高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

7种观赏桃新种质的TP-M13-SSR分子标记鉴定及亲缘关系分析

侯佳音 冯树香 代嵩华 闫淑芳

侯佳音, 冯树香, 代嵩华, 闫淑芳. 7种观赏桃新种质的TP-M13-SSR分子标记鉴定及亲缘关系分析[J]. 北京林业大学学报, 2023, 45(8): 132-141. doi: 10.12171/j.1000-1522.20220158
引用本文: 侯佳音, 冯树香, 代嵩华, 闫淑芳. 7种观赏桃新种质的TP-M13-SSR分子标记鉴定及亲缘关系分析[J]. 北京林业大学学报, 2023, 45(8): 132-141. doi: 10.12171/j.1000-1522.20220158
Hou Jiayin, Feng Shuxiang, Dai Songhua, Yan Shufang. Identification of TP-M13-SSR molecular markers and genetic relationship analysis of seven new ornamental peach germplasms[J]. Journal of Beijing Forestry University, 2023, 45(8): 132-141. doi: 10.12171/j.1000-1522.20220158
Citation: Hou Jiayin, Feng Shuxiang, Dai Songhua, Yan Shufang. Identification of TP-M13-SSR molecular markers and genetic relationship analysis of seven new ornamental peach germplasms[J]. Journal of Beijing Forestry University, 2023, 45(8): 132-141. doi: 10.12171/j.1000-1522.20220158

7种观赏桃新种质的TP-M13-SSR分子标记鉴定及亲缘关系分析

doi: 10.12171/j.1000-1522.20220158
基金项目: 河北省重点研发计划项目现代种业科技专项(20326331D),北京林业大学“卓越实验师”培育专项(BJFUSY20220701)
详细信息
    作者简介:

    侯佳音,博士,高级实验师。主要研究方向:林木分子生物学、功能基因组学。Email:houjiayin@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    闫淑芳,副高级工程师。主要研究方向:景观生态林木良种选育。Email:283571640@qq.com 地址:050067 河北省石家庄市新华区学府路75号河北省林业和草原科学研究院

  • 中图分类号: S662.1

Identification of TP-M13-SSR molecular markers and genetic relationship analysis of seven new ornamental peach germplasms

  • 摘要:   目的  以7份选育出的观赏桃新种质和15份市面上常见桃品种的叶片为试验材料,通过简单重复序列(SSR)分子标记对其遗传多样性及亲缘关系进行分析鉴定,旨在探讨新种质与市面上常见桃品种的种间遗传距离与亲缘关系,为观赏桃起源演化、开发利用和亲本选配提供参考。  方法  利用36对引物进行TP-M13-SSR PCR扩增以及荧光毛细管电泳检测,并对扩增产物的扩增效率及引物多态性进行分析。对7份观赏桃新种质‘T20’、‘T22’、‘T28’、‘T10’、‘T13’、‘T9-1’、‘早花’与15份已有常见桃品种的亲缘关系进行鉴定,利用6个SSR位点构建22份观赏桃种质资源的指纹图谱,进行Neighbor-Joining聚类并结合表型性状开展综合分析。  结果  36对引物中筛选得到25对高多态性引物,共检测到183个多态性等位基因和98.396个有效等位基因,观察杂合度平均值为0.341,预期杂合度平均值为0.739,Shannon’s信息指数平均值为1.546,引物多态性信息指数平均值为0.683,介于0.510 ~ 0.841之间。新种质‘T20’和‘T10’与已有‘台阶’品种相似系数最大,分别为0.95和0.92,‘T20’和‘台阶’的枝型、花瓣颜色及花瓣类型等表型性状都相同;新种质‘T13’与已有‘五宝桃’品种相似系数最大,为0.86;新种质‘T22’与已有各品种相似系数很小,其表型性状与其余21份种质相比有较大不同;新种质‘T9-1’和‘早花’与已有‘朱粉垂枝’品种相似系数最大,为0.94。  结论  本研究通过构建SSR指纹图谱,更加直观和快捷的对观赏桃种质资源进行鉴定,为后期观赏桃种质资源的创新、种质资源库的建立及种质资源的保护与利用提供技术与理论支撑。

     

