Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China
-
摘要:
目的 植物叶片碳(C)、氮(N)、磷(P)含量及其比值是植物长期适应环境的结果,研究西北干旱区域园林木本植物叶片化学计量特征可以为同类城市园林木本植物的精准规划及大尺度模型的构建提供数据基础。 方法 该研究对兰州市主城区(七里河区、安宁区、西固区)42种常见园林木本植物叶片的C、N、P化学计量特征进行了分析。将42种植物按照乔木(26种)和灌木(16种)、常绿(7种)和落叶(35种)及针叶(5种)和阔叶(37种)进行分类,分析不同生活型植物叶片C、N、P、C∶N、C∶P和N∶P的变异特征及与比叶重(LMA)的关系。 结果 (1)42种园林木本植物叶片平均C含量为39.67%、N含量为2.45%、P含量为0.17%,C∶N、C∶P和N∶P平均值分别为17.17、232.98和14.72。与全球尺度相比,兰州市木本植物叶片C、P含量和C∶N相对较低,而叶片N∶P相对较高。(2)不同生活型植物化学计量特征不同,乔木叶片C含量、C∶N、C∶P和N∶P高于灌木,而N和P含量低于灌木;落叶树种叶片N、P含量高于常绿树种;阔叶树种叶片N、P含量高于针叶树种。(3)对植物叶片性状之间的相互关系分析显示:植物叶片C含量与C∶N、C∶P呈极显著正相关(P < 0.01);LMA与叶片C含量表现出协同关系,与叶片N、P含量均表现出相反的关系。 结论 初步判定兰州市园林木本植物在生长季受N元素的限制,建议在本区域生态环境治理时可适当增施N肥。 Abstract:Objective The contents and ratios of carbon (C), nitrogen (N) and phosphorus (P) in plant leaves are the results of long-term adaptation of plants to the environment. Study of leaf stoichiometry characteristics of woody landscape plants in arid areas of northwestern China can provide a data basis for the accurate planning and construction of large-scale models of planting in similar cities. Method In this study, the C, N and P stoichiometric characteristics of 42 common woody landscape plants in the main urban district of Lanzhou City of northwestern China (Qilihe District, Anning District and Xigu District) were analyzed. The 42 plant species were classified into trees (26 species) and shrubs (16 species), evergreen (7 species) and deciduous (35 species), coniferous (5 species) and broadleaved (37 species). Variation characteristics of leaves’ contents of C, N, P, C∶N, C∶P and N∶P of different life types, and the relationship between the variation characteristics and specific leaf mass (LMA) were analyzed. Result (1) The average contents of C, N and P of 42 woody landscape plants were 39.67%, 2.45% and 0.17%, respectively. The average C∶N, C∶P and N∶P were 17.17, 232.98 and 14.72, respectively. Compared with the global scale, the contents of C and P and C∶N in leaves of woody plants in Lanzhou City were relatively low, while the contents of N∶P in leaves were relatively high. (2) Stoichiometric characteristics varied among different plant life types. The C content, C∶N, C∶P and N:P of the leaves of trees were higher than those of shrubs, and the content of N and P was lower than that of shrubs. The leaf N and P content of deciduous tree species was higher than that of evergreen tree species. The leaves of broadleaved tree species had higher leaf N and P content than coniferous tree species. (3) The analysis of the correlations between plant leaf traits showed that leaf C content was positively correlated with C∶N and C∶P (P < 0.01). There was a synergistic relationship between LMA and leaf C content, but an opposite relationship between LMA and leaf N and P content. Conclusion It is preliminarily indicated that the development of woody landscape plants in Lanzhou City is limited by N elements during the growing season, and it is suggested that nitrogenous fertilizer can be increased appropriately during the ecological environmental improvement in this area. -
Key words:
- Lanzhou City /
- woody landscape plant /
- stoichiometric characteristics /
- leaf
-
图 1 乔木与灌木间植物叶片化学计量特征比较
箱线图上方字母相同表示不同生活型间无显著差异(P > 0.05),字母不同表示差异显著(P < 0.05);虚线表示平均值的位置;中间横线为中位线;误差线上下沿表示极大值和极小值。下同。The same letters above the box chart indicate that there is no significant difference between different life forms (P > 0.05), while different letters indicate significant difference (P < 0.05). The dotted line indicates the position of the average value. The middle horizontal line is the median line. The lower edge of the error line represents the maximum and minimum values. Same as below.
