高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油茶胚珠败育的组织学特性及相关基因表达分析

陈雨晴 杜兵帅 王胜楠 曹一博 袁德义 张凌云

陈雨晴, 杜兵帅, 王胜楠, 曹一博, 袁德义, 张凌云. 油茶胚珠败育的组织学特性及相关基因表达分析[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220182
引用本文: 陈雨晴, 杜兵帅, 王胜楠, 曹一博, 袁德义, 张凌云. 油茶胚珠败育的组织学特性及相关基因表达分析[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220182
Chen Yuqing, Du Bingshuai, Wang Shengnan, Cao Yibo, Yuan Deyi, Zhang Lingyun. Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220182
Citation: Chen Yuqing, Du Bingshuai, Wang Shengnan, Cao Yibo, Yuan Deyi, Zhang Lingyun. Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220182

油茶胚珠败育的组织学特性及相关基因表达分析

doi: 10.12171/j.1000-1522.20220182
基金项目: 国家自然科学基金项目(32071798)。
详细信息
    作者简介:

    陈雨晴。主要研究方向:经济林培育与利用。 Email:ChenYuqing@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    张凌云,教授,博士生导师。主要研究方向:经济林果实发育与品质调控。Email:lyzhang@bjfu.edu.cn 地址:同上。

  • 中图分类号: S792.11

Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera

  • 摘要:   目的  油茶胚珠败育现象严重,只有少数胚珠能发育为成熟种子,但其败育机制尚不清楚。本研究对油茶胚珠败育时期、组织结构变化和败育原因展开探究,旨在明确油茶胚珠的败育过程,为提高油茶产量提供一定的理论基础和实践意义。  方法  本研究以‘华硕’品种果实为试验材料,在体视显微镜下观察油茶果实内的胚珠的形态,统计败育率,采用荧光素二乙酸酯(FDA)染色观察败育胚珠失去活性的时间;通过石蜡切片和显微镜观察明确可育胚珠和败育胚珠的组织结构变化,通过碘−碘化钾染色和PAS反应标记可育胚珠与败育胚珠中淀粉粒的分布。利用CFDA荧光示踪和激光共聚焦成像技术揭示同化物在可育胚珠与败育胚珠中的运输路径,通过实时荧光定量PCR试验分析与糖和能量代谢、活性氧代谢、细胞凋亡等过程相关的基因在可育胚珠与败育胚珠中的表达情况。  结果  (1)体式显微镜的观察结果显示26 WAA(weeks after anthesis,花后周数)后油茶可育胚珠与败育胚珠的大小产生差异;FDA标记结果说明,败育胚珠在果实发育过程中逐步失去活性。(2)37 WAA时,胚珠败育率达到64.08%。(3)显微观察显示:可育胚珠的胚和胚乳均正常发育,内外珠被结合紧密;败育胚珠无胚乳细胞,内珠被与外珠被之间的空隙较大;可育胚珠的胚柄和胚乳中均有淀粉粒存在,败育胚珠仅在萎缩的内珠被上观察到少量淀粉粒。可育胚珠的内珠被上无胼胝质沉积,败育胚珠的内珠被上可见胼胝质沉积。(4)CFDA荧光示踪结果发现,败育胚珠与可育胚珠的同化物运输方式存在差异。(5)与糖和能量代谢、活性氧代谢、细胞凋亡等过程相关基因在败育胚珠和可育胚珠中存在差异性表达。  结论  败育胚珠的结构异常,胚珠内缺乏淀粉的积累,内珠被上有胼胝质沉积,同化物的运输方式与可育胚珠不同,参与胚珠物质和能量代谢、抗氧化作用和细胞凋亡等过程的基因的差异表达可能与油茶胚珠的败育有关。

     