  • 图  1  引物BPPCT017在新种质资源‘T13’、‘T9-1’、‘T10’、‘T20’、‘T22’及‘早花’中的扩增产物毛细管电泳检测结果

    Figure  1.  Results of capillary electrophoresis detection of amplified products of primer BPPCT017 in new germplasm resources ‘T13’, ‘T9-1’, ‘T10’, ‘T20’, ‘T22’ and ‘Zaohua’

    图  2  22份观赏桃种质资源的Neighbor-Joining聚类分析图

    Figure  2.  Neighbor-Joining cluster analysis diagram of 22 ornamental peaches

    表  1  供试的观赏桃种质

    Table  1.   Ornamental peach germplasm for test

    编号
    No.
    种质
    Germplasm
    枝型或树形
    Branch type or tree type
    花瓣颜色
    Petal color
    花瓣类型
    Petal type
    花型
    Flower pattern
    1 ‘T20’ 直枝型
    Orthocladous group
    粉色淡粉色混合
    Mix pink and light pink
    重瓣
    Double petal
    牡丹型
    Peony flower shape
    2 ‘T22’ 直枝型
    Orthocladous group
    白粉色
    White pink
    重瓣
    Double petal
    菊花型
    Chrysanthemum shape
    3 ‘T28’ 直枝型
    Orthocladous group
    红色白色混合
    Mix red and white
    重瓣
    Double petal
    海棠花型
    Crabapple flower shape
    4 ‘T10’ 直枝型
    Orthocladous group
    粉色
    Pink
    单瓣
    Single-lobe
    海棠花型
    Crabapple flower shape
    5 ‘T13’ 直枝型
    Orthocladous group
    粉色
    Pink
    单瓣
    Single-lobe
    海棠花型
    Crabapple flower shape
    6 ‘T9-1’ 直枝型
    Orthocladous group
    玫红色
    Rose red
    重瓣
    Double petal
    牡丹型
    Peony flower shape
    7 ‘早花’
    ‘Zaohua’
    直枝型
    Orthocladous group
    淡玫红色
    Pale rose red
    单瓣
    Single-lobe
    海棠花型
    Crabapple flower shape
    8 ‘二色’
    ‘Erse’
    直枝型
    Orthocladous group
    粉红色或深红色
    Pink or dark red
    重瓣
    Double petal
    蔷薇型
    Rose flower shape
    9 ‘寒红’
    ‘Hanhong’
    直枝型
    Orthocladous group
    红色
    Red
    重瓣
    Double petal
    梅花型
    Plum blossom shape
    10 ‘京舞子’
    ‘Kyou-maiko’
    直枝型
    Orthocladous group
    红色
    Red
    重瓣
    Double petal
    菊花型
    Chrysanthemum shape
    11 ‘撒金’
    ‘Sajin’
    直枝型
    Orthocladous group
    粉色或红色
    Pink or red
    重瓣
    Double petal
    蔷薇型
    Rose flower shape
    12 ‘菊花桃’
    ‘Kikoumomo’
    直枝型
    Orthocladous group
    粉色
    Pink
    重瓣
    Double petal
    菊花型
    Chrysanthemum shape
    13 ‘科林斯粉’
    ‘Corinthian pink’
    帚型
    Pillar group
    粉红色
    Shocking pink
    重瓣
    Double petal
    月季型
    China rose flower shape
    14 ‘绿萼子’
    ‘Lü e’
    垂枝型
    Weeping group
    白色
    White
    重瓣
    Double petal
    梅花型
    Plum blossom shape
    15 ‘品霞’
    ‘Pinxia’
    直枝型
    Orthocladous group
    淡粉色
    Light pink
    重瓣
    Double petal
    梅花型
    Plum blossom shape
    16 ‘陕甘山桃’
    ‘Shangan mountain peach’
    直枝型
    Orthocladous group
    粉红色
    Shocking pink
    单瓣
    Single-lobe
    海棠花型
    Crabapple flower shape
    17 ‘寿红’
    ‘Shouhong’
    寿星型
    Dwarf group
    红色
    Red
    重瓣
    Double petal
    梅花型
    Plum blossom shape
    18 ‘台阶’
    ‘Taijie’
    直枝型
    Orthocladous group
    粉色淡粉色混合
    Mix pink and light pink
    重瓣
    Double petal
    蔷薇型
    Rose flower shape
    19 ‘五宝垂’
    ‘Wubao chui’
    垂枝型
    Weeping group
    粉色
    Pink
    重瓣
    Double petal
    牡丹型
    Peony flower shape
    20 ‘五宝桃’
    ‘Wubao tao’
    直枝型
    Orthocladous group
    红色或粉色
    Red or pink
    重瓣
    Double petal
    牡丹型
    Peony flower shape
    21 ‘云龙’
    ‘Unriumomo’
    直枝型
    Orthocladous group
    淡粉色
    Light pink
    单瓣
    Single-lobe
    海棠花型
    Crabapple flower shape
    22 ‘朱粉垂枝’
    ‘Zhufen chuizhi’
    垂枝型
    Weeping group
    粉红色
    Shocking pink
    重瓣
    Double petal
    梅花型
    Plum blossom shape
    注:1 ~ 7号材料为选育出的新种质,8 ~ 22号材料为市面上常见观赏桃品种。Notes: materials No.1 to No.7 are selected as new germplasm, and materials No.8 to No.22 are common ornamental peach varieties in the market.
    下载: 导出CSV