Figure 1. Comparison of stoichiometric characteristics of plant leaves between trees and shrubs
表 1 兰州市42种常见园林木本植物名录
Table 1. Plant list of 42 common woody landscape plants in Lanzhou City
乔木/灌木
Tree/
shrub常绿/落叶
Evergreen/
deciduous物种
Species科
Family属
Genus针叶/阔叶
Coniferous/
broadleaved乔木 Tree 常绿 Evergreen 圆柏 Juniperus chinensis 柏科 Cupressaceae 刺柏属 Juniperus 针叶 Coniferous 侧柏 Platycladus orientalis 柏科 Cupressaceae 侧柏属 Platycladus 樟子松 Pinus sylvestris 松科 Pinaceae 松属 Pinus 雪松 Cedrus deodara 松科 Pinaceae 雪松属 Cedrus 云杉 Picea asperata 松科 Pinaceae 云杉属 Picea 落叶 Deciduous 国槐 Styphnolobium japonicum 豆科 Fabaceae 槐属 Styphnolobium 阔叶 Broadleaved 杜仲 Eucommia ulmoides 杜仲科 Eucommiaceae 杜仲属 Eucommia 臭椿 Ailanthus altissima 苦木科 Simaroubaceae 臭椿属 Ailanthus 香椿 Toona sinensis 楝科 Meliaceae 香椿属 Toona 玉兰 Yulania denudata 木兰科 Magnoliaceae 玉兰属 Yulania 七叶树 Aesculus chinensis 无患子科 Sapindaceae 七叶树属 Aesculus 五角枫 Acer pictum subsp. mono 无患子科 Sapindaceae 槭属 Acer 元宝槭 Acer truncatum 无患子科 Sapindaceae 槭属 Acer 紫叶李 Prunus cerasifera 蔷薇科 Rosaceae 李属 Prunus 西府海棠 Malus × micromalus 蔷薇科 Rosaceae 苹果属 Malus 桃 Amygdalus persica 蔷薇科 Rosaceae 桃属 Amygdalus 白杜 Euonymus maackii 卫矛科 Celastraceae 卫矛属 Euonymus 毛泡桐 Paulownia tomentosa 泡桐科 Paulowniaceae 泡桐属 Paulownia 二球悬铃木 Platanus acerifolia 悬铃木科 Platanaceae 悬铃木属 Platanus 垂柳 Salix babylonica 杨柳科 Salicaceae 柳属 Salix 旱柳 Salix matsudana 杨柳科 Salicaceae 柳属 Salix 河北杨 Populus × hopeiensis 杨柳科 Salicaceae 杨属 Populus 新疆杨 Salix alba var. pyramidalis 杨柳科 Salicaceae 柳属 Salix 银杏 Ginkgo biloba 银杏科 Ginkgoaceae 银杏属 Ginkgo 榆树 Ulmus pumila 榆科 Ulmaceae 榆属 Ulmus 栾树 Koelreuteria paniculata 无患子科 Sapindaceae 栾属 Koelreuteria 灌木 Shrub 常绿 Evergreen 大叶黄杨 Buxus megistophylla 黄杨科 Buxaceae 黄杨属 Buxus 小叶黄杨 Buxus sinica var. parvifolia 黄杨科 Buxaceae 黄杨属 Buxus 落叶 Deciduous 木槿 Hibiscus syriacus 锦葵科 Malvaceae 木槿属 Hibiscus 金钟花 Forsythia viridissima 木樨科 Oleaceae 连翘属 Forsythia 连翘 Forsythia suspensa 木樨科 Oleaceae 连翘属 Forsythia 金叶女贞 Ligustrum × vicaryi 木樨科 Oleaceae 女贞属 Ligustrum 紫丁香 Syringa oblata 木樨科 Oleaceae 丁香属 Syringa 紫叶矮樱 Prunus × cistena 蔷薇科 Rosaceae 李属 Prunus 黄刺玫 Rosa xanthina 蔷薇科 Rosaceae 蔷薇属 Rosa 玫瑰 Rosa rugosa 蔷薇科 Rosaceae 蔷薇属 Rosa 月季花 Rosa chinensis 蔷薇科 Rosaceae 蔷薇属 Rosa 天目琼花 Viburnum opulus subsp. calvescens 五福花科 Adoxaceae 荚蒾属 Viburnum 红瑞木 Cornus alba 山茱萸科 Cornaceae 山茱萸属 cornus 紫叶小檗 Berberis thunbergii var. atropurpurea 小檗科 Berberidaceae 小檗属 Berberis 紫荆 Cercis chinensis 豆科 Fabaceae 紫荆属 Cercis 紫薇 Lagerstroemia indica 千屈菜科 Lythraceae 紫薇属 Lagerstroemia 表 2 兰州市42种园林木本植物C、N、P及其比值
Table 2. C, N, P and their ratios of 42 woody landscape plants in Lanzhou City
计量特征
Stoichiometric characteristics算术平均值
Arithmetical mean中位数
Median极大值
Maximum极小值
Minimum变异系数
Variation coefficient/%碳 Carbon (C) 39.67 ± 1.33 38.63 62.91 26.68 0.22 氮 Nitrogen (N) 2.45 ± 0.09 2.48 3.84 1.52 0.24 磷 Phosphorus (P) 0.17 ± 0.01 0.17 0.34 0.10 0.36 C∶N 17.17 ± 0.72 18.23 27.53 8.14 0.27 C∶P 232.98 ± 13.16 227.06 456.98 95.09 0.32 N∶P 14.72 ± 0.82 14.50 24.62 5.00 0.32 表 3 兰州市42种园林木本植物C、N、P及其化学计量比间的关系
Table 3. Relationship between C, N, P and the chemichiometric ratios of 42 woody landscape plants in Lanzhou City
指标
IndexC N P C∶N C∶P N∶P C 1 N 0.179 1 P 0.026 0.445* 1 C∶N 0.546** −0.664** 0.111 1 C∶P 0.466** 0.001 −0.793** 0.245 1 N∶P 0.047 0.420** −0.814** −0.419** 0.750** 1 注:*表示在P < 0.05水平差异显著,**表示在P < 0.01水平差异显著。Notes:* indicates a significant difference at P < 0.05 level. ** indicates a significant difference at P < 0.01 level. -