  • 图  1  不同发育时期油茶的可育和败育胚珠形态变化以及败育率统计

    a、f. 21 WAA胚珠;b、g. 26 WAA胚珠;c、h. 31 WAA胚珠;d、i. 34 WAA胚珠;e、j. 37 WAA胚珠; a ~ j.白色箭头指向表示正在败育的胚珠,红色箭头指向表示可育胚珠;k. 31 WAA胚珠,蓝色箭头和红色箭头指向表示正在败育的胚珠,黑色箭头指向表示可育胚珠;l. 31 WAA胚珠,从左至右依次为两种正在败育的胚珠和可育胚珠;m. 31、34、37 WAA油茶果实内败育胚珠的比例。标尺为2 mm。不同字母表示差异性显著(P < 0.05),下同。a, f, ovules of 21 WAA; b, g, ovules of 26 WAA; c, h, ovules of 31 WAA; d, i, ovules of 34 WAA; e, j, ovules of 37 WAA. a−j, the white arrow shows ovule aborting currently; the red arrow shows fertile ovule. k, ovules of 31 WAA, the blue and red arrows show ovules aborting currently; the black arrow shows fertile ovules. l, ovules of 31 WAA, there are two types of abortive ovules and fertile ovules from left to right. m, proportion of abortive ovules of 31, 34, 37 WAA. Bar is 2 mm. Different letters indicate significant differences at P < 0.05 level. The same below.

    Figure  1.  Morphological changes and proportion of fertile and abortive ovules of C. oleifera at different development stages

    图  2  不同发育时期油茶胚珠活性观察

    a、b. 21 WAA胚珠;c、d. 26 WAA胚珠;e、f. 31 WAA胚珠;g、 h. 34 WAA胚珠;i ~ l. 37 WAA胚珠;a、c、e、g、i、j、k. GFP通道;b、d、f、h、l. 明场;a ~ h. 1个子房内的所有胚珠;i. 一个子房内的所有可育胚珠;j. 一个子房内的所有败育胚珠;k、l. 一个子房内的部分可育胚珠和败育胚珠。a, b, ovules of 21 WAA; c, d, ovules of 26 WAA; e, f, ovules of 31 WAA; g, h, ovules of 34 WAA; i−l, ovules of 37 WAA; a, c, e, g, i, j, k, GFP field; b, d, f, h, l, bright field; a−h, all ovules in one ovary; i, all fertile ovules in one ovary; j, all abortive ovules in one ovary; k, l, partial fertile ovules and abortive ovules in one ovary.

    Figure  2.  Activity observation on ovules of C. oleifera at different development stages

    图  3  不同发育时期油茶可育胚珠和败育胚珠的组织学观察

    a. 31 WAA可育胚珠;b. 34 WAA可育胚珠;c. 37 WAA可育胚珠;d、e. 21 WAA败育胚珠;f−i. 26、31、34、37 WAA的败育胚珠;Ⅱ. 内珠被;OI. 外珠被;En. 胚乳;Cot. 子叶;VB. 维管束。a, fertile ovules of 31 WAA; b, fertile ovules of 34 WAA; c, fertile ovules of 37 WAA; d,e, abortive ovules of 21 WAA; f−i, abortive ovules of 26, 31, 34, 37 WAA; Ⅱ, inner integument; OI, outer integument; En, endosperm; Cot, cotyledon; VB, vascular bundle.

    Figure  3.  Histological observation on fertile and abortive ovules of C. oleifera at different developmental stages

    图  4  不同发育时期油茶可育胚珠和败育胚珠的淀粉粒分布

    a ~ f. 碘−碘化钾染色;g ~ l. PAS法染色;a、d、g、j. 31 WAA胚珠;b、e、h、k. 34 WAA胚珠;c、f、i、l. 37 WAA胚珠;a ~ c、g ~ i. 可育胚珠;d ~ f、j ~ l. 败育胚珠;S. 胚柄;黑色方框示淀粉粒。a−f, I2-KI staining; g−l, periodic acid-schiff staining; a, d, g, j, ovules of 31 WAA; b, e, h, k, ovules of 34 WAA; c, f, i, l, ovules of 37 WAA; a−c, g−i, fertile ovules; d−f, j−l, abortive ovules; S, suspensor. The black box shows starch grains.

