高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面活性剂含量对石蜡乳液改性中密度纤维板表面润湿性的影响

杨萌 王望 罗文圣 马尔妮

杨萌, 王望, 罗文圣, 马尔妮. 表面活性剂含量对石蜡乳液改性中密度纤维板表面润湿性的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220132
引用本文: 杨萌, 王望, 罗文圣, 马尔妮. 表面活性剂含量对石蜡乳液改性中密度纤维板表面润湿性的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220132
Yang Meng, Wang Wang, Luo Wensheng, Ma Erni. Effects of surfactant content on the surface wettability of medium density fiberboard modified by paraffin emulsion[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220132
Citation: Yang Meng, Wang Wang, Luo Wensheng, Ma Erni. Effects of surfactant content on the surface wettability of medium density fiberboard modified by paraffin emulsion[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220132

表面活性剂含量对石蜡乳液改性中密度纤维板表面润湿性的影响

doi: 10.12171/j.1000-1522.20220132
基金项目: 国家自然科学基金项目(31971583),“科技助力经济2020”重点专项“速生材制备功能型木质复合材料技术及应用”
详细信息
    作者简介:

    杨萌。主要研究方向:木材保护与改性。Email:yangmeng2021@bjfu.edu.cn 地址:100083 北京市海淀区清华东路 35 号北京林业大学材料科学与技术学院

    责任作者:

    马尔妮,教授。主要研究方向:木材物理、木材保护与改性。Email:maerni@bjfu.edu.cn 地址:同上

  • 中图分类号: S781.43

Effects of surfactant content on the surface wettability of medium density fiberboard modified by paraffin emulsion

  • 摘要:   目的  探究表面活性剂含量对石蜡乳液改性中密度纤维板表面润湿性的影响,为蜡基防水剂的开发及应用提供理论依据及技术参考。  方法  以58号石蜡、司盘80、吐温80为原料制备了表面活性剂质量分数分别为2%、4%、6%、8%的4组石蜡乳液,并用于对中密度纤维板试件进行常压浸渍处理。利用接触角测量仪评估中密度纤维板试件表面被水润湿和渗透的能力;通过场发射电子扫描显微镜(FESEM)、X射线光电子能谱(XPS)对试件表面的微观形貌和元素组成进行表征分析。  结果  与未处理材相比,处理材的初始接触角增大,且接触角和表面液滴体积下降速率明显减慢;对处理材而言,随着石蜡乳液中表面活性剂质量分数的增加,处理材的初始接触角减小,接触角和表面液滴体积下降速率加快。FESEM和XPS结果表明:增加石蜡乳液中表面活性剂的质量分数会导致试件表面更为平滑,同时使得处理材表面的C1/C2值减小。  结论  随着表面活性剂质量分数的增加,石蜡颗粒更容易在试件表面碰撞聚集,同时生成表面活性剂分子的双层结构,处理材的表面润湿性由于表面粗糙度的降低和亲水基团数量的增多而提高。降低表面活性剂质量分数有助于降低石蜡乳液改性中密度纤维板的表面润湿性,对蜡基防水剂的开发与应用具有重要的指导意义。

     

  • 图  1  表面活性剂分子Span 80(a)和Tween 80(b)的结构式

    Figure  1.  Structural formula of surfactant Span 80 (a) and Tween 80 (b)

    图  2  0和30 s时试件表面的水接触角图像

    Figure  2.  Contact angle images of the sample surfaces at 0 and 30 s

    图  3  试件接触角变化曲线

    Figure  3.  Variation curves of contact angle of the samples

    图  4  试件表面液滴在7 min内的体积变化

    Figure  4.  Changes of droplet volumes on the sample surface within 7 min

    图  5  未处理材、SF2%组和SF8%组试件表面的扫描电镜图像

    Figure  5.  FESEM images of the sample surfaces for untreated samples, SF2% and SF8%

