Screening and characteristics of phosphorus solubilizing bacteria in the rhizosphere of Parashorea chinensis plantation
-
摘要:目的 望天树是我国特有的濒危一级保护树种,人工林栽培是扩大其种群数量的重要手段,磷素供应是林木生长发育的主要影响因子,而溶磷菌在磷转化中起到重要作用。本研究从不同林龄望天树人工林根际土壤中筛选高效溶磷细菌,探究其在不同培养条件下的溶磷特点,以期为望天树微生物肥料的开发与应用提供菌种资源和理论依据。方法 (1)利用无机磷固体培养基从不同林龄望天树林分根际土中分离筛选溶磷细菌,挑选4株高效溶磷菌,结合生理生化试验和16SrDNA基因序列对其进行鉴定。(2)通过检测溶磷动态,研究溶磷细菌溶磷量与菌液pH的相关关系。(3)采用单因素试验探究高效溶磷菌在不同环境因子和营养因子下的溶磷特性。结果 (1)共分离筛选出18株溶磷菌,其中溶磷能力较强菌株为P4、P8、P12和P30(溶磷量分别为552.87、559.78、548.53、598.89 mg/L)。(2)经过形态观察、生理生化鉴定及系统发育树分析,菌株P8鉴定为唐菖蒲伯克霍尔德菌,P4和P12鉴定为洋葱伯克霍尔德菌,P30鉴定为蜡状芽孢杆菌。(3)P4、P8、P12和P30菌株的溶磷量与培养液pH值之间均存在极显著的负相关性(P < 0.01),相关系数分别为−0.995、−0.990、−0.985和−0.997。(4)单因素试验结果显示:各溶磷菌株在温度为30 ~ 35 ℃,pH为5.5 ~ 8.5,NaCl质量分数为0 ~ 2.5%,碳(C)源为蔗糖、乳糖和葡萄糖,氮(N)源为草酸铵和硫酸铵时,表现出较好的溶磷效果;菌株P30、P12和P4最适C∶N为20∶1,P8最适合C∶N为40∶1;菌株P12最佳磷源为FePO4,P30、P8和P4最佳磷源均为Ca3(PO4)2。结论 不同培养条件会显著影响溶磷细菌的溶磷能力,筛选得到的4株高效溶磷菌具有良好的溶磷能力,且能够溶解多种难溶性无机磷酸盐,可用于望天树专用微生物肥料的研发,具有良好的应用潜力。Abstract:Objective The Parashorea chinensis is an endemic and endangered species in China, and it is classified as a class Ⅰ protected wild plant. Plantation cultivation is an important means to expand its populations. Phosphorus (P) supply is a major influence on tree growth and development, and P dissolving bacteria plays an important role in P transformation. This research aimed to screen high-efficient phosphate-solubilizing bacteria (PSB) from the rhizosphere soil of P. chinensis plantations of different ages, and explore its P-solubilizing characteristics, so as to provide bacterial resources and culture conditions for the development of microbial fertilizer suitable of P. chinensis.Method (1) PSB was isolated and screened from the rhizosphere soil of P. chinensis in different ages by inorganic P solid medium. The physiological and biochemical tests and 16S rDNA gene sequence were used to further identify 4 strains of PSB. (2) The relationship between the amount of P dissolved by PSB and the pH of the bacterial solution was studied by detecting the dynamics of P solubilization. (3) A single factor experiment was conducted to investigate the P-solubilizing characteristics of high efficiency PSB under different environmental and nutritional factors.Result (1) A total of 18 strains of phosphorus solubilizing bacteria were isolated and screened, and the 4 strains with the strongest P-solubilizing capacity were P4, P8, P12 and P30 (P-solubilizing capacity was 552.87, 559.78, 548.53 and 598.89 mg/L, respectively). (2) Strain P8 was identified as Burkholderia gladioli, P4 and P12 as Burkholderia cepacia, and P30 as Bacillus cereus by physiological, biochemical identification and combined with phylogenetic tree analysis. (3) There was a highly significant (P < 0.01) negative correlation between the pH of the cultures and the amount of phosphorus dissolved by the P4, P8, P12 and P30 strains, with correlation coefficients of −0.995, −0.990, −0.985 and −0.997, respectively. (4) The results of single factor test showed that the PSBs had the preferable P-solubilizing effects at a temperature of 30−35 ℃, the pH of 5.5−8.5, the NaCl mass fraction was 0−2.5%, the carbon (C) sources were sucrose, lactose and glucose, and the nitrogen (N) sources were ammonium oxalate and ammonium sulfate. The optimal C∶N of strain P30, P12 and P4 was 20∶1, and that of P8 was 40∶1. The optimal P source for strain P12 was FePO4, and Ca3(PO4)2 for P30, P8 and P4.Conclusion The P-solubilizing ability of PSBs can be significantly affected under different culture conditions. The 4 strains of high efficiency PSB have preferable P-solubilizing ability, which can dissolve a variety of insoluble inorganic phosphates. Therefore, it is expected to provide germplasm resources for the development of high-efficiency microbial phosphate fertilizers with a good application potential.