    Figure  4.  Distribution of starch grains in fertile and abortive ovules of C. oleifera at different development stages

    图  5  不同发育时期油茶可育胚珠和败育胚珠的胼胝质染色观察

    a、e. 31 WAA胚珠;b、f. 34 WAA胚珠;c、g. 37 WAA胚珠;a ~ c. 可育胚珠的内珠被的胼胝质染色结果;d. 可育胚珠的内珠被的自发荧光;i. 可育胚珠的内珠被的明场;e ~ g. 败育胚珠的内珠被的胼胝质染色结果;h. 败育胚珠的内珠被的自发荧光;j. 败育胚珠的内珠被的明场;k. 胼胝质荧光信号的定量分析。标尺为50 μm。箭头指向表示胼胝质。a, e, ovules of 31 WAA; b, f, ovules of 34 WAA; c, g, ovules of 37 WAA; a−c, callose staining results of the inner integument of fertile ovules; d, autofluorescence of the inner integument of fertile ovules; i, bright field of the inner integument of fertile ovules; e−g, callose staining results of the inner integument of abortive ovules; h, autofluorescence of the inner integument of abortive ovules; j, bright field of the inner integument of abortive ovules; k, quantitative analysis of the florescent signal of callose. Bar is 50 μm. The arrow shows the callose.

    Figure  5.  Observation on callose staining of fertile and abortive ovules of C. oleifera at different development stages

    图  6  CF在发育早期可育胚珠和败育胚珠中的运动情况

    a ~ c. 可育胚珠;d ~ i. 败育胚珠;a、d、g. GFP通道;b、e、h. 明场;c、f、i. 叠加视野;标尺为250 μm。a−c, fertile ovules; d−i, abortive ovules; a, d, g, GFP field; b, e, h, bight field; c, f, i, merged field; Bar is 250 μm.

    Figure  6.  CF movement in fertile and abortive ovules of C. oleifera at early development stage

    图  7  不同发育时期可育胚珠和败育胚珠中与糖和能量代谢、活性氧代谢和细胞凋亡过程相关基因的表达情况

    FO. 可育胚珠;AO. 败育胚珠。FO, fertile ovules; AO, abortive ovules.

    Figure  7.  Heatmap of the relative expressions of genes about sugar and energy metabolism, reactive oxygen metabolism and apoptosis processes of fertile and abortive ovules of C. oleifera at different stages