    表  2  36对SSR引物信息

    Table  2.   Information of 36 pairs of SSR primers

    引物编号
    Primer No.
    连锁群
    Linkage group
    引物序列(5′—3′)
    Primer sequence (5′−3′)
    扩增长度
    Amplification length/bp
    核心序列重复单元
    Core sequence repeat motif
    参考文献
    Reference
    BPPCT020 1 F: CGTGGATGGTCAAGATGC 196 ~ 208 (AG)14 GG(AG)7 AT(AG)8 [7]
    R: ATTGACGTGGACTTACAGGTG
    BPPCT022 1 F: TTGCGTCTCGCAGGTTATA 132 (AG)22 [7]
    R: CTACCCCTGCCACAAGCT
    BPPCT028 1 F: TCAAGTTAGCTGAGGATCGC 151 ~ 191 (TC)15 [7]
    R: GAGCTTGCCTATGAGAAGACC
    BPPCT042 1 F: AACCCTACTGGTTCCTCAGC 243 (CT)25 [7]
    R: GACCAGTCCTTTAGTTGGAGC
    CPPCT026 1 F: AGACGCAGCACCCAAACTAC 150 ~ 220 (CT)22 [22]
    R: CATTACATCACCGCCAACAA
    SSR152 1 F: GTTCTCGACTCCCATATCCAA 250 (TC)31 [23]
    R: CTCCAAAGTACAGAGCCTATCG
    SSR169 1 F: TTCTTATTCTGGAAATGCATCG 235 (TC)11 [23]
    R: ACATTTGCCCAAAATATGGTG
    UDP96-018 1 F: TTCTAATCTGGGCTATGGCG 253 (AC)21 [24]
    R: GAAGTTCACATTTACGACAGGG
    BPPCT001 2 F: AATTCCCAAAGGATGTGTATGAG 128 ~ 170 (GA)27 [7]
    R: CAGGTGAATGAGCCAAAGC
    BPPCT034 2 F: CTACCTGAAATAAGCAGAGCCAT 216 ~ 258 (GA)19 [7]
    R: CAATGGAGAATGGGGTGC
    SSR96 2 F: AACCTCAATCATTCTTTACACAAGC 146 (AG)33 [23]
    R: CTGCTTAAGGAGGAACCTCAAAT
    SSR107 2 F: TGCAGACTAGGGTTTTACAGACAA 155 (GA)8 [23]
    R: GATCTCCAAGTCATCTCCATCTG
    SSR179 2 F: ATCACGTCGGAAAGTTCCTAGA 222 (AG)8 [23]
    R: CGCCCTCCTCCCTCAGTA
    BPPCT007 3 F: TCATTGCTCGTCATCAGC 111 ~ 151 (AG)22 (CG)2 (AG)4 [7]
    R: CAGATTTCTGAAGTTAGCGGTA
    BPPCT033 3 F: GTAGCCGGAGCCGTGTAT 180 (AG)32 [7]
    R: CTAGAACCCTATAAACACATGGC
    CPPCT002 3 F: GGAGCTGCAATATTGCTG 100 (GA)10 [22]
    R: GTTAGGGAAGCATCTCAC
    SSR184 3 F: TGAATGTTCTTCCTGCTCCTG 290 (GA)33 [23]