[1] 杨明飞. 我国北方干旱至半湿润区分布的植物叶碳氮磷化学计量特征研究[D]. 兰州: 兰州大学, 2017Yang M F. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in the arid to semi-humid regions, north China[D]. Lanzhou: Lanzhou University, 2017. [2] 刘超, 王洋, 王楠, 等. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11): 1205−1216.Liu C, Wang Y, Wang N, et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial eco-systems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205−1216. [3] 刘旻霞. 甘南高寒草甸植物元素含量与土壤因子对坡向梯度的响应[J]. 生态学报, 2017, 37(24): 8275−8284.Liu M X. Response of plant element content and soil factors to the slope gradient of alpine meadows in Gannan[J]. Acta Ecologica Sinica, 2017, 37(24): 8275−8284. [4] Reiners W A. Complementary models for ecosystems[J]. The American Naturalist, 1986, 127(1): 59−73. doi: 10.1086/284467 [5] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002 [6] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 141−153.Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 141−153. [7] Reich P B, Jacek O. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101 [8] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x [9] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001 [10] Sabine G. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x [11] 白晓珂. 氮添加、增温和降雨增加对黄土高原紫花苜蓿叶片化学计量学特征的影响[D]. 兰州: 兰州大学, 2019.Bai X K. Effects of nitrogen addition, warming and rainfall increase on stoichiometry of alfalfa leaves in the Loess Plateau of China[D]. Lanzhou: Lanzhou University, 2019. [12] 洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J]. 应用生态学报, 2013, 24(9): 2658−2665.Hong J T, Wu J B, Wang X D. Effects of global climate change on the C, N and P stoichiometry of terrestrial plants[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2658−2665. [13] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 2010, 143(1): 155−162. [14] Wright I J, Reich P B, Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403 [15] 李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716−1725.Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China[J]. Environmental Science, 2010, 31(8): 1716−1725. [16] 王雪薇. 城市森林在城镇化人居环境中的作用和建设理念[J]. 安徽农学通报, 2011, 17(7): 147−148. doi: 10.3969/j.issn.1007-7731.2011.07.073Wang X W. The function and construction idea of urban forest in urbanization human settlement environment[J]. Anhui Agricultural Science Bulletin, 2011, 17(7): 147−148. doi: 10.3969/j.issn.1007-7731.2011.07.073 [17] 武利玉, 苏世平, 王蕙. 兰州南北两山绿化区植物与植被类型初查[J]. 中国沙漠, 2006, 26(4): 564−568. doi: 10.3321/j.issn:1000-694X.2006.04.011Wu L Y, Su S P, Wang H. Preliminary investigation into plant and vegetation types in afforestation region in southern and northern mountains of Lanzhou City[J]. Journal of Desert Research, 2006, 26(4): 564−568. doi: 10.3321/j.issn:1000-694X.2006.04.011 [18] 杜鹃. 兰州主要绿化植物物候学与合理配植研究[D]. 兰州: 兰州大学, 2008.Du J. Study on garden afforestation phenology and its optimal application in Lanzhou City[D]. Lanzhou: Lanzhou University, 2008. [19] 刘立程. 兰州市生态系统服务供需关系研究[D]. 兰州: 西北师范大学, 2020.Liu L C. Study on the relationship between supply and demand of ecosystem services in Lanzhou[D]. Lanzhou: Northwest Normal University, 2020. [20] 李栋梁, 刘德祥. 甘肃气候[M]. 北京: 气象出版社, 2000.Li D L, Liu D X. Gansu climate[M]. Beijing: Meteorological Press, 2000. [21] 孙兰东, 刘德祥. 西北地区热量资源对气候变化的响应特征[J]. 