-
-
图 8 不同碳源对溶磷菌溶磷能力的影响
GL. 葡萄糖;SU. 蔗糖;L. 乳糖;SS. 可溶性淀粉;MAN. 甘露醇。不同小写字母表示同一菌株在不同条件下溶磷量差异显著(P < 0.05)。下同。GL, glucose; SU, sucrose; L, lactose; SS, soluble starch; MAN, mannitol. Different lowercase letters indicate that the phosphate solubilizing ability of the same strain under different treatments is significantly different (P < 0.05). The same below.
Figure 8. Effects of different carbon sources on phosphorus dissolving ability of phosphorus dissolving bacteria
表 1 试验地林分特征与土壤理化性质
Table 1 Stand characteristics and soil physicochemical properties of the experimental sites
林龄/a
Stand age/year平均树高
Average tree height/m平均胸径(地径)
Average DBH
(ground diameter)/cmpH 含量 Content 全氮
Total N/(g·kg−1)全磷
Total P/(g·kg−1)全钾
Total K/(g·kg−1)氨态氮
Ammoniacal N/(mg·kg−1)有效磷
Available P/(mg·kg−1)速效钾
Available K/(mg·kg−1)1 1.72 2.28 4.53 1.52 0.32 9.44 6.66 3.58 40.47 2 2.20 3.16 3.49 2.06 0.23 6.60 6.12 5.10 72.74 41 40.60 48.70 3.69 2.04 0.78 11.90 3.13 2.63 61.19 表 2 溶磷细菌的初筛结果
Table 2 Preliminary screening results of phosphate solubilizing bacteria
林龄/a
Stand age/year菌株编号
Strain No.D/d 林龄/a
Stand age/year菌株编号
Strain No.D/d 1 P1 1.28 ± 0.05f 2 P13 1.02 ± 0.03i 1 P2 1.55 ± 0.09d 2 P14 1.17 ± 0.05h 1 P3 1.62 ± 0.04c 2 P15 2.04 ± 0.03b 1 P4 2.03 ± 0.03b 41 P25 2.05 ± 0.02b 2 P8 2.12 ± 0.02a 41 P26 1.35 ± 0.07ef 2 P9 1.41 ± 0.02e 41 P27 1.20 ± 0.04gh 2 P10 2.01 ± 0.01b 41 P28 1.32 ± 0.02f 2 P11 1.52 ± 0.02d 41 P29 1.27 ± 0.02fg 2 P12 2.18 ± 0.01a 41 P30 2.04 ± 0.02b 注:D 表示溶磷圈直径,d表示菌落直径。同列数值后不同字母表示处理间差异显著(P < 0.05)。Notes: D means soluble phosphorus diameter, d means colony diameter. Different letters in the same column mean significant differences at P < 0.05 level. 表 3 溶磷细菌的生理生化鉴定
Table 3 Physiological and biochemical identification of phosphate solubilizing bacteria
菌株编号
Strain No.V-P反应
Voges-Proskauer reaction明胶液化
Gelatin hydrolysis淀粉水解
Amylolysis柠檬酸盐
Citrate吲哚试验
Indole production反硝化
DenitrificationP4 − + − + − − P8 − + − + − − P12 − + − + − − P30 + + + + + − 注: + 表示阳性反应;−表示阴性反应。Notes: + indicates positive reaction; − indicates negative reaction. 表 4 基于16S rDNA 序列鉴定结果
Table 4 Identification based on 16S rDNA sequence
菌株编号
Strain No.模式菌株
Type strain相似性
Identity/%登录号
Accession No.P4 洋葱伯克霍尔德菌 Burkholderia cepacia 99.79 AY741348.1 P8 唐菖蒲伯克霍尔德菌 Burkholderia gladioli 99.65 MW320460.1 P12 洋葱伯克霍尔德菌 Burkholderia cepacia 99.79 FJ907187.1 P30 蜡状芽孢杆菌 Bacillus cereus 99.72 EU857430.1 -
[1] Schroder J J, Smit A L, Cordell D, et al. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use[J]. Chemosphere, 2011, 84(6): 822−831. doi: 10.1016/j.chemosphere.2011.01.065
[2] 周德贵, 周少川, 王重荣, 等. 植物磷利用研究在水稻分子设计育种中的应用[J]. 分子植物育种, 2018, 16(16): 5386−5396. Zhou D G, Zhou S C, Wang C R, et al. Application of the study of plant phosphorus utilization in rice molecular design breeding[J]. Molecular Plant Breeding, 2018, 16(16): 5386−5396.
