Effects of arbuscular mycorrhizal fungal colonization on Populus pseudo-cathayana × P. deltoides resistance to Lymantria dispar larvae
-
摘要:目的
研究丛枝菌根真菌(AMF)对青山杨抗虫性的影响以及舞毒蛾对AMF定殖青山杨的适应能力,为AMF定殖青山杨后抗虫性的研究提供科学依据。
方法分别以对照(CK,无AMF定殖)、根内根孢囊霉(GI)或摩西管柄囊霉(GM)定殖的青山杨叶片饲喂舞毒蛾幼虫,统计3、4、5龄幼虫的体重、体长、头壳宽和食物利用率,测定4、5龄幼虫解毒酶酸性磷酸酯酶(ACP)和碱性磷酸酯酶(AKP)的活性。
结果GI组3、4龄幼虫的体重显著高于对照组(P < 0.05),5龄与对照组差异不显著,GM组5龄幼虫的体长、体重、头壳宽、食物利用率均显著高于对照组。GI组3龄幼虫取食量显著高于对照组(P < 0.05),4、5龄显著低于对照组,GM组5龄显著高于对照组,3、4龄与对照组差异不显著。GI组ACP显著低于对照组(P < 0.05),AKP在4龄显著高于对照组,5龄AKP活性显著低于对照组。GM组两种解毒酶活性均显著高于对照组。
结论GI定殖的青山杨能促进舞毒蛾低龄幼虫的生长,对舞毒蛾老熟幼虫的生长影响不显著。GM定殖青山杨叶片促进了舞毒蛾幼虫的生长发育,提高了食物的利用效率,激发了幼虫体内磷酸酯酶活性,表明舞毒蛾对GM定植的青山杨有更好的适应性。AMF对树木及植食性昆虫的影响具有种类特异性,GI定殖对青山杨的抗虫性的影响呈中性,GM定殖对青山杨的抗舞毒蛾产生负效应。
Abstract:ObjectiveThis paper explores the effects of arbuscular mycorrhizal fungi (AMF) on the resistance of Qingshan poplar (Populus pseudo-cathayana × P. deltoides) to the gypsy moth (Lymantria dispar) larvae and the adaptability of L. dispar larvae to the AMF colonization, so as to provide a scientific basis for the study of insect resistance of Qingshan poplar colonized by AMF.
MethodThe spongy moth larvae were fed with fresh leaves of Qingshan poplar seedlings, which were treated with Glomus intraradices or G. mosseae or untreated (CK: control). The body mass, length, head capsule width and food utilization of the 3rd, 4th and 5th instars of L. dispar larvae were measured, and the activities of acid phosphatase (ACP) and alkaline phosphatase (AKP) of the 4th and 5th instars of larvae were determined.
ResultThe body mass of the 3rd/4th instar larvae in GI group was significantly higher than that in the control group, but there was no significant difference in the body mass of the 5th instar larvae between the GI group and the control group. The body length, mass, head capsule width and food utilization of the 5th instar larvae in the GM group were significantly higher than those in the control group. Food intake of the 3rd instar larvae in the GI group was significantly higher than that in the control group, but the reverse was true for the 4th and 5th instars; the food intake of the 5th instar larvae in the GM group was significantly higher than that in the control group, but there was no significant difference in food intake of the 3rd and 4th instars between the GM group and the control group. The ACP activity of the 4th and 5th instars in the GI group was significantly lower than that in the control group, and AKP activity of the 4th instar in the GI group was significantly higher than that in the control group, whereas the reverse was true for the 5th instar. On the other hand, the activities of these two detoxifying enzymes in the GM group were significantly higher than those in the control group.
ConclusionThe GI treatment enhances the growth of younger (3rd and 4th instars) L. dispar larvae, but not that of the mature (5th instar) larvae. The GM treatment increases the growth and development of L. dispar larvae, improves their food utilization efficiency, and stimulates their phosphatase activity, indicating that the spongy moth larvae might have a better adaptability to the GM-colonized Qingshan poplar trees. The effects of AMF on trees and herbivorous insects seem to be species-specific. GI colonization doesn’t affect Qingshan poplar’s resistance to the insect, while GM colonization reduces Qingshan poplar’s resistance to the insect.
