Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley
-
摘要:目的 为探究金沙江干热河谷冲沟系统优先流影响下的土壤可蚀性差异规律,揭示冲沟发育区土、水相互作用机理,为干热河谷地区水土流失治理及生态恢复提供理论依据。方法 在干热河谷典型冲沟发育区选择完整冲沟作为研究对象,基于染色示踪、土壤抗冲抗蚀及土壤理化试验,利用主成分分析等统计分析方法获取土壤优先流、土壤可蚀性指标及其相关关系,明晰集水区、沟壁、沟床、沟底完整冲沟系统土壤优先流特征,探究优先流和土壤可蚀性之间的关系。结果 干热河谷冲沟优先流类型以“大孔隙流”为主,伴随“指流”和“漏斗流”,优先流百分数呈集水区 > 沟壁 > 沟床 > 沟底,说明冲沟上游优先流发育程度高于下游。冲沟内优先流区有机质含量、土壤含水率均高于基质流区,机械组成黏粒、粉粒、砂粒配比优先流区优于基质流区,土壤密度优先流区低于基质流区。冲沟内优先流区土壤抗冲系数小于基质流区,表明优先流会使土壤稳定性降低,抗蚀指数呈优先流区大于基质流区,说明土壤水分溶质运移会使局部土壤抗蚀性提高。冲沟系统土壤可蚀性因子(K)与优先流百分数、优先流区染色面积比、最大染色深度均呈正相关关系,同时主成分分析显示以上3个因子是影响土壤可蚀性的主要因子。结论 优先流发育程度高的土层中优先流区K值总是大于基质流区,在优先流发育不足土层中则相反,优先流发育一定程度上会提高土壤可蚀性。Abstract:Objective This paper aims to explore the patterns of soil erodibility variation under the influence of preferential flow in the gully system of Jinsha River Dry Hot Valley, and in doing so, revealing the interaction mechanism between soil and water in the gully development area, so as to provide a theoretical basis for soil and water loss control and ecological restoration in dry hot valleys.Method A complete gully in a typical gully development area of the dry hot valley was selected as the research object. Based on dye tracing, soil erosion resistance and soil physicochemical experiments, statistical analysis methods such as principal component analysis (PCA) were used to obtain the soil preferential flow, soil erodibility indicators and their correlations, clarify the soil preferential flow characteristics of the complete gully system at the catchment area, gully wall, gully bed and gully bottom, as well as explore the correlation between preferential flow and soil erodibility.Result The findings showed that the preferential flow in the gully of the dry hot valley was mainly “macropore flow”, accompanied by “finger flow” and “funnel flow”. Preferential flow percentages in catchment > gully wall > gully bed > gully bottom. This indicated that the development degree of preferential flow in the upstream of the gully was higher than that in the downstream. Moreover, the gully’s preferential flow area also featured higher organic matter and soil moisture contents, better mechanical composition (clay, silt and sand), and lower soil bulk density relative to those in the matrix flow area. Also to take note is that the soil anti-scour coefficient in the gully’s preferential flow area was smaller compared with that in the matrix flow area, suggesting that the preferential flow can reduce soil stability. Furthermore, the erosion resistance index of each gully section in the preferential flow area was higher than that in the matrix flow area, indicating that soil water and solute transport can improve local soil erosion resistance. The soil erodibility factor (K) of the gully system was positively correlated with the percentage of preferential pathway, the dry coverage of preferential pathway and the maximum dyed depth. Additionally, PCA showed that the above three factors were all the main factors affecting soil erodibility.Conclusion In soil layers with high preferential flow development, the K in the preferential flow area is always higher than that in the matrix flow area, which is contrary to the soil layer with insufficient preferential flow development. This implies that the development of preferential flow improves soil erodibility to some extent.
-
Keywords:
- dry hot valley /
- gully /
- preferential flow area /
- matrix flow area /
- soil erodibility
-
-
图 3 土壤基本特性
A、B、C、D分别代表集水区、沟壁、沟床、沟底,R、W分别代表优先流区和基质流区。不同小写字母表示同一土层不同样地间显著性差异(P<0.05)。同表2。 A, B, C, D represent the catchment area, gully wall, gully bed, gully bottom, respectively; R, W represent the preferential flow area and the matrix flow area, respectively. Different lowercase letters indicate significant differences between different sites in the same soil layer (P < 0.05). Same as table 2.