[3] 曲均峰, 戴建军, 徐明岗, 等. 长期施肥对土壤磷素影响研究进展[J]. 热带农业科学, 2009, 29(3): 75−80. Qu J F, Dai J J, Xu M G, et al. Advances on effects of long-term fertilization on soil phosphorus[J]. Chinese Journal of Tropical Agriculture, 2009, 29(3): 75−80.
[4] 赵小蓉, 林启美. 微生物解磷的研究进展[J]. 中国土壤与肥料, 2001, 38(3): 7−11. Zhao X R, Lin Q M. A review of phosphate-dissolving microorganisms[J]. Soils and Fertilizers Sciences in China, 2001, 38(3): 7−11.
[5] Khan M S, Zaidi A, Wani P A. A role of phosphate-solubilizing microorganisms in sustainable agriculture: a review[J]. Agronomy for Sustainable Development, 2007, 27(1): 29−43. doi: 10.1051/agro:2006011
[6] 杨艳菊, 王改兰, 张海鹏, 等. 解磷微生物的研究现状及在农业上的应用[J]. 湖南农业科学, 2012, 290(11): 23−25. Yang Y J, Wang G L, Zhang H P, et al. Status of phosphate solubilizing microorganisms and its application in agriculture[J]. Hunan Agricultural Sciences, 2012, 290(11): 23−25.
[7] 覃丽金, 王真辉, 陈秋波. 根际解磷微生物研究进展[J]. 华南热带农业大学学报, 2006, 12(2): 44−49. Qin L J, Wang Z H, Chen Q B, et al. Advances of researches on rhisosphere phosphate-solubilizing microorganizm[J]. Journal of South China University of Tropical Agriculture, 2006, 12(2): 44−49.
[8] 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1−7. Chi J L, Hao M, Wang Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 2021, 41(1): 1−7.
[9] 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020, 57(2): 1−9. Zhang Y C, Liu F Z, Wang H B, et al. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes[J]. Soils and Fertilizers Sciences in China, 2020, 57(2): 1−9.
[10] 李蓉, 周德明, 吴毅, 等. 杉木根际溶磷菌筛选及其部分特性的初步研究[J]. 中南林业科技大学学报, 2012, 32(4): 95−99. Li R, Zhou D M, Wu Y, et al. Selection and characteristics of phosphate-solubilizing bacteria in rhizosphere of Cunninghaimia lanceolata[J]. Journal of Central South University of Forestry & Technology, 2012, 32(4): 95−99.
[11] Moreno-Ramírez L, González-Mendoza D, Cecena-Duran C, et al. Molecular identification of phosphate-solubilizing native bacteria isolated from the rhizosphere of Prosopis glandulosa in Mexicali Valley[J]. Genetic and Molecular Research, 2015, 14(1): 2793−2798. doi: 10.4238/2015.March.31.9
[12] 魏伟, 吴小芹, 乔欢. 马尾松根际高效解磷真菌的筛选鉴定及其促生效应[J]. 林业科学, 2014, 50(9): 82−88. Wei W, Wu X Q, Qiao H. Screening and identification of phosphate-solubilizing fungi of Pinus massoniana rhizosphere and its application[J]. Scientia Silvae Sinicae, 2014, 50(9): 82−88.