-
-
图 2 栽植80 d后青山杨扦插苗根部GI、GM的定殖率
CK.对照;GI.根内根孢囊霉;GM.摩西管柄囊酶。不同小写字母表示不同处理之间差异显著(P < 0.05)。数据均为平均值 ± 标准差(n = 5)。下同。CK, control; GI, Glomus intraradices; GM, Glomus mosseae. Different lowercase letters indicate significant difference among varied groups (P < 0.05). The data annotation in the picture is average value ± SD (n = 5). The same below.
Figure 2. Colonization rate of GI and GM at 80 d after planting
图 3 各试验组舞毒蛾幼虫的体重
数据均为平均值 ± 标准差(n = 30);不同小写字母表示同一龄期不同组之间差异显著(P < 0.05)。下同。 The data annotation in the picture is average value ± SD (n = 30); different lowercase letters indicate that there is significant difference among different groups at the same age (P < 0.05). The same below.
Figure 3. Larvae body mass of spongy moth in each treatment group
-
[1] Ivanov S, Austin J, Berg R H, et al. Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface[J]. Nature Plants, 2019, 5(2): 194−203. doi: 10.1038/s41477-019-0364-5
[2] Bao X Z, Wang Y T, Olsson P, et al. Arbuscular mycorrhiza under water-carbon-phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes[J]. Soil Biology and Biochemistry, 2019, 129(2): 169−177.
[3] Limpens E, Geurts R. Transcriptional regulation of nutrient exchange in arbuscular mycorrhizal symbiosis[J]. Molecular Plant, 2018, 11(12): 1421−1423. doi: 10.1016/j.molp.2018.11.003
[4] Dabré É E, Lee S J, Hijri M, et al. The effects of mycorrhizal colonization on phytophagous insects and their natural enemies in soybean fields[J]. PLoS One, 2021, 16(9): 257−285.
[5] Vannette R L, Hunter M D. Mycorrhizal fungi as mediators of defense against insect pests in agricultural systems[J]. Agricultural and Forest Entomology, 2009, 11(4): 351−358. doi: 10.1111/j.1461-9563.2009.00445.x
[6] Wang M G, Martij B T, Wim P, et al. Effects of the timing of herbivory on plant defense induction and insect performance in ribwort plantain ( Plantago lanceolata) depend on plant mycorrhizal status[J]. Journal of Chemical Ecology, 2015, 41(11): 1006−1017. doi: 10.1007/s10886-015-0644-0
[7] Khaitov B, Patiño-Ruiz J D, Pina T, et al. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores[J]. Ecology and Evolution, 2015, 5(17): 3756−3768. doi: 10.1002/ece3.1654
[8] Minton M M, Barber N A, Gordon L L, et al. Effects of arbuscular mycorrhizal fungi on herbivory defense in two solanum (Solanaceae) species[J]. Plant Ecology and Evolution, 2016, 149(2): 157−164.
[9] 高春梅, 王淼焱, 弥岩, 等. 丛枝菌根真菌与植食性昆虫的相互作用[J]. 生态学报, 2014, 34(13): 3481−3489. Gao C M, Wang M Y, Mi Y, et al. Interactions between arbuscular mycorrhizal fungi and herbivorous insects[J]. Acta Ecological Sinica, 2014, 34(13): 3481−3489.
[10] 彭露, 严盈, 刘万学, 等. 植食性昆虫对植物的反防御机制[J]. 昆虫学报, 2010, 53(5): 572−580. Peng L, Yan Y, Liu W X, et al. Counter-defense mechanisms of phytophagous insects towards plant defense[J]. Acta Entomological Sinica, 2010, 53(5): 572−580.
[11] Si H L, Clark J M. Permethrin carboxylesterase functions as nonspecific sequestration proteins in the hemolymph of Colorado potato beetle[J]. Pesticide Biochemistry & Physiology, 1998, 62(1): 51−63.