    R: ATGAACATGAACCAGTCAAGGA
    BPPCT015 4 F: ATGGAAGGGAAGAGAAATCG 150 (AG)13 [7]
    R: GTCATCTCAGTCAACTTTTCCG
    BPPCT023 4 F: TGCAGCTCATTACCTTTTGC 183 ~ 237 (CT)21 [7]
    R: AGATGTGCTCGTAGTTCGGAC
    CPPCT005 4 F: CATGAACTCTACTCTCCA 120 ~ 185 (CT)25 [22]
    R: TGGTATGGACTCACCAAC
    SSR73 4 F: TTGCTGCTGAAAAATAATGAACA 160 (CAA)6 [23]
    R: GGGTGGCCTGTTGAGAATATAA
    BPPCT014 5 F: TTGTCTGCCTCTCATCTTAACC 190 ~ 226 (AG)23 [7]
    R: CATCGCAGAGAACTGAGAGC
    BPPCT017 5 F: TTAAGAGTTTGTGATGGGAACC 139 ~ 182 (GA)28 [7]
    R: AAGCATAATTTAGCATAACCAAGC
    BPPCT026 5 F: ATACCTTTGCCACTTGCG 134 (AG)8 GG(AG)6 [7]
    R: TGAGTTGGA AGAAAACGTAACA
    BPPCT037 5 F: CATGGAAGAGGATCAAGTGC 155 (GA)25 [7]
    R: CTTGAAGGTAGTGCCAAAGC
    BPPCT038 5 F: TATATTGTTGGCTTCTTGCATG 135 (GA)25 [7]
    R: TGAAAGTGAAACAATGGAAGC
    BPPCT008 6 F: ATGGTGTGTATGGACATGATGA 93 ~ 161 (GA)36 [7]
    R: CCTCAACCTAAGACACCTTCACT
    BPPCT025 6 F: TCC TGC GTA GAA GAA GGT AGC 147 ~ 199 (GA)29 [7]
    R: CGA CAT AAA GTC CAA ATG GC
    CPPCT015 6 F: TGGAGTGCCAATACTATTTA 200 (CT)31 [22]
    R: CATATGCATGGTTATGGT
    SSR181 6 F: AGAATGCAGGCCTTCCTTCT 224 (CT)36 [23]
    R: GCACCTTGCTTATCATCCGA
    SSR125 6 F: TAGCGCCATTGTTCACACAC 156 (GA)39 [23]
    R: GCTGGGAGAGAAAGATGACTGT
    CPPCT022 7 F: CAATTAGCTAGAGAGAATTATTG 240 (CT)28 CAA (CT)20 [22]
    R: GACAAGAAGCAAGTAGTTTG
    CPPCT033 7 F: TCAGCAAACTAGAAACAAACC 151 (CT)16 [22]
    R: TTGCAATCTGGTTGATGTT
    BPPCT041 8 F: CAATAAGGCATTTGGAGGC 220 (AG)21 [7]
    R: CAGCCGAACCAAGGAGAC
    CPPCT006 8 F: AATTAACTCCAACAGCTCCA 188 ~ 219 (CT)16 [22]
    R: ATGGTTGCTTAATTCAATGG
    SSR93 8 F: AACTGCCTTAGCTTAGACTGGCT 160 (AG)10 [23]
    R: AAGACGAGAAACCACCTTGAATC
    下载: 导出CSV