Figure 3. Basic soil properties
图 8 优先流和基质流区土壤可蚀性K值变化图
大写字母不同表示不同土层差异显著(P < 0.05),小写字母不同表示不同分区差异显著(P < 0.05)。Different capital letters indicate significant differences between varied soil layers (P < 0.05), different lowercase letters indicate significant differences between different partitions (P < 0.05).
Figure 8. Variation of soil corrosion K values in the preferential flow area and matrix flow area
表 1 样地基本情况
Table 1 Basic situation of the sample plots
样点
Sample point坡度
Slope/(°)海拔
Elevation/m盖度
Coverage/%土壤含水率
Soil water content/%密度
Bulk density/(g·m−3)土壤质地 Soil texture/% 黏粒 Clay 粉粒 Silt 砂粒 Sand 集水区 Catchment area 7 1 109.54 80 10.36 1.56 10.33 37.29 52.38 沟壁 Gully wall 15 1 104.10 40 16.12 1.80 9.57 33.07 57.36 沟床 Gully bed 12 1 096.19 65 13.54 1.43 4.70 19.75 75.55 沟底 Gully bottom 6 1 092.33 75 5.14 1.43 4.62 15.06 80.32 表 2 冲沟区不同部位土壤垂直剖面优先流指标统计分析
Table 2 Statistical analysis of preferential flow indexes of soil vertical profile in different parts of the gully area
优先流指标 Preferential flow index 样地名称 Sample plot name 集水区 Catchment area 沟壁 Gully wall 沟床 Gully bed 沟底 Gully bottom 染色面积比 Dyeing area ratio/% 27.85 ± 0.56d 42.93 ± 1.49b 50.55 ± 3.89a 40.02 ± 2.77bc 基质流深度 Matrix flow depth/cm 4.69 ± 1.66d 11.06 ± 1.44bc 16.93 ± 2.75a 13.28 ± 0.88ab 最大染色深度 Maximum dyeing depth/cm 42.47 ± 0.91a 41.96 ± 1.21a 43.45 ± 1.34a 38.40 ± 1.92a 优先流区染色面积比 Dyeing area ratio of preferential flow area/% 18.90 ± 4.33a 23.34 ± 3.98a 18.61 ± 2.40a 12.46 ± 1.74b 优先流百分数 Percentage of preferential flow/% 64.68 ± 2.78a 46.96 ± 3.58b 32.08 ± 2.32c 31.55 ± 2.45c 注:表中数据为“平均值 ± 标准差”。 Note: data in the table are “mean ± standard deviation”. 表 3 优先流指标与土壤可蚀性相关分析
Table 3 Correlation analysis between preferential flow indicators and soil erodibility
土壤可蚀性指标
Soil erodibility index优先流指标 Preferential flow index 相关系数
Correlation coefficientP K 染色面积比 Dyeing area ratio (X1) −0.453 0.078 基质流深度 Matrix flow depth (X2) −0.634 0.008 最大染色深度 Maximum dyeing depth (X3) 0.588 0.017 优先流区染色面积比 Dyeing area ratio of preferential flow area (X4) 0.522 0.038 优先流百分数 Percentage of preferential flow (X5) 0.668 0.005 表 4 优先流指标对K值影响的主成分分析
Table 4 Principal component analysis of the impact of preferential flow index on K value
主成分
Principal component特征值
Eigenvalue方差贡献率
Variance contribution rate/%方差累计贡献率
Cumulative contribution
rate of variance/%X1 X2 X3 X4 X5 1 3.58 59.64 59.64 −0.37 −0.45 0.30 0.31 0.51 2 1.58 26.38 86.02 0.56 0.32 0.51 0.54 −0.06 3 0.51 8.43 94.45 −0.14 0.13 0.60 −0.63 −0.28 -
[1] 胡月, 卢阳, 金可, 等. 干热河谷生态治理探讨[J]. 长江科学院院报, 2021, 38(10): 69−75. doi: 10.11988/ckyyb.20210242 Hu Y, Lu Y, Jin K, et al. Discussion on ecological restoration in dry-hot valley[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 69−75. doi: 10.11988/ckyyb.20210242
[2] 杨振寅, 苏建荣, 罗栋, 等. 干热河谷植被恢复研究进展与展望[J]. 林业科学研究, 2007, 20(4): 563−568. doi: 10.3321/j.issn:1001-1498.2007.04.024 Yang Z Y, Su J R, Luo D, et al. Progress and perspectives on vegetation restoration in the dry-hot valley[J]. Forest Research, 2007, 20(4): 563−568. doi: 10.3321/j.issn:1001-1498.2007.04.024