[12] Yang M Y, Wang Z S, Macpherson M, et al. A novel Drosophila alkaline phosphatase specific to the ellipsoid body of the adult brain and the lower Malpighian (Renal) tubule[J]. Genetics, 2000, 154(1): 285−97. doi: 10.1093/genetics/154.1.285
[13] 袁志林, 潘雪玉, 靳微. 林木共生菌系统及其作用机制: 以杨树为例[J]. 生态学报, 2019, 39(1): 381−397. Yuan Z L, Pan X Y, Jin W. Tree-associated symbiotic microbes and underlying mechanisms of ecological interactions: a case study of poplar[J]. Acta Ecological Sinica, 2019, 39(1): 381−397.
[14] 闫永庆, 王文杰, 朱虹, 等. 混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响[J]. 应用生态学报, 2009, 20(9): 2085−2091. Yan Y Q, Wang W J, Zhu H, et al. Effects of salt-alkali stress on osmoregulation substance and active oxygen metabolism of Qingshan poplar ( Populus pseudo-cathayana × P. deltoides)[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2085−2091.
[15] 张丽茹. 舞毒蛾的生物学特性及综合防治技术[J]. 现代农业科技, 2020(6): 116−117. doi: 10.3969/j.issn.1007-5739.2020.06.072 Zhang L R. Biological characteristics and comprehensive control techniques of Lymantria dispar[J]. Modern Agricultural Science and Technology, 2020(6): 116−117. doi: 10.3969/j.issn.1007-5739.2020.06.072
[16] 丁峰, 高宗川. 舞毒蛾生物学特性观察及综合防治技术研究[J]. 中国林副特产, 2016, 4(5): 36−37. Ding F, Gao Z C. Study on biological characteristics and integrated control techniques of Lymantria dispar[J]. Chinese Forest Products, 2016, 4(5): 36−37.
[17] Phillips J M. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158−161. doi: 10.1016/S0007-1536(70)80110-3
[18] Jiang D, Zhou Y T, Tan M T, et al. Cd exposure-induced growth retardation involves in energy metabolism disorder of midgut tissues in the gypsy moth larvae[J]. Environmental Pollution, 2020, 266(3): 115−147.
[19] Wang Z Y, Nur F A, Ma J Y, et al. Effects of poplar secondary metabolites on performance and detoxification enzyme activity of Lymantria dispar[J]. Comparative Biochemistry and Physiology, 2019, 225: 108−117.
[20] 苑冉, 李欣悦, 吴韶平, 等. CO2浓度升高对舞毒蛾生长发育和体内解毒酶及保护酶活性的影响[J]. 林业科学, 2018, 54(12): 102−109. doi: 10.11707/j.1001-7488.20181211 Yuan R, Li X Y, Wu S P, et al. Effects of elevated CO2 concentration on growth and development of Lymantria dispar (Lepidoptera: Lymantridae), as well as on activities of detoxifying enzymes and protective enzymes in the body[J]. Scientla Silvae Sinicae, 2018, 54(12): 102−109. doi: 10.11707/j.1001-7488.20181211
[21] Real-Santillán R O, Del-Val E, Cruz-Ortega R, et al. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the fall armyworm Spodoptera frugiperda[J]. Mycorrhiza, 2019, 29(6): 615−622. doi: 10.1007/s00572-019-00920-3
[22] Flavia D, Benedikt K, Stefan V, et al. Multitrophic interactions among western corn rootworm, Glomus intraradices and microbial communities in the rhizosphere and endorhiza of maize[J]. Frontiers in Microbiology, 2013, 4(1): 357−368.
[23] Malik R J, Ali J G, Bever J D, et al. Mycorrhizal composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner[J]. Pedobiologia, 2017, 66(1): 29−35.
[24] Selvaraj A, Thangavel K, Uthandi S, et al. Arbuscular mycorrhizal fungi ( Glomus intraradices) and diazotrophic bacterium ( Rhizobium BMBS) primed defense in blackgram against herbivorous insect ( Spodoptera litura) infestation[J]. Microbiological Research, 2020, 231(C): 126−160.