干旱气象, 2008, 26(1): 8−12. doi: 10.3969/j.issn.1006-7639.2008.01.002Sun L D, Liu D X. Characteristics of heat resources in response to climate change in northwest China[J]. Journal of Arid Meteorology, 2008, 26(1): 8−12. doi: 10.3969/j.issn.1006-7639.2008.01.002 [22] Cornelissen J H C, Lavorel S, Garnier E. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124 [23] 高阳, 高凯, 王琳, 等. 科尔沁沙地两个菊芋品种叶片C、N、P化学计量特征[J]. 草原与草坪, 2019, 39(4): 72−77. doi: 10.3969/j.issn.1009-5500.2019.04.012Gao Y, Gao K, Wang L, et al. Stoichiometry traits of C, N and P of two jerusalem artichoke leaves in Horqin Sandy Land[J]. Grasslands and Turf, 2019, 39(4): 72−77. doi: 10.3969/j.issn.1009-5500.2019.04.012 [24] 何桂萍, 田青, 李宗杰, 等. 摩天岭北坡森林木本植物叶性状在物种和群落水平沿海拔梯度的变化[J]. 西北植物学报, 2018, 38(3): 553−563. doi: 10.7606/j.issn.1000-4025.2018.03.0553He G P, Tian Q, Li Z J, et al. Change in leaf functional traits of woody plants along altitudinal gradients at species and community levels on the Motianling northern slope[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 553−563. doi: 10.7606/j.issn.1000-4025.2018.03.0553 [25] 孙一梅, 田青, 吕朋, 等. 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020, 37(6): 1569−1579.Sun Y M, Tian Q, Lü P, et al. Effects of extreme drought and nitrogen addition on species diversity, leaf trait, and productivity in a semiarid sandy grassland[J]. Arid Zone Research, 2020, 37(6): 1569−1579. [26] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058 [27] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展, 2006(8): 965−973. doi: 10.3321/j.issn:1002-008X.2006.08.008Zheng S X, Shangguan Z P. Spatial distribution pattern of plant leaf nutrient composition in the Loess Plateau[J]. Progress in Natural Science, 2006(8): 965−973. doi: 10.3321/j.issn:1002-008X.2006.08.008 [28] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48−57. doi: 10.3773/j.issn.1005-264x.2010.01.008Yan E R, Wang X H, Guo M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests anddeciduous broad-leaved forests in the Tiantong Region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57. doi: 10.3773/j.issn.1005-264x.2010.01.008 [29] 汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44(6): 945−952.Wang T, Yang Y H, Ma W H. Storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6): 945−952. [30] 熊星烁, 蔡宏宇, 李耀琪, 等. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105Xiong X S, Cai H Y, Li Y Q, et al. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105 [31] Liu D, Zhang J, Biswas A, et al. Seasonal dynamics of leaf stoichiometry of Phragmites australis: a case study from Yangguan Wetland, Dunhuang, China[J]. Plants, 2020, 9(10): 1323. doi: 10.3390/plants9101323 [32] Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. Foliar C, N and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert[J]. Plant Ecology, 2018, 219(7): 775−788. doi: 10.1007/s11258-018-0833-3 [33] Koerseman W, Meuleman A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441−1450. doi: 10.2307/2404783 [34] 南富森, 李宗省, 张小平, 等. 黄河北岸兰州段丘陵区土壤生态化学计量与空间变异[J]. 中国沙漠, 2022, 42(5): 167−176.Nan F S, Li Z S, Zhang X P, et al. Spatial variation of ecological stoichiometry characteristics of hilly soil in Lanzhou section of Yellow River north shore[J]. Journal of Desert Research, 2022, 42(5): 167−176. [35] 何靖, 田青, 宋玲玲. 岷山北坡高海拔区草本植物群落特征及主要植物功能群C、N、P含量分析[J]. 