性状与生长对环境变化及胁迫的响应[D]. 杨凌: 西北农林科技大学, 2019.

    Tang Y. Responses of key functional traits and growth of Robinia pseudoacacia on environmental changes and stress in loess hilly-gully region, China[D]. Yangling: Northwest A&F University, 2019.
    [57] Trifilò P, Kiorapostolou N, Petruzzellis F, et al. Hydraulic recovery from xylem embolism in excised branches of twelve woody species: relationships with parenchyma cells and non-structural carbohydrates[J]. Plant Physiology and Biochemistry, 2019, 139: 513−520. doi: 10.1016/j.plaphy.2019.04.013
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  28
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-05-05
  • 录用日期:  2023-07-03
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回