    表  1  实时荧光定量PCR试验所用引物

    Table  1.   Primers used in qRT-PCR experiment

    基因
    Gene
    上游引物序列(5′—3′)
    Forward primer (5′−3′)
    下游引物序列(5′—3′)
    Reverse primer (5′−3′)
    starch synthase-1 TGGACCGTGGGATGCCTTAT TCAATGGAATGCAGCAATAGCC
    starch synthase-2 AGGAGAGAGAAGGGAAAGATCC AATAGTTCGGTTTCTGCCATGAAG
    callose synthase-1 AGTTGGTATCGATGGGCAGA TGCTTGACCAAGTAGAAGAAGG
    callose synthase-2 ATGGGTAGGAAGAAGTTCAGTGC CCACAGATCCAATAAACAGGAA
    sucrose transporter-1 ATCCGGGTGCCTTACAAGAA AACTGGAAGGCAGATCGGAG
    sucrose transporter-2 AGCCGATCGCCGCCGTACTA CTGTATTCCGCAAGCCACTG
    SWEET1 AGGAGAGAGAAGGGAAAGATCC AATAGTTCGGTTTCTGCCATGAAG
    SWEET2 GTTGTTGCGAAAGATCAAAAGTT TTCTTGACATGCGATTGAGCTAA
    cell wall invertase CCAAGTTGACATGCCTAGCAC ATTAACCCAAATGGTCCAACCT
    ATPase-1 ATATCTGATGAGAACATGCAAGAGAA TTACTGGAACATACACTTAGGCAGGA
    ATPase-2 AATTCGATGACCTTTCAGAGC TTTAAGCAGCAGATTCCTTGG
    ATPase-3 GGAGGCTGCTGTCCTCTCTCT GGTGGCGTAGTCGAGGACA
    phosphoenolpyruvate carboxykinase GGAATGGACTGGGGAAGATAC GCCAAAGACGCACTCTTCTTC
    glyceraldehyde-3-phosphate dehydrogenase CTCCCTCTCTCTATCTGTCCCTCT GATCCTTCCGAATCCATTG
    peroxidase-1 TGGCTTTTAACCTCTCAGCTGTTT TGGTGATGTGAAGATGAATATGATGA
    peroxidase-2 ATGTATTTGTGGAGCTTCAGCACT CCATGCTTTGAGAAGCAGGAGG
    Caspase-2 AGCTGTACGTTGTGATTCTGCT CAGCTCTGGGGTTTCCATT
    Caspase-3 CACCGTTTCTGTCTCCTCTTC GGTCGGAGTTCAACTGATGG
    EF-2 AAGCTGCTGGCGTGAGAATA CTCTCTTCTGCTGCCTTCTT
    下载: 导出CSV
  • [1] 王小艺, 曹一博, 张凌云, 等. 油茶生长发育过程中脂肪酸成分的测定分析[J]. 中国农学通报, 2012, 28(13): 76−80. doi: 10.11924/j.issn.1000-6850.2012-0460

    Wang X Y, Cao Y B, Zhang L Y, et al. Analysis of the fatty acids compositions of Camellia in different growth stages[J]. Chinese Agricultural Science Bulletin, 2012, 28(13): 76−80. doi: 10.11924/j.issn.1000-6850.2012-0460
    [2] 梁文静, 肖萍, 崔萌, 等. 油茶果实和种子生长发育的动态[J]. 南昌大学学报(理科版), 2019, 43(1): 46−52.

    Liang W J, Xiao P, Cui M, et al. The growth and development dynamics of Camellia oleifera Abel. fruits and seeds[J]. Journal of Nanchang University (Natural Science), 2019, 43(1): 46−52.
    [3] 曹慧娟. 油茶胚胎学的观察[J]. 植物学报, 1965, 13(1): 44−60.

    Cao H J. Observation of Camellia embryology[J]. Acta Botanica Sinica, 1965, 13(1): 44−60.
    [4] 周良骝, 任立中, 陈佩聪, 等. 油茶胚胎发育及落花落果的研究[J]. 安徽农学院学报, 1991, 18(3): 238−241.

    Zhou L L, Ren L Z, Chen P C, et al. Premature drop shedding and embryonic development of petals of the oil-tea Camellia[J]. Journal of Anhui Agricultural College, 1991, 18(3): 238−241.
    [5] 邹锋. 攸县油茶生殖生物学研究[D]. 长沙: 中南林业科技大学, 2010.

    Zou F. The researches on reproductive biology of Camellia yubsienensis Hu. [D]. Changsha: Central South University of Forestry and Technology, 2010.
    [6] Gao C, Yang R, Yuan D Y. Characteristics of developmental differences between fertile and aborted ovules in Camellia oleifera[J]. Journal of the American Society for Horticultural Science, 2017, 142(5): 330−336. doi: 10.21273/JASHS04164-17
    [7] 梁春莉, 刘孟军, 赵锦. 植物种子败育研究进展[J]. 分子植物育种, 2005, 3(1): 117−122. doi: 10.3969/j.issn.1672-416X.2005.01.020

    Liang C L, Liu M J, Zhao J. Research progress on plant seeds abortion[J]. Molecular Plant Breeding, 2005, 3(1): 117−122. doi: 10.3969/j.issn.1672-416X.2005.01.020
    [8] Liu J F, Cheng Y Q, Yan K, et al. The relationship between reproductive growth and blank fruit formation in Corylus heterophylla Fisch[J]. Scientia Horticulturae, 2012, 136: 128−134. doi: 10.1016/j.scienta.2012.01.008
    [9] 闫晓娜. 扇脉杓兰种子败育机理的研究[D]. 北京: 中国林业科学研究院, 2015.