    图  6  石蜡乳液中的胶束成核模型(a)及低表面活性剂质量分数(b)与高表面活性剂质量分数(c)下石蜡颗粒在试件表面附着的示意图

    Figure  6.  Schematic diagram showing micelle nucleation in paraffin emulsion (a) as well as the attachment of paraffin wax particles on the sample surfaces at low mass fraction of surfactant (b) and high mass fraction of surfactant (c)

    表  1  不同石蜡乳液体系及基本性质

    Table  1.   Formulas and basic properties of paraffin emulsions

    乳液体系
    Emulsion system
    石蜡质量分数
    Mass fraction of paraffin/%
    表面活性剂质量分数
    Mass fraction of surfactant/%
    粒径
    Particle size/nm
    1周内储存稳定性
    Storage stability within 1 week
    SF2% 25 2 233.70 未出现分层或可见颗粒
    No stratification or visible particles
    SF4% 25 4 191.60 未出现分层或可见颗粒
    No stratification or visible particles
    SF6% 25 6 175.60 未出现分层或可见颗粒
    No stratification or visible particles
    SF8% 25 8 168.50 未出现分层或可见颗粒
    No stratification or visible particles
    下载: 导出CSV

    表  2  试件的初始接触角和接触角下降100%用时

    Table  2.   Initial contact angle of the samples and time required for contact angle decrease by 100%

    组别
    Group
    初始接触角
    Initial contact angle/(°)
    标准差
    Standard deviation/(°)
    接触角下降100%用时
    Time required for contact angle decrease by 100%/s
    标准差
    Standard deviation/s
    未处理材
    Untreated sample
    93.65 3.40 50.83 5.20
    SF2% 107.90 3.82 823.04 71.61
    SF4% 102.03 5.61 629.48 71.36
    SF6% 100.44 4.49 532.53 53.55
    SF8% 102.00 5.33 462.09 38.91
    下载: 导出CSV

    表  3  试件表面C1s成分的含量(原子数百分比)

    Table  3.   Content (percentage of atom number) of C1s component on the sample surfaces

    组别
    Group
    C1/%C2/%C3/%C4/%C1/C2
    未处理材 Untreated sample 63.46 23.75 8.38 4.41 2.67
    SF2% 91.38 7.01 1.09 0.52 13.04
    SF8% 82.54 13.89 2.26 1.31 5.94
    下载: 导出CSV
  • [1] 王曙跃. 新型人造板防水剂的研究[J]. 林产工业, 1998, 25(2): 17−20.

    Wang S Y. Study of new waterproof agent for wood-based panel[J]. China Forest Products Industry, 1998, 25(2): 17−20.
    [2] 丁可力. 乳化石蜡对中密度纤维板防水性能影响的研究[D]. 福州: 福建农林大学, 2009.

    Ding K L. Research on the effect of wax emulsion waterproofing agent on medium density fiberboard[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009.
    [3] 李荣荣, 邓文正, 曹平祥, 等. 杉木木材表面润湿性的评价[J]. 木材工业, 2013, 27(3): 18−20.

    Li R R, Deng W Z, Cao P X, et al. Evaluation of surface wettability of Chinese fir samples[J]. Chinese Journal of Wood Science and Technology, 2013, 27(3): 18−20.
    [4] 张丽, 储德淼, 时雪彤, 等. 硅烷偶联剂对阻燃处理杨木的防水阻燃性能影响[J]. 硅酸盐通报, 2016, 35(1): 19−24.

    Zhang L, Chu D M, Shi X T, et al. Effect of silane coupling agent on waterproof and flame retardant properties of poplar wood treated with flame retardant[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 19−24.
    [5] 曹金珍, Kamdem D P. 不同水基防腐剂处理木材的表面自由能[J]. 北京林业大学学报, 2006, 28(4): 1−5. doi: 10.3321/j.issn:1000-1522.2006.04.001

    Cao J Z, Kamdem D P. Surface energy of wood treated with water-borne wood preservatives[J]. Journal of Beijing Forestry University, 2006, 28(4): 1−5. doi: 10.3321/j.issn:1000-1522.2006.04.001
    [6] 李景奎, 王亚男, 牟洪波, 等. 磁控溅射法制备纳米氧化锌/木材复合材料及其物理性能变化[J]. 北京林业大学学报, 2019, 41(1): 119−125.