[3] 杨丹, 熊东红, 张宝军, 等. 沟床草被对干热河谷冲沟产沙特性影响的野外模拟试验[J]. 农业工程学报, 2015, 31(15): 124−132. doi: 10.11975/j.issn.1002-6819.2015.15.017 Yang D, Xiong D H, Zhang B J, et al. Field experiment on impacts of grass belt length on characteristics of sediment yields and transport rates for gullies in Jinsha dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 124−132. doi: 10.11975/j.issn.1002-6819.2015.15.017
[4] 井光花, 于兴修, 李振炜. 土壤可蚀性研究进展综述[J]. 中国水土保持, 2011(10): 44−47, 66. doi: 10.3969/j.issn.1000-0941.2011.10.018 Jing G H, Yu X X, Li Z W. Summary of study progress on soil erodibility[J]. Soil and Water Conservation in China, 2011(10): 44−47, 66. doi: 10.3969/j.issn.1000-0941.2011.10.018
[5] Wiekenkamp I, Huisman J A, Bogena H R, et al. Spatial and temporal occurrence of preferential flow in a forested headwater catchment[J]. Journal of Hydrology, 2016, 534: 139−149. doi: 10.1016/j.jhydrol.2015.12.050
[6] Shao W, Bogaard T, Ye S, et al. Coupling a 1D Dual-permeability model with an infinite slope stability approach to quantify the influence of preferential flow on slope stability[J]. Procedia Earth and Planetary Science, 2016, 16: 128−136. doi: 10.1016/j.proeps.2016.10.014
[7] 王赵男, 辛颖, 赵雨森. 黑龙江省水源地优先流区与基质流区土壤特性分析[J]. 水土保持学报, 2017, 31(1): 49−54. Wang Z N, Xin Y, Zhao Y S. Analysis on soil characters of preferential pathways and soil matrix in water-source area of Heilongjiang Province[J]. Journal of Soil and Water Conservation, 2017, 31(1): 49−54.
[8] 盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1−10. doi: 10.11975/j.issn.1002-6819.2016.06.001 Sheng F, Zhang L Y, Wu D. Review on research theories and observation techniques of preferential flow in unsaturated soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 1−10. doi: 10.11975/j.issn.1002-6819.2016.06.001
[9] Song Z, Zhou Q Y, Lu D B, et al. Application of electrical resistivity tomography for investigating the internal structure and estimating the hydraulic conductivity of in situ single fractures[J]. Pure and Applied Geophysics, 2022, 179: 1253−1273. doi: 10.1007/s00024-022-02972-7
[10] 马昀, 孟晨, 岳健敏, 等. 宁夏荒漠草原不同林龄人工柠条林地土壤优先流研究[J]. 生态学报, 2022, 42(3): 895−903. Ma Y, Meng C, Yue J M, et al. Study on preferential flow of soil of artificially planted Caragana korshinskii shrubland in different years of desert grassland in Ningxia[J]. Acta Ecologica Sinica, 2022, 42(3): 895−903.
[11] 盛丰, 文鼎, 熊祎玮, 等. 基于电阻率层析成像技术的农田土壤优先流原位动态监测[J]. 农业工程学报, 2021, 37(8): 117−124. doi: 10.11975/j.issn.1002-6819.2021.08.013 Sheng F, Wen D, Xiong Y W, et al. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 117−124. doi: 10.11975/j.issn.1002-6819.2021.08.013
[12] Karup D, Moldrup P, Paradelo M, et al. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents[J]. Journal of Contaminant Hydrology, 2016, 192: 194−202. doi: 10.1016/j.jconhyd.2016.08.001
[13] 阮芯竹. 重庆四面山不同土地利用类型优先路径特征[D]. 北京: 北京林业大学, 2016. Ruan X Z. The characteristics of preferential paths in different land use types at Simianshan in Chongqing[D]. Beijing: Beijing Forestry University, 2016.