[13] 林凤莲, 张亮, 林勇明, 等. 不同解磷菌处理下巨尾桉幼苗不同部位干质量及氮、磷、钾含量的变化[J]. 植物资源与环境学报, 2016, 25(2): 23−32,116. Lin F L, Zhang L, Lin Y M, et al. Changes in dry weight and contents of nitrogen, phosphorus and potassium in different parts of Eucalyptus grandis × E. urophylla in different treatments of phosphate-solubilizing bacterium[J]. Journal of Plant Resources and Environment, 2016, 25(2): 23−32,116.
[14] Teymouri M, Akhtari J, Karkhane M, et al. Assessment of phosphate solubilization activity of rhizobacteria in mangrove forest[J]. Biocatalysis and Agricultural Biotechnology, 2016, 5(1): 168−172.
[15] 徐睿, 刘君昂, 周国英, 等. 降香黄檀−檀香根际土壤高效解磷细菌的分离筛选与鉴定[J]. 热带作物学报, 2015, 36(2): 281−288. Xu R, Liu J A, Zhou G Y, et al. Isolation, screening and identification of high-efficiency phosphate-solubilizing bacteria in rhizosphere of Dalbergia odorifera and sandalwood[J]. Chinese Journal of Tropical Crops, 2015, 36(2): 281−288.
[16] Heredia-Acun C, Jalmaraz-Suarez J J, Arteaga-Garibay R, et al. Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl. )[J]. Journal of Forestry Research, 2019, 30(5): 1727−1734. doi: 10.1007/s11676-018-0723-5
[17] 刘辉, 吴小芹, 叶建仁, 等. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 2021, 57(3): 90−97. Liu H, Wu X Q, Ye J R, et al. Phosphate-dissolving mechanisms of Pseudomonas fluorescens and its colonizing dynamics in the mycorrhizosphere of poplars[J]. Scientia Silvae Sinicae, 2021, 57(3): 90−97.
[18] Chen W H, Wen J, Shui Y M. Parashorea chinensis Wang Hsie and P. chinensis var. k wangsiensis Lin Chi: two exceptional cases of names with a corporate authorship[J]. Taxon, 2011, 60(4): 1165−1167. doi: 10.1002/tax.604018
[19] 孟令曾, 张教林, 曹坤芳, 等. 迁地保护的4种龙脑香冠层叶光合速率和叶绿素荧光参数的日变化[J]. 植物生态学报, 2005, 29(6): 976−984. Meng L Z, Zhang J L, Cao K F, et al. Diurnal changes of photosynthetic characteristics and chlorophyll fluorescence in canopy leaves of four diptocarp species under ex-situ conservation[J]. Acta Phytoecologica Sinica, 2005, 29(6): 976−984.
[20] 朱华, 王洪. 西双版纳龙脑香科植物纪要[J]. 云南植物研究, 1992, 14(1): 237−258. Zhu H, Wang H. Research of community ecology on Parashorea chinensis forest in Xishuangbanna[J]. Acta Botanica Yunnanica, 1992, 14(1): 237−258.
[21] Kudoyarova G R, Vysotskaya L B, Arkhipova T N, et al. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants[J]. Acta Physiologiae Plantarum, 2017, 39(11): 253. doi: 10.1007/s11738-017-2556-9
[22] 刘春菊, 杜传印, 梁子敬, 等. 烟草根际溶磷细菌的筛选鉴定及抑菌促生效果研究[J]. 中国烟草科学, 2020, 41(1): 9−15, 29. Liu C J, Du C Y, Liang Z J, et al. Screening and identification of phosphorus-solubilizing bacteria in tobacco rhizosphere and their antibacterial and growth-promoting effects[J]. Chinese Tobacco Science, 2020, 41(1): 9−15, 29.
[23] 林英, 司春灿, 冯唐锴, 等. 不同碳氮钾源对香椿根际解磷菌溶磷效果的影响[J]. 北方园艺, 2018, 42(20): 1−7. Lin Y, Si C C, Feng T K, et al. Influence of different carbon, nitrogen and potassium sources on phosphate solubilization by phosphate-solubilizing bacteria from Toona sinensis rhizosphere[J]. Northern Horticulture, 2018, 42(20): 1−7.