    Li J K, Wang Y N, Mou H B, et al. Preparation of nano ZnO/wood composite by magnetron sputtering and its physical property change[J]. Journal of Beijing Forestry University, 2019, 41(1): 119−125.
    [7] 吴国江, 张舵. 国内人造板石蜡防水剂发展状况[J]. 林产工业, 1999, 26(4): 6−8.

    Wu G J, Zhang D. Development of water-repellent for fiberboard and particleboard in China[J]. China Forest Products Industry, 1999, 26(4): 6−8.
    [8] 滕克勇, 覃琼林, 郝丙业, 等. 石蜡乳液代替熔融石蜡使用效果的比较[J]. 木材工业, 2008, 22(4): 45−46.

    Teng K Y, Qin Q L, Hao B Y, et al. Comparison of melted wax with wax emulsion for MDF/HDF pro-dction[J]. China Wood Industry, 2008, 22(4): 45−46.
    [9] Gürgen A, Ustaömer D, Yildiz S. Application of artificial neural network to predict the effect of par-affin addition on water absorption and thickness swelling of MDF[J]. Drvna Industrija, 2019, 70(3): 247−255. doi: 10.5552/drvind.2019.1839
    [10] Cai L L, Fu Q L, Niu M, et al. Effect of chlorinated paraffin nanoemulsion on the microstructure and water repellency of ultra-low density fiberboard[J]. BioResources, 2016, 11(2): 4579−4592.
    [11] Roffael E, Schneider T, Dix B, et al. On paraffin sizing of medium density fiberboards (MDF). part 1: influence of the chemical composition of paraffin and type of emulsifier on the hydrophobic properties of MDF[J]. Holz Als Roh-und Werkstoff, 2005, 63(3): 192−203. doi: 10.1007/s00107-004-0556-0
    [12] Garai R M, Sánchez I C, García R T, et al. Study on the effect of raw material composition on water-repellent capacity of paraffin wax emulsions on wood[J]. Journal of Dispersion Science and Technology, 2005, 26(1): 9−18. doi: 10.1081/DIS-200040872
    [13] Nazerian M, Dalirzadeh A, Farrokhpayam S R. Use of almond shell powder in modification of the p-hysical and mechanical properties of medium density fiberboard[J]. BioResources, 2015, 10(1): 169−181.
    [14] Chern C S. Emulsion polymerization mechanisms and kinetics[J]. Progress in Polymer Science, 2006, 31(5): 443−486. doi: 10.1016/j.progpolymsci.2006.02.001
    [15] 元福卿, 刘丹丹, 郭兰磊, 等. 支链化阳离子和甜菜碱表面活性剂对聚四氟乙烯表面润湿性的影响[J]. 物理化学学报, 2015, 31(4): 715−721. doi: 10.3866/PKU.WHXB201503028

    Yuan F Q, Liu D D, Guo L L, et al. Effect of branched cationic and betaine surfactants on the wettabil-ity of a poly(tetrafluoroethylene) surface[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 715−721. doi: 10.3866/PKU.WHXB201503028
    [16] Koopal L K. Wetting of solid surfaces: fundamentals and charge effects[J]. Advances in Colloid and Interface Science, 2012, 179: 29−42.
    [17] Tostado C P, Xu J, Luo G. The effects of hydrophilic surfactant concentration and flow ratio on dynamic wetting in a T-junction microfluidic device[J]. Chemical Engineering Journal, 2011, 171(3): 1340−1347. doi: 10.1016/j.cej.2011.05.043
    [18] Milne A J B, Amirfazli A. Autophilic effect: wetting of hydrophobic surfaces by surfactant solutions[J]. Langmuir, 2010, 26(7): 4668−4674. doi: 10.1021/la9035437
    [19] Zdziennicka A, Jańczuk B. Effect of anionic surfactant and short-chain alcohol mixtures on adsorption at quartz/water and water/air interfaces and the wettability of quartz[J]. Journal of Colloid and Interface Science, 2011, 354(1): 396−404. doi: 10.1016/j.jcis.2010.09.063
    [20] 刘小英, 俞马宏. 阴离子型石蜡乳液的制备与表征[J]. 化学通报, 2015, 78(8): 753−756.