[14] 邵一敏, 赵洋毅, 段旭, 等. 金沙江干热河谷典型林草地植物根系对土壤优先流的影响[J]. 应用生态学报, 2020, 31(3): 725−734. Shao Y M, Zhao Y Y, Duan X, et al. Effects of plant roots on soil preferential flow in typical forest and grassland in the dry-hot valley of Jinsha River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 725−734.
[15] 邵一敏, 赵洋毅, 段旭, 等. 基于分形分析的干热河谷区典型地类土壤优先路径分布特征[J]. 西北农林科技大学学报(自然科学版), 2020, 48(7): 102−112. Shao Y M, Zhao Y Y, Duan X, et al. Distribution characteristics of typical soil-specific routes in dry-heat valley regions based on fractal analysis[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(7): 102−112.
[16] 万艳萍, 赵洋毅, 段旭, 等. 干湿交替对红河干旱河谷区土壤优先流形成特征的影响[J]. 应用生态学报, 2021, 32(7): 2397−2406. Wan Y P, Zhao Y Y, Duan X, et al. Influence of alternated drying and wetting on the characteristics of soil preferential flow formation in Honghe Arid Valley.[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2397−2406.
[17] Wu X L, Dang X H, Meng Z J, et al. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. [J/OL]. The Science of the total environment, 2021, 813: 152082[2022−04−20]. https://doi.org/10.1016/j.scitotenv.2021.152082.
[18] Verachtert E, van den Eeckhaut M, Poesen J, et al. Spatial interaction between collapsed pipes and landslides in hilly regions with loess-derived soils[J]. Earth Surface Processes and Landforms, 2013, 38(8): 826−835. doi: 10.1002/esp.3325
[19] 张素, 熊东红, 张宝军, 等. 干湿交替下干热河谷冲沟不同土层的抗侵蚀性研究[J]. 农业机械学报, 2016, 47(12): 152−159, 212. doi: 10.6041/j.issn.1000-1298.2016.12.019 Zhang S, Xiong D H, Zhang B J, et al. Soil erosion resistance under dry-wet alternation in different layers of dry-hot valley region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 152−159, 212. doi: 10.6041/j.issn.1000-1298.2016.12.019
[20] 何周窈. 金沙江干热河谷乡土植物恢复对冲沟沟壁溯源侵蚀的影响[D]. 雅安: 四川农业大学, 2020. He Z Y. Impacts of native native vegetation on headcut erosion in hot and dry valley of Jinsha River[D]. Yaan: Sichuan Agricultural University, 2020.
[21] Johnbosco C E, Ogbonnaya I. Assessing the role of soil engineering properties in gully growth and enlargement in southeast Nigeria using geostatistical and novel indexical techniques[J/OL]. Environmental Earth Sciences, 2022, 81: 7[2022−05−03]. https://doi.org/10.1007/s12665-021-10127-5.
[22] González M J C, Borselli L, Meza J V G. Soil horizon erodibility assessment in an area of Mexico susceptible to gully erosion[J]. Journal of South American Earth Sciences, 2021, 111: 103−117.
[23] Haddad H, Magali J, Cédric L, et al. Spatial variability of the erodibility of fine sediments deposited in two alpine gravel-bed rivers: the Isère and Galabre[J/OL]. Catena, 2022, 212(6): 106084[2022−12−30]. https://doi.org/10.1016/j.catena.2022.106084.
[24] 张岩, 高驰宇, 杨瑾, 等. 基于历史卫星影像估算黄土丘陵区冲沟发育速率[J]. 农业工程学报, 2022, 38(1): 109−116. doi: 10.11975/j.issn.1002-6819.2022.01.012 Zhang Y, Gao C Y, Yang J, et al. Estimating the gully growth rate in the hilly Loess Plateau using historical satellite images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 109−116. doi: 10.11975/j.issn.1002-6819.2022.01.012
[25] 文孝丽, 董一帆, 杨己, 等. 元谋干热河谷冲沟发育区植被恢复对土壤碳氮的影响[J]. 水土保持学报, 2021, 35(4): 282−288. Wen X L, Dong Y F, Yang J, et al. Effects of vegetation restoration on soil carbon and nitrogen in gully development area of Yuanmou Dry-Hot Valley[J]. Journal of Soil and Water Conservation, 2021, 35(4): 282−288.