[24] 刘盼, 赵华, 林广修, 等. 解磷菌的筛选及培养基成分对解磷能力的影响[J]. 天津科技大学学报, 2015, 30(6): 17−22. Liu P, Zhao H, Lin G X, et al. Screening of phosphate-solubilizing strain and effects of medium components on its phosphate-solubilizing ability[J]. Journal of Tianjing University of Science & Technology, 2015, 30(6): 17−22.
[25] Kundu B S, Nehra K, Yadav R, et al. Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of haryana[J]. Indian Journal of Microbiology, 2009, 49(2): 120−127. doi: 10.1007/s12088-009-0016-y
[26] 李娟, 王文丽, 卢秉林, 等. 甘肃省河西高钙土溶磷菌筛选及其溶磷能力初步研究[J]. 干旱地区农业研究, 2008, 26(2): 7−10. Li J, Wang W L, Lu B L, et al. Selection and measurement of phosphate-solubilizing micro-organisms and their phosphate-dissolving ability in high calcium soil of Hexi Corridor in Gansu Province[J]. Agricultural Research in the Arid Areas, 2008, 26(2): 7−10.
[27] 范秀容, 李广武, 沈萍. 微生物学实验[M]. 北京: 高等教育出版社, 2003. Fan X R, Li G W, Shen P. Microbiology experiment[M]. Beijing: Higher Education Press, 2003.
[28] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. Dong X Z, Cai M Y. Manual for systematic identification of common bacteria[M]. Beijing: Science Press, 2001.
[29] 奥斯伯 FM. 精编分子生物学实验指南[M]. 北京: 科学出版社, 2005. Ausubel F M. Short protocols in molecular biology[M]. Beijing: Science Press, 2005.
[30] 陈美华. 桂南地区赤红壤的磷素特性及其酶活性的初步研究[J]. 广西农学院学报, 1988, 6(1): 42−50. Chen M H. Preliminare study on characteristics of phosphoros and activities of phosphatase in lateriticsoils of southern district of Guangxi[J]. Journal of Guangxi Agricultural College, 1988, 6(1): 42−50.
[31] 汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44(6): 945−952. Wang T, Yang Y H, Ma W H. Storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6): 945−952.
[32] 朱培淼, 杨兴明, 徐阳春, 等. 高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J]. 应用生态学报, 2007, 18(1): 107−112. Zhu P M, Yang X M, Xu Y C, et al. High effective phosphate-solubilizing bacteria: their isolation and promoting effect on corn seedling growth[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 107−112.
[33] 初旭, 胡霞, 刘静, 等. 杉木根际溶磷菌的筛选鉴定及溶磷能力分析[J]. 西南林业大学学报, 2021, 41(2): 85−92. Chu X, Hu X, Liu J, et al. Screening and capacity analysis of phosphorus dissolving bacteria in the rhizosphere of Cunninghamia lanceolata[J]. Journal of Southwest Forestry University, 2021, 41(2): 85−92.
[34] Narsian V, Patel H H. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology & Biochemistry, 2000, 32(4): 559−565.
[35] 王亚艺, 李松龄, 蔡晓剑, 等. 青海解磷菌菌株的分离筛选[J]. 河北农业科学, 2012, 16(2): 62−64. Wang Y Y, Li S L, Cai X J, et al. Isolation and screening of phosphorus solubilizing bacterial strains in Qinghai Province[J]. Journal of Hebei Agricultural Sciences, 2012, 16(2): 62−64.
[36] 薛冬, 黄向东, 杨瑞先, 等. 牡丹根际溶磷放线菌的筛选及其溶磷特性[J]. 应用生态学报, 2018, 29(5): 1645−1652. Xue D, Huang X D, Yang R X, et al. Screening and phosphate-solubilizing characteristics of phosphate-solubilizing actinomycetes in rhizosphere of tree peony[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1645−1652.
[37] 朱诗应, 戚中田. 16S rDNA扩增及测序在细菌鉴定与分类中的应用[J]. 微生物与感染, 2013, 8(2): 104−109. Zhu S Y, Qi Z T. Application of bacterial 16S rDNA amplification and sequencing in the classification and identification of bacteria[J]. Journal of Microbes and Infections, 2013, 8(2): 104−109.