生态环境学报, 2020, 29(3): 489−497.He J, Tian Q, Song L L. Community characteristics of herbaceous plants and analysis of C, N and P contents of main plant functional groups in high altitude area on the northern slope of Minshan Mountains[J]. Ecology and Environmental Sciences, 2020, 29(3): 489−497. [36] Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency[J]. Functional Ecology, 2004, 18(3): 419−425. doi: 10.1111/j.0269-8463.2004.00847.x [37] 孙一梅, 田青, 郭爱霞, 等. 放牧和氮添加对半干旱沙质草地优势种糙隐子草及群落功能性状的影响[J]. 草地学报, 2021, 29(3): 563−571.Sun Y M, Tian Q, Guo A X, et al. Effects of grazing and nitrogen addition on functional traits of dominant species Cleistogenes squarrosa and community in semi-arid sandy grassland[J]. Acta Agrestia Sinica, 2021, 29(3): 563−571. [38] Megan E M, Tanguy D, Lars O H. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of treestrial redfield-type ratios[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351 [39] 张蕾蕾, 钟全林, 程栋梁, 等. 刨花楠不同相对生长速率下林木叶片碳氮磷的适应特征[J]. 生态学报, 2016, 36(9): 2607−2613.Zhang L L, Zhong Q L, Cheng D L, et al. Biomass relative growth rate of Machilus pauhoi in relation to leaf carbon, nitrogen, and phosphorus stoichiometry properties[J]. Acta Ecologica Sinica, 2016, 36(9): 2607−2613. [40] 张鹏, 沈艳, 张小菊, 等. 宁夏荒漠草原优势植物叶片C、N、P生态化学计量特征及群落稳定性研究[J]. 中国草地学报, 2022, 44(6): 18−26. doi: 10.16742/j.zgcdxb.20210259Zhang P, Shen Y, Zhang X J, et al. Study on leaf carbon, nitrogen and phosphorus eco-stoichiometric characteristics and community stability of dominant plants in Ningxia Desert Steppe[J]. Chinese Journal of Grassland, 2022, 44(6): 18−26. doi: 10.16742/j.zgcdxb.20210259 [41] Sayer E J, Banin L F. Tree nutrient status and nutrient cycling in tropical forest-lessons from fertilization experiments[J]. Tree Physiology, 2016, 6: 275−297. [42] Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10849−10850. doi: 10.1073/pnas.0404222101 [43] Hendricks J J, Aber J D, Nadelhoffer K J, et al. Nitrogen controlson fine root substrate quality in temperate forest ecosystems[J]. Ecosystems, 2003, 3(1): 57−69. [44] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13(2): 87−115. [45] Nimemets Ü. Colal-scale elimaic contmols of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 201, 82(2): 453−469. [46] Wilson T D. Modlels in information behaviour research[J]. Jourmal of Documentation, 1999, 55(3): 249−270. doi: 10.1108/EUM0000000007145 [47] Long W X, Zang R G, Schamp B S, et al. Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest[J]. Oecologia, 2011, 167(4): 1103−1113. doi: 10.1007/s00442-011-2050-9 [48] Wight l J, Wesatdy M, Reich P B. Covergence towarls higher leaf mass per ara in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3): 534−543. doi: 10.1046/j.1365-2745.2002.00689.x [49] Takashima T, Hikosake K, Hirose T. Photosynthesis or persistence nitnogen allcation in leaves of evergreen and deciduous Querus species[J]. Plant Cell and Environment, 2004, 27: 1047−1054. doi: 10.1111/j.1365-3040.2004.01209.x [50] 刘广全, 赵士洞, 王浩, 等. 锐齿栎林个体光合器官生长与营养季节动态[J]. 生态学报, 2001, 21(6): 883−889. doi: 10.3321/j.issn:1000-0933.2001.06.004Liu G Q, Zhao S D, Wang H, et al. Seasonal variation of growth and nutrient contents for photosynthetic organ of the sharptooth oak stands[J]. Acta Ecologica Sinica, 2001, 21(6): 883−889. doi: 10.3321/j.issn:1000-0933.2001.06.004 [51] Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2017. [52] Schindler D E. Review: ecological stoichiometry: the biology of elements from molecules to the biosphere[J]. The Quarterly Review of Biology, 2003, 78(4): 501. -