[26] Zhang K L, Shu A P, Xu X L, et al. Soil erodibility and its estimation for agricultural soils in China[J]. Journal of Arid Environments, 2008, 72(6): 1002−1011. doi: 10.1016/j.jaridenv.2007.11.018
[27] 陈安强, 张丹, 范建容, 等. 元谋干热河谷沟壁崩塌的力学机制与模拟试验[J]. 中国水土保持科学, 2012, 10(3): 29−35. doi: 10.3969/j.issn.1672-3007.2012.03.005 Chen A Q, Zhang D, Fan J R, et al. Mechanical mechanism and simulation experiment of the collapse of gully cliff in Yuanmou Dry-Hot Valley[J]. Science of Soil and Water Conservation, 2012, 10(3): 29−35. doi: 10.3969/j.issn.1672-3007.2012.03.005
[28] Liu Y, Zhang Y H, Xie L M, et al. Effect of soil characteristics on preferential flow of Phragmites australis community in Yellow River Delta[J/OL]. Ecological Indicators, 2021, 125: 107486[2022−05−10]. https://doi.org/10.1016/j.ecolind.2021.107486.
[29] Zhang Y H, Zhang M X, Niu J Z, et al. Rock fragments and soil hydrological processes: significance and progress[J]. Catena, 2016, 147: 153−166. doi: 10.1016/j.catena.2016.07.012
[30] de Rooij G H. Modeling fingered flow of water in soils owing to wetting front instability: a review[J]. Journal of Hydrology, 2000, 231−232(1−4): 277−294.
[31] 朱明勇, 谭淑端, 顾胜利, 等. 湖北丹江口水库库区小流域土壤可蚀性特征[J]. 土壤通报, 2010, 42(2): 434−436. Zhu M Y, Tan S D, Gu S L, et al. Characteristics of soil erodibility in the Danjiangkou Reservoir Region, Hubei Province[J]. Chinese Journal of Soil Science, 2010, 42(2): 434−436.
[32] Müller K, Katuwal S, Young I, et al. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures[J]. Geoderma, 2018, 313: 82−91. doi: 10.1016/j.geoderma.2017.10.020
[33] 卢华兴, 段旭, 赵洋毅, 等. 滇中磨盘山典型林分土壤优先流特征及其归因分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 48−62. Lu H X, Duan X, Zhao Y Y, et al. Characteristics and attribution analysis of soil preferential flow in typical stand of Mopan Mountain in Central Yunnan[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(7): 48−62.
[34] 解璐萌, 张英虎, 张明祥, 等. 黄河三角洲刺槐群落土壤优先流及养分分布特征[J]. 生态学报, 2021, 41(19): 7713−7724. Xie L M, Zhang Y H, Zhang M X, et al. Soil preferential flow and nutrient distribution of Robinia pseudoacacia Linn. community in Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(19): 7713−7724.
[35] Edwards W M, Shipitalo M J, Owens L B, et al. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn[J]. Journal of Environmental Quality, 1993, 22(3): 453−457.
[36] Julich D, Julich S, Feger K H, et al. Phosphorus in preferential flow pathways of forest soils in Germany[J/OL]. Forests, 2016, 8(1): 19[2021−04−10]. https://doi.org/10.3390/f8010019.
-
期刊类型引用(4)
1. 吴昊,刘海玉,乔晓磊,卫轶君,吴杨. 生物质及镁渣复合黏结剂制备焦粉型煤. 上海电力大学学报. 2023(02): 195-202+209 . 百度学术
2. 尹伟明,蒋金婷,樊星,郭元茹,韩世岩. 木质素磺酸钠/三聚氰胺甲醛微球泡沫的制备及表征. 复合材料学报. 2018(09): 2362-2368 . 百度学术
3. 徐保明,张弘,唐强,张家晖,李俊,李志鹏,陈坤. 木质素基碳纤维制备方法的研究进展. 化工新型材料. 2018(04): 23-26 . 百度学术
4. 陈梁,辛善志,米铁,胡明华. 木质素制备活性炭的工艺及其吸附性能研究. 江汉大学学报(自然科学版). 2017(03): 219-224 . 百度学术
其他类型引用(5)