[38] 韩烁, 夏冬亮, 李潞滨, 等. 毛竹根部解磷细菌的筛选及多样性研究[J]. 河北农业大学学报, 2010, 33(2): 26−31. Han S, Xia D L, Li L B, et al. Diversity of the phosphate solubilizing bacteria isolated from the root of Phyllostachys pubescens[J]. Journal of Agricultural University of Hebei, 2010, 33(2): 26−31.
[39] 任嘉红, 刘辉, 吴晓蕙, 等. 南方红豆杉根际溶无机磷细菌的筛选、鉴定及其促生效果[J]. 微生物学报, 2012, 52(3): 295−303. Ren J H, Liu H, Wu X H, et al. Screening, identification, and promoting effect of phosphate-solubilizing bacteria in rhizosphere of Taxus chinensis var. mairei[J]. Acta Microbiologica Sinica, 2012, 52(3): 295−303.
[40] 王岳坤, 于飞, 唐朝荣. 海南生态区植物根际解磷细菌的筛选及分子鉴定[J]. 微生物学报, 2009, 49(1): 64−71. Wang Y K, Yu F, Tang C R, et al. Screening and molecular identification of phosphate-solubilizing bacteria in rhizosphere soils in Hainan ecosystem[J]. Acta Microbiologica Sinica, 2009, 49(1): 64−71.
[41] 刘泽平, 王志刚, 徐伟慧, 等. 水稻根际促生菌的筛选鉴定及促生能力分析[J]. 农业资源与环境学报, 2018, 35(2): 119−125. Liu Z P, Wang Z G, Xu W H, et al. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 119−125.
[42] 崔晓, 徐艳霞, 刘俊杰, 等. 芽孢杆菌在农业生产中的应用[J]. 土壤与作物, 2019, 8(1): 32−42. Cui X, Xu Y X, Liu J J, et al. Advances of bacillus application in agriculture: a review[J]. Soil and Crop, 2019, 8(1): 32−42.
[43] Bach E, dos Santos S G D, Fernandes G D C, et al. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria[J]. Applied Soil Ecology, 2016, 99: 141−149. doi: 10.1016/j.apsoil.2015.11.002
[44] 上官亦卿, 常帆, 吕睿, 等. 解磷菌的分离、筛选、鉴定及解磷能力研究[J]. 湖北农业科学, 2019, 58(1): 30−34, 38. Shuangguan Y Q, Chang F, Lü R, et al. Iso1ation, screening, identification and phosphate solubilizing ability of phosphate solubilizing bacteria[J]. Hubei Agricultural Sciences, 2019, 58(1): 30−34, 38.
[45] 卫星, 徐鲁荣, 张丹, 等. 一株耐硝酸盐的巨大芽孢杆菌溶磷特性研究[J]. 环境科学学报, 2015, 35(7): 2052−2058. Wei X, Xu L R, Zhang D, et al. Phosphate solubilizing characteristics of a nitrate-tolerating bacterium, Bacillus megaterium[J]. Acta Scientiae Circumstantiae, 2015, 35(7): 2052−2058.
[46] Vassileva M, Azcon R, Barea J, et al. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate[J]. Journal of Biotechnology, 1998, 63: 67−72. doi: 10.1016/S0168-1656(98)00074-1
[47] 杨慧, 范丙全, 龚明波, 等. 一株新的溶磷草生欧文氏菌的分离、鉴定及其溶磷效果的初步研究[J]. 微生物学报, 2008, 48(1): 51−56. Yang H, Fan B Q, Gong M B, et al. Isolation and identification of a novel phosphatedissolving strain P21[J]. Acta Microbiologica Sinica, 2008, 48(1): 51−56.
[48] 黄萍. 温度对微生物生长的影响[J]. 明胶科学与技术, 2011, 31(1): 29. Huang P. The effect of temperature on bacterium growing[J]. The Science and Technology of Gelatin, 2011, 31(1): 29.
[49] 虞伟斌, 杨兴明, 沈其荣, 等. 不同碳氮源对解磷菌K3溶磷效果的影响[J]. 南京农业大学学报, 2011, 34(5): 81−85. Yu W B, Yang X M, Shen Q R, et al. Influence of carbon and nitrogen sources on phosphate solubilization by K3 strain[J]. Journal of Nanjing Agricultural University, 2011, 34(5): 81−85.