    Liu X Y, Yu M H. Preparation and characterizations of anionic paraffin emulsion[J]. Chemistry, 2015, 78(8): 753−756.
    [21] 冯国琳, 刘有智, 焦纬洲, 等. 石蜡乳液制备及性能研究[J]. 日用化学工业, 2011, 41(6): 415−418.

    Feng G L, Liu Y Z, Jiao W Z, et al. Preparation and property of paraffin wax emulsion[J]. China Surfactant Detergent & Cosmetics, 2011, 41(6): 415−418.
    [22] Wang W, Zhu Y, Cao J Z, et al. Correlation between dynamic wetting behavior and chemical components of thermally modified wood[J]. Applied Surface Science, 2015, 324: 332−338. doi: 10.1016/j.apsusc.2014.10.139
    [23] Shi S Q, Gardner D J. Dynamic adhesive wettability of wood[J]. Wood and Fiber Science: Journal of the Society of Wood Science and Technology, 2001, 33(1): 58−68.
    [24] Wang H H, Li X R, Fei G Q, et al. Synthesis, morphology and rheology of core-shell silicone acrylic emulsion stabilized with polymerisable surfactant[J]. EXPRESS Polymer Letters, 2010, 4(11).
    [25] 左加传. 微管中液体流动减阻特征研究[D]. 金华: 浙江师范大学, 2009.

    Zuo J C. The characteristic of drag reduction of liquid flowing in micro-channels[D]. Jinhua: Zhejiang Normal University, 2009.
    [26] Moghaddam M S, Heydari G, Tuominen M, et al. Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties[J]. Holzforschung, 2016, 70(6): 527−537. doi: 10.1515/hf-2015-0148
    [27] Janesch J, Gusenbauer C, Mautner A, et al. Efficient wood hydrophobization exploiting natural roughness using minimum amounts of surfactant-free plant oil emulsions[J]. ACS Omega, 2021, 6(34): 22202−22212. doi: 10.1021/acsomega.1c02885
    [28] Gupta S, Brouwer P, Bandyopadhyay S, et al. TEM/AFM investigation of size and surface properties of nanocrystalline ceria[J]. Journal of Nanoscience and Nanotechnology, 2005, 5(7): 1101−1107. doi: 10.1166/jnn.2005.151
    [29] Sinn G, Reiterer A, Stanzl-Tschegg S E. Surface analysis of different wood species using X-ray photoelectron spectroscopy (XPS)[J]. Journal of Materials Science, 2001, 36(19): 4673−4680. doi: 10.1023/A:1017954300015
    [30] Wang W, Zhu Y, Cao J Z, et al. Thermal modification of southern pine combined with wax emulsion preimpregnation: effect on hydrophobicity and dimensional stability[J]. Holzforschung, 2015, 69(4): 405−413. doi: 10.1515/hf-2014-0106
    [31] Sundaraj M, Subramani V. Influence of N-dodecyl betaine surfactant on electroless Ni-P-nano-ZnO2 composite coating properties prepared on magnesium AZ91D alloy[J/OL]. International Journal of Electroche-mical Science, 2021 [2021−07−27]. http://10.20964/2021.07.31.
    [32] Exerowa D, Platikanov D, Levecke B, et al. Emulsion and wetting films stabilized by hydrophobically modified inulin polymeric surfactant[J]. Journal of Dispersion Science and Technology, 2009, 30(6): 789−794. doi: 10.1080/01932690802643303
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 录用日期:  2022-07-27
  • 修回日期:  2022-07-24
  • 网络出版日期:  2022-07-28

目录

    /

    返回文章
    返回