    Yan X N. Study on the mechanism of seed abortion in Cypripedium japonicum[D]. Beijing: Chinese Academy of Forestry, 2015.
    [10] 张超越, 王迎夏, 郑艳艳, 等. 西瓜种子败育的胚胎学观察[J]. 中国瓜菜, 2019, 32(8): 134−138. doi: 10.3969/j.issn.1673-2871.2019.08.032

    Zhang C Y, Wang Y X, Zheng Y Y, et al. Embryological observations on seed abortion in watermelon[J]. China Cucurbits and Vegetables, 2019, 32(8): 134−138. doi: 10.3969/j.issn.1673-2871.2019.08.032
    [11] 张懿, 张大兵, 刘曼. 植物体内糖分子的长距离运输及其分子机制[J]. 植物学报, 2015, 50(1): 107−121.

    Zhang Y, Zhang D B, Liu M. Long-distance transport of sugar in plants and molecular mechanism[J]. Acta Botanica Sinica, 2015, 50(1): 107−121.
    [12] Cheng J T, Wen S Y, Xiao S, et al. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. Journal of Experimental Botany, 2018, 69(3): 511−523. doi: 10.1093/jxb/erx440
    [13] Wang L, Ruan Y L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton[J]. Plant Physiology, 2012, 160(2): 777−787. doi: 10.1104/pp.112.203893
    [14] Werner D, Gerlitz N, Stadler R. A dual switch in phloem unloading during ovule development in Arabidopsis[J]. Protoplasma, 2011, 248(1): 225−235. doi: 10.1007/s00709-010-0223-8
    [15] 张春吉. 榛子胚败育过程中物质运输障碍发生规律及基因差异表达谱研究[D]. 四平: 吉林师范大学, 2014.

    Zhang C J. Studies on material transport barriers and its differential gene expression profiles in the process of embryo abortion of hazelnut[D]. Siping: Jilin Normal University, 2014.
    [16] Rosellini D, Lorenzetti F, Bingham E T. Quantitative ovule sterility in Medicago sativa[J]. Theoretical and Applied Genetics, 1998, 97(8): 1289−1295. doi: 10.1007/s001220051021
    [17] Rosellini D, Ferranti F, Barone P, et al. Expression of female sterility in alfalfa (Medicago sativa)[J]. Sexual Plant Reproduction, 2003, 15(6): 271−279. doi: 10.1007/s00497-003-0163-y
    [18] Gong Z X, Han R, Xu L, et al. Combined transcriptome analysis reveals the ovule abortion regulatory mechanisms in the female sterile line of Pinus tabuliformis Carr.[J]. International Journal of Molecular Sciences, 2021, 22(6): 3138−3159. doi: 10.3390/ijms22063138
    [19] 曾维英, 杨守萍, 喻德跃, 等. 大豆质核互作雄性不育系NJCMS2A及其保持系的花药蛋白质组比较研究[J]. 作物学报, 2007, 33(10): 1637−1643. doi: 10.3321/j.issn:0496-3490.2007.10.012

    Zeng W Y, Yang S P, Yu D Y, et al. A comparative study on anther proteomics between cytoplasmic-nuclear male sterile line NJCMS2A and its maintainer of soybean[J]. Acta Agronomica Sinica, 2007, 33(10): 1637−1643. doi: 10.3321/j.issn:0496-3490.2007.10.012
    [20] 贾晋, 张鲁刚. 萝卜胞质雄性不育正常花蕾与败育花蕾DD-PCR及EST序列分析[J]. 核农学报, 2008, 22(4): 426−431.