    表  3  29对SSR引物扩增效率及多态性分析

    Table  3.   Amplification efficiency and polymorphism analysis of 29 pairs of SSR primers

    引物编号
    Primer No.
    多态性等位基因观测数
    Number of polymorphic allele observation
    (Na)
    有效等位基因数
    Effective number of alleles (Ne)
    Shannon’s信息指数
    Shannon’s information index (I)
    观察杂合度
    Observed heterozygosity (Ho)
    预期杂合度
    Expected heterozygosity (He)
    多态性信息指数
    Polymorphism information
    index (PIC)
    BPPCT017 11 6.964 2.120 0.318 0.876 0.841
    CPPCT015 11 6.676 2.126 0.227 0.870 0.835
    BPPCT001 9 5.661 1.938 0.409 0.843 0.803
    SSR96 11 5.261 1.994 0.500 0.829 0.792
    BPPCT022 10 5.042 1.884 0.227 0.820 0.778
    SSR152 10 4.676 1.859 0.546 0.804 0.764
    BPPCT034 8 4.820 1.762 0.381 0.812 0.764
    SSR125 10 4.302 1.811 0.333 0.786 0.743
    SSR169 9 4.420 1.732 0.400 0.794 0.742
    SSR107 7 4.127 1.628 0.333 0.779 0.725
    CPPCT026 7 4.067 1.588 0.455 0.772 0.717
    BPPCT026 5 3.660 1.432 0.191 0.745 0.683
    BPPCT037 6 3.646 1.451 0.250 0.757 0.679
    BPPCT025 9 3.350 1.602 0.409 0.718 0.676
    CPPCT006 6 3.505 1.374 0.263 0.734 0.660
    BPPCT028 6 3.421 1.403 0.227 0.724 0.659
    CPPCT002 5 3.238 1.289 0.618 0.707 0.634
    BPPCT023 4 3.133 1.213 0.227 0.697 0.618
    SSR179 5 2.892 1.291 0.476 0.670 0.612
    BPPCT007 7 2.985 1.348 0.250 0.682 0.609
    SSR181 4 2.788 1.140 0.100 0.658 0.571
    BPPCT042 4 2.749 1.146 0.450 0.653 0.570
    BPPCT020 5 2.499 1.149 0.476 0.614 0.550
    UDP96-018 6 2.361 1.183 0.318 0.590 0.540
    SSR93 8 2.156 1.195 0.136 0.549 0.510
    BPPCT015 3 2.399 0.951 0.053 0.599 0.496
    SSR73 3 2.072 0.794 0.118 0.533 0.411
    CPPCT005 4 1.296 0.507 0.188 0.236 0.220
    BPPCT014 4 1.278 0.478 0.191 0.223 0.208
    平均值
    Average
    6.793 3.636 0.675 1.427 0.313 0.692
    下载: 导出CSV

    表  4  22份观赏桃新种质在6个SSR位点的指纹图谱

    Table  4.   Fingerprinting of 22 ornamental peach germplasm at 6 SSR loci bp

    种质
    Germplasm
    BPPCT017BPPCT025BPPCT034CPPCT015SSR125SSR152
    ‘T20’191/191193/193245/245213/213163/165256/258
    ‘T22’191/193193/193245/245213/213163/165256/258
    ‘T28’171/171193/211243/245215/215167/169270/270
    ‘T10’179/189193/211231/243211/215147/147268/270
    ‘T13’169/169207/207245/245223/223147/157246/268
    ‘T9-1’179/179211/211231/243211/215181/181268/268
    ‘早花’
    ‘Zaohua’
    179/187193/193231/243215/215167/169256/258
    ‘二色’
    ‘Erse’
    193/193193/193245/245213/213163/165266/272
    ‘寒红’
    ‘Hanhong’
    193/199193/199247/247221/221167/169270/270
    ‘京舞子’
    ‘Kyou-maiko’
    187/187191/191247/247257/257169/169274/274
    ‘撒金’
    ‘Sajin’
    171/171209/209241/243213/213169/169256/256
    ‘菊花桃’
    ‘Kikoumomo’
    189/189191/191247/253257/257169/169270/274
    ‘科林斯粉’
    ‘Corinthian pink’
    181/189193/193247/247215/215167/167270/270
    ‘绿萼子’
    ‘Lü e’
    187/187193/207247/247247/261167/167246/270
    ‘品霞’
    ‘Pinxia’
    173/189193/193245/253257/257169/169270/270
    ‘陕甘山桃’
    ‘Shangan mountain peach’
    161/173171/197223/223223/223133/149232/242
    ‘寿红’
    ‘Shouhong’
    171/171193/193243/243255/255169/169270/270
    ‘台阶’
    ‘Taijie’
    193/193193/193245/245213/213165/165256/258
    ‘五宝垂’
    ‘Wubao chui’
    187/187193/207247/247247/263169/169246/270
    ‘五宝桃’
    ‘Wubao tao’
    171/171207/209241/243213/213169/169256/256
    ‘云龙’
    ‘Unriumomo’
    171/171205/207231/231249/249177/177270/270
    ‘朱粉垂枝’
    ‘Zhufen chuizhi’
    187/187193/207227/247247/261167/167246/270
    下载: 导出CSV
  • [1] 陈尚平, 苏家乐, 何丽斯. 我国观赏桃的栽培起源和发展[J]. 江苏农业科学, 2014, 42(3): 128−130.