[25] 鲁艺芳, 石蕾, 严善春. 不同光照强度对兴安落叶松几种主要防御蛋白活力的影响[J]. 生态学报, 2012, 32(11): 3621−3627. doi: 10.5846/stxb201105240680 Lu Y F, Shi L, Yan S C. Effects of different light intensities on activities of the primary defence proteins in needles of Larix gmelinlii[J]. Acta Ecological Sinica, 2012, 32(11): 3621−3627. doi: 10.5846/stxb201105240680
[26] 张凯, 周艳涛, 王皙玮, 等. 铜、镉胁迫对舞毒蛾排毒代谢酶的影响[J]. 北京林业大学学报, 2016, 38(2): 61−67. Zhang K, Zhou Y T, Wang X W, et al. Effects of copper and cadmium stress on the activities of detoxifying metabolic enzymes in Lymantria dispar[J]. Journal of Beijing Forestry University, 2016, 38(2): 61−67.
[27] 姜礅. 重金属胁迫下银中杨抗虫性及食叶害虫舞毒蛾解毒机制研究[D]. 哈尔滨: 东北林业大学, 2019. Jiang D. Study on the insect resistance of Populus alba × P. berolinensis and the detoxification mechanism of defoliator, Lymantria dispar under heavy metal stress[D]. Harbin: Northeast Forestry University, 2019.
[28] 武帅. 丛枝菌根真菌定殖对银中杨生长及抗虫性的影响[D]. 哈尔滨: 东北林业大学, 2021. Wu S. Effects of arbuscular mycorrhizal fungi colonization on growth and insect resistance of Populus alba × P. berolinensis[D]. Harbin: Northeast Forestry University, 2021.
-
期刊类型引用(12)
1. 于宏影,闫晓娜,王晓红,王思瑶,韦睿,黄艳. 东北茶藨子果实氨基酸组成分析. 林业科技通讯. 2024(09): 72-76 . 百度学术
2. 刘哲,叶英,罗黎霞,王虹,张祎睿. 狭果茶藨子营养成分分析与氨基酸提取工艺优化及评价. 食品与发酵工业. 2022(13): 188-195 . 百度学术
3. 刘九庆,谢力. 植物导管中穿孔板的流体力学建模与流阻分析. 森林工程. 2022(05): 93-103 . 百度学术
4. 罗敏蓉. 基于不同方法的毛茛族(毛茛科)导管穿孔板比较研究. 广西植物. 2021(01): 123-132 . 百度学术
5. 邓睿,张梅丽,周明,郑宝江. 中国茶藨子属1新记录种. 南京林业大学学报(自然科学版). 2021(02): 231-233 . 百度学术
6. 杜习武,叶康,胡永红,邵文,陈奕飞,廖梓洋,曾丽,秦俊. 淹水胁迫对星花玉兰木质部水分运输的影响. 植物生理学报. 2021(10): 1963-1973 . 百度学术
7. 张丽,乔枫. 茶藨子属植物逆境生理研究进展. 世界林业研究. 2018(01): 18-22 . 百度学术
8. 王美娟,赵千里,李芯妍,郑宝江. 12种茶藨子属植物叶表皮微形态特征及其分类学意义. 植物研究. 2018(04): 490-496 . 百度学术
9. 刘虹,薛青,黄文,覃瑞. 茶藨子属ITS2序列二级结构的预测和比较分析. 中南民族大学学报(自然科学版). 2018(03): 42-47 . 百度学术
10. 杜婉,王丰,潘彪,陈昕. 花楸属3种1变种植物茎次生构造的比较. 安徽农业大学学报. 2017(05): 857-861 . 百度学术
11. 刘灵,韦睿,于宏影,王千雪,申方圆. 东北茶藨子果实性状变异研究. 西南林业大学学报(自然科学). 2017(06): 23-29 . 百度学术
12. 韦睿,黄艳,王晓红,刘灵. 东北茶藨子研究现状及开发前景展望. 北方园艺. 2016(14): 202-206 . 百度学术
其他类型引用(12)