[50] 韦宜慧, 陈嘉琪, 赵光宇, 等. 杉木林土壤和苗木内生溶磷细菌的筛选及其溶磷特性[J]. 林业科学, 2020, 56(12): 1−9. Wei Y H, Chen J Q, Zhao G Y, et al. Screening of phosphate solubilizing bacteria from soil and endogenous environment of Chinese fir seedlings and their characterization of phosphate solubilization[J]. Scientia Silvae Sinicae, 2020, 56(12): 1−9.
[51] Zeng Q W, Wu X Q, Wen X Y. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2 and its plant growth-promoting effects on poplar seedlings[J]. Annals of Microbiology, 2016, 66(4): 1343−1354. doi: 10.1007/s13213-016-1220-8
[52] 梁艳琼, 雷照鸣, 贺春萍, 等. 解磷菌株黑曲霉PSFM发酵条件优化研究[J]. 南方农业学报, 2011, 42(3): 240−245. Ling Y Q, Lei Z M, He C P, et al. Optimization of fermentation condition for phosphate-solubilizing fungi (Aspergillus-niger)[J]. Journal of Southern Agriculture, 2011, 42(3): 240−245.
[53] 赵小蓉, 林启美, 李保国. C、N源及C/N比对微生物溶磷的影响[J]. 植物营养与肥料学报, 2002, 8(2): 197−204. Zhao X R, Lin Q M, Li B G. Effect of C, N sources and C/N ratio on the solubilization of rock phosphate by some microorganisms[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 197−204.
[54] 王俊娟, 阎爱华, 王薇, 等. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性[J]. 应用生态学报, 2016, 27(11): 3705−3711. Wang J J, Yan A H, Wang W, et al. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.) in rhizosphere of Pinus tabuliformis in iron tailings yard[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3705−3711.
[55] Asea P, Kucey R, Stewart J. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil[J]. Soil Biology & Biochemistry, 1988, 20(4): 459−464.
[56] Reyes I, Bernier L, Simard R R, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of P enicillium rugulosum and two UV-induced mutants[J]. FEMSs Microbiology Ecology, 1988, 28(3): 281−290.
[57] 吕俊, 潘洪祥, 于存. 马尾松根际溶磷细菌Paraburkholderia sp. 的筛选、鉴定及溶磷特性研究[J]. 生物技术通报, 2020, 36(9): 147−156. Lü J, Pan H X, Yu C. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing Paraburkholderia sp. from Pinus massoniana rhizosphere soil[J]. Biotechnology Bulletin, 2020, 36(9): 147−156.
[58] 李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性[J]. 应用生态学报, 2019, 30(7): 2384−2392. Li D D, Shang S H, Han W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2384−2392.
[59] 刘文干, 何园球, 张坤, 等. 一株红壤溶磷菌的分离、鉴定及溶磷特性[J]. 微生物学报, 2012, 52(3): 326−333. Liu W G, He Y Q, Zhang K, et al. Isolation, identification and characterization of a strain of phosphate-solubilizing bacteria from red soil[J]. Acta Microbiologica Sinica, 2012, 52(3): 326−333.
[60] 史发超, 殷中伟, 江红梅, 等. 一株溶磷真菌筛选鉴定及其溶磷促生效果[J]. 微生物学报, 2014, 54(11): 1333−1343. Shi F C, Yin Z W, Jiang H M, et al. Screening, identification of P-dissolving fungus P83 strain and its effects on phosphate solubilization and plant growth promotion[J]. Acta Microbiologica Sinica, 2014, 54(11): 1333−1343.
-
期刊类型引用(6)
1. 赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 . 百度学术
2. 朱旭,吴新凤,郝景新,徐大鹏. 无框瓦楞夹芯板极限抗拔力及家具角部结合性能的研究. 林产工业. 2024(11): 20-25 . 百度学术
3. 马青原,王华. 板式家具五金件的发展与应用. 家具. 2023(04): 7-10+6 . 百度学术
4. 陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 . 百度学术
5. 胡强利,纪佳俊,冉雪蕾,王梦蕾. 杨木和辐射松树脂浸渍材金属空套螺母抗拔力研究. 中国人造板. 2022(06): 16-20 . 百度学术
6. 胡文刚,白珏,关惠元. 一种速生材榫接合节点增强方法. 北京林业大学学报. 2017(04): 101-107 . 本站查看
其他类型引用(10)