    Chen S P, Su J L, He L S. The cultivation origin and development of ornamental peach in China[J]. Jiangsu Agricultural Sciences, 2014, 42(3): 128−130.
    [2] Morgante M, Olivieri A. PCR-amplified microsatellites as markers in plant genetics[J]. The Plant Journal, 1993, 3(1): 175−182. doi: 10.1111/j.1365-313X.1993.tb00020.x
    [3] Wu Q, Liang X, Dai X, et al. Molecular discrimination and ploidy level determination for elite willow cultivars[J]. Tree Genetics & Genomes, 2018, 14(5): 65.
    [4] 宋跃朋, 江锡兵, 张曼, 等. 杨树Genomic-SSR与EST-SSR分子标记遗传差异性分析[J]. 北京林业大学学报, 2010, 32(5): 1−7.

    Song Y P, Jiang X B, Zhang M, et al. Genetic differences revealed by genomic-SSR and EST-SSR in poplar[J]. Journal of Beijing Forestry University, 2010, 32(5): 1−7.
    [5] 杨雄, 杨宁, 袁启华, 等. 白皮松EST-SSR 分子标记的开发及应用[J]. 北京林业大学学报, 2021, 43(7): 1−11.

    Yang X, Yang N, Yuan Q H, et al. Development and application of EST-SSR molecular markers in Pinus bungeana[J]. Journal of Beijing Forestry University, 2021, 43(7): 1−11.
    [6] Gabriela R, Marco A M, Carlos M, et al. Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars[J]. Electronic Journal of Biotechnology, 2008, 11(5): 1−12.
    [7] Dirlewanger E, Cosson P, Tavaud M, et al. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.)[J]. Theoretical and Applied Genetics, 2002, 105(1): 127−138. doi: 10.1007/s00122-002-0867-7
    [8] Mehrana K D, Tayebeh B, Karim S. Novel in silico EST-SSR markers and bioinformatic approaches to detect genetic variation among peach (Prunus persica L.) germplasm[J]. Journal of Forestry Research, 2020, 31(4): 1359−1370. doi: 10.1007/s11676-019-00922-z
    [9] 王淋, 敖敦, 包文泉, 等. 基于SSR分子标记的桃品种鉴别及指纹图谱构建[J]. 中南林业科技大学学报, 2021, 41(6): 131−138.

    Wang L, Ao D, Bao W Q, et al. Research on the identification of main peach varieties and construction of fingerprint based on SSR markers[J]. Journal of Central South University of Forestry & Technology, 2021, 41(6): 131−138.
    [10] Xu Y, Ma R, Xie H C. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region[J]. Genome, 2004, 47(6): 1091−1104. doi: 10.1139/g04-058
    [11] Ouni R, Zborowska A, Sehic J, et al. Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers[J]. Horticultural Plant Journal, 2020, 6(2): 61−70. doi: 10.1016/j.hpj.2020.03.003
    [12] 陈霁, 马瑞娟, 沈志军, 等. 基于SSR标记的观赏桃亲缘关系分析[J]. 果树学报, 2011, 28(4): 580−585.

    Chen J, Ma R J, Shen Z J, et al. SSR analysis on the genetic relationship of ornamental peach germplasm resources[J]. Journal of Fruit Science, 2011, 28(4): 580−585.
    [13] 陈丽, 薛良交, 李淑娴. 跳枝碧桃花色性状的全基因组关联分析[J]. 园艺学报, 2021, 48(3): 553−565.

    Chen L, Xue L J, Li S X. Genome-wide association study of flower color trait in Prunus persica f. versicolor[J]. Acta Horticulturae Sinica, 2021, 48(3): 553−565.
    [14] Momi T, Yuzuru M. Fine mapping of a locus presumably involved in hybrid inviability (HIs-1) between flowering cherry cultivar Cerasus × yedoensis ‘Somei-yoshino’ and its wild relative C. spachiana[J]. Breeding Science, 2019, 69(4): 658−664. doi: 10.1270/jsbbs.19078
    [15] Luo F, Sandefur P, Evans K, et al. A DNA test for routinely predicting mildew resistance in descendants of crabapple ‘White Angel’[J]. Molecular Breeding, 2019, 39(3): 33. doi: 10.1007/s11032-019-0933-3
    [16] Schuelke M. An economic method for the fluorescent labeling of PCR fragments[J]. Nature Biotechnology, 2000, 18(2): 233−234. doi: 10.1038/72708
    [17] Zhu Y, Hu J, Han R, et al. Fingerprinting and identification of closely related wheat (Triticum aestivum L.) cultivars using ISSR and fluorescence-labeled TP-M13-SSR markers[J]. Australian Journal of Crop Science, 2011, 5(7): 846−850.
    [18] 张志军, 黄克兴, 岳杰, 等. TP-M13-SSR技术在麦芽品种鉴定中的应用[J]. 食品科学, 2018, 39(24): 183−188.

    Zhang Z J, Huang K X, Yue J, et al. DNA fingerprinting of malt varieties using tailed primer M13 microsatellite (TP-M13-SSR) markers[J]. Food Science, 2018, 39(24): 183−188.
    [19] Yang Z M, Shi Y, Shuai J Q, et al. Fingerprint construction and genetic diversity analysis of tree peony collected from Hunan province based on SSR markers[J]. Horticultural Science and Technology, 2021, 39(5): 684−695.
    [20] 高源, 刘凤之, 王昆, 等. 基于TP-M13-SSR指纹图谱的中国原产苹果属植物分子身份证的建立[J]. 植物遗传资源学报, 2015, 16(6): 1290−1297.

    Gao Y, Liu F Z, Wang K, et al. TP-M13-SSR technique and its applications in analysis of genetic diversity for apple germplasm resources[J]. Journal of Plant Genetic Resources, 2015, 16(6): 1290−1297.
    [21] 刘超凡, 张国君, 徐刚标. 杨树种质SSR指纹数据库构建[J]. 中南林业科技大学学报, 2021, 41(2): 97−104.

    Liu C F, Zhang G J, Xu G B. Construction of SSR fingerprint database of Populus germplasm[J]. Journal of Central South University of Forestry & Technology, 2021, 41(2): 97−104.
    [22] Aranzana M J, Garcia-M J, Carbó J, et al. Development and variability analysis of microsatellite markers in peach[J]. Plant Breeding, 2002, 121(1): 87−92. doi: 10.1046/j.1439-0523.2002.00656.x
    [23] 关利平, 王玲玲, 曹珂, 等. 桃品种鉴定的SSR核心引物筛选及其应用[J]. 中国果树, 2021(6): 33−38.

    Guan L P, Wang L L, Cao K, et al. Screening and application of SSR core primers in peach variety identification[J]. China Fruits, 2021(6): 33−38.
    [24] Cipriani G, Lot G, Huang W G, et al. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus[J]. Theoretical & Applied Genetics, 1999, 99(1−2): 65−72.
    [25] Hulce D, Li X, Snyder-Leiby T, et al. Genemarker genotyping software: tools to increase the statistical power of DNA fragment analysis[J]. Journal of Biomolecular Techniques, 2011, 22(Suppl.): S35−S36.
    [26] 樊文强, 盖红梅, 孙鑫, 等. SSR数据格式转换软件DataFormater[J]. 分子植物育种, 2016, 14(1): 265−270.

    Fan W Q, Ge H M, Sun X, et al. DataFormater, a software for SSR data formatting to develop population genetics analysis[J]. Molecular Plant Breeding, 2016, 14(1): 265−270.
    [27] Botstein D. A theory of modular evolution for bacteriophages[J]. Annals of the New York Academy of Sciences, 2010, 354(1): 484−491.
    [28] Kato S, Matsumoto A, Yoshimura K, et al. Clone identification in Japanese flowering cherry (Prunus subgenus Cerasus) cultivars using nuclear SSR markers[J]. Breeding Science, 2012, 62(3): 248−255. doi: 10.1270/jsbbs.62.248
    [29] Li T H, Li Y X, Li Z C, et al. Simple Sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica)[J]. Journal of Integrative Plant Biology, 2008, 50(1): 102−110. doi: 10.1111/j.1744-7909.2007.00598.x
    [30] 王清明, 程怡, 马建伟, 等. 基于引物“随机组合”构建观赏桃SSR指纹图谱[J]. 广西植物, 2016, 36(3): 289−296. doi: 10.11931/guihaia.gxzw201408028

    Wang Q M, Cheng Y, Ma J W, et al. Construction of SSR fingerprint for ornamental peach based on primers “random combination”[J]. Guihaia, 2016, 36(3): 289−296. doi: 10.11931/guihaia.gxzw201408028
    [31] 魏姗姗, 刘兴菊, 杨敏生, 等. 基于成熟期的桃品种遗传多样性SSR分析[J]. 北方园艺, 2014, 6(12): 88−93.

    Wei S S, Liu X J, Yang M S, et al. Genetic diversity of SSR analysis of Prunus persica cultivars based on maturity[J]. Northern Horticulture, 2014, 6(12): 88−93.
    [32] 王力荣. 中国桃品种改良历史回顾与展望[J]. 果树学报, 2021, 38(12): 2178−2195.

    Wang L R. History and prospect of peach breeding in China[J]. Journal of Fruit Science, 2021, 38(12): 2178−2195.
    [33] Zhang Y J, Wang J, Yang L L, et al. Development of SSR and SNP markers for identifying opium poppy[J]. International Journal of Legal Medicine, 2022, 136(5): 1261−1271. doi: 10.1007/s00414-022-02810-4
    [34] Nihad S A I, Hasan M K, Kabir A, et al. Linkage of SSR markers with rice blast resistance and development of partial resistant advanced lines of rice (Oryza sativa) through marker-assisted selection[J]. Physiology and Molecular Biology of Plants, 2022, 25(1): 153−169.
    [35] 赵盼, 栗丹阳, 马锦林, 等. 油料树种千年桐的SSR标记开发、遗传多样性与群体结构分析[J]. 北京林业大学学报, 2021, 43(11): 50−61.

    Zhao P, Li D Y, Ma J L, et al. SSR marker development, genetic diversity and population structure analysis in oil tree species Vernicia montana[J]. Journal of Beijing Forestry University, 2021, 43(11): 50−61.
    [36] 毛秀红, 朱士利, 李善文, 等. 基于荧光SSR标记的毛白杨核心种质构建[J]. 北京林业大学学报, 2020, 42(7): 40−47.

    Mao X H, Zhu S L, Li S W, et al. Core germplasm construction of Populus tomentosa based on the fluorescent SSR markers[J]. Journal of Beijing Forestry University, 2020, 42(7): 40−47.
    [37] Liu Z S, Zhang J, Wang Y, et al. Development and cross-species transferability of novel genomic-SSR markers and their utility in hybrid identification and trait association analysis in Chinese cherry[J]. Horticulturae, 2022, 8(3): 222. doi: 10.3390/horticulturae8030222
    [38] 葛洪. 西京杂记(长安史迹丛刊)[M]. 西安: 三秦出版社, 2006.

    Ge H. Xijing miscellany (Chang’an historical relics series)[M]. Xi’an: Sanqin Publishing House, 2006.
    [39] 胡东燕. 分子标记技术在桃花品种系统分类中的应用研究[D]. 北京: 北京林业大学, 2004.

    Hu D Y. Studies on ornamental peach systematics using molecular markers[D]. Beijing: Beijing Forestry University, 2004.
    [40] 李雪莲, 王尚德, 刘佳棽, 等. 部分两用桃品种(系)指纹图谱的建立[J]. 西北植物学报, 2010, 30(3): 505−511.

    Li X L, Wang S D, Liu J Q, et al. Construction of fingerprinting map of some dual-purpose peach varieties by AFLP markers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(3): 505−511.
    [41] 肖琳. 湖南观赏桃遗传多样性研究[D]. 长沙: 中南林业科技大学, 2017.

    Xiao L. Research on genetic diversity of ornamental peaches in Hunan Province[D]. Changsha: Central South University of Forestry & Technology, 2017.
    [42] 王彩虹, 田义轲, 赵静. 来自苹果的SSRs在蔷薇科植物资源上的通用性分析[J]. 园艺学报, 2005, 32(3): 500−502.

    Wang C H, Tian Y K, Zhao J. General application analysis of SSRs derived from apple (Malus pumila) on other species in Rosaceae[J]. Acta Horticulturae Sinica, 2005, 32(3): 500−502.
    [43] 中华人民共和国农业农村部. 桃品种鉴定SSR分子标记法: NY/T 3642—2020 [S]. 北京: 中国标准出版社, 2020.

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Identification of peach (Amygdalus persica) cultivars—SSR marker method: NY/T 3642−2020[S]. Beijing: Standards Press of China, 2020.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-08-29
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-06-30
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回