    Jia J, Zhang L G. mRNA differential display and est sequence analysis of aborted bud and normal bud in radish (Raphanus sativus)[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(4): 426−431.
    [21] 王永平, 王莉, 陈鹏, 等. 银杏种实发育过程中中种皮的解剖与超微结构观察[J]. 植物生理学通讯, 2006, 42(6): 1086−1090.

    Wang Y P, Wang L, Chen P, et al. Observation on anatomical structure and ultra-structure of mesocoat during development of Ginkgo biloba L.[J]. Plant Physiology Journal, 2006, 42(6): 1086−1090.
    [22] 杜兵帅. 板栗胚珠败育的细胞学及分子机理初探[D]. 北京: 北京农学院, 2020.

    Du B S. The preliminary study on cytological and molecular mechanism of ovule abortion in Chinese chestnut[D]. Beijing: Beijing University of Agriculture, 2020.
    [23] 谭晓风, 袁德义, 袁军, 等. 大果油茶良种‘华硕’[J]. 林业科学, 2011, 47(12): 184−209. doi: 10.11707/j.1001-7488.20111228

    Tan X F, Yuan D Y, Yuan J, et al. An elite variety: Camellia oleifera ‘Huashuo’[J]. Scientia Silvae Sinicae, 2011, 47(12): 184−209. doi: 10.11707/j.1001-7488.20111228
    [24] Zhang L Y, Peng Y B, Pelleschi-Travier S, et al. Evidence for apoplasmic phloem unloading in developing apple fruit[J]. Plant Physiol, 2004, 135(1): 574−586. doi: 10.1104/pp.103.036632
    [25] 李和平. 植物显微技术[M]. 2版. 北京: 科学出版社, 2009.

    Li H P. Plant microscopy[M]. 2nd ed. Beijing: Science Press, 2009.
    [26] 姜金仲, 李云, 贺佳玉, 等. 四倍体刺槐胚珠败育及其机制[J]. 林业科学, 2011, 47(5): 40−45. doi: 10.11707/j.1001-7488.20110506

    Jiang J Z, Li Y, He J Y, et al. Ovule abortion and its mechanism for tetraploid Robinia pseudoacacia[J]. Scientia Silvae Sinicae, 2011, 47(5): 40−45. doi: 10.11707/j.1001-7488.20110506
    [27] 张健, 吕柳新, 叶明志. 胚胎败育型荔枝胚胎发育异常的显微及亚显微观察[J]. 河南农业大学学报, 2006, 40(2): 194−197. doi: 10.3969/j.issn.1000-2340.2006.02.020

    Zhang J, Lü L X, Ye M Z. Microscopic and submicroscopic observations on the abnormal embryonic development of embryo-abortive litchi(Litchi chinensis Sonn. cv. luhebao)[J]. Journal of Henan Agricultural University, 2006, 40(2): 194−197. doi: 10.3969/j.issn.1000-2340.2006.02.020
    [28] Du B S, Zhang Q, Cao Q Q, et al. Morphological observation and protein expression of fertile and abortive ovules in Castanea mollissima[J]. Peer J, 2021, 9: e11756
    [29] Wang X J, Li X X, Zhang J W, et al. Characterization of nine alfalfa varieties for differences in ovule numbers and ovule sterility[J]. Australian Journal of Crop Science, 2011, 5(4): 447−452.
    [30] Zhou H C, Jin L, Li J, et al. Altered callose deposition during embryo sac formation of multi-pistil mutant (mp1) in Medicago sativa[J]. Genetics and Molecular Research, 2016, 15(2): 10.4238.
    [31] Swanson R, Edlund A F, Preuss D. Species specificity in pollen-pistil interactions[J]. Annual Review of Genetics, 2004, 38: 793−818. doi: 10.1146/annurev.genet.38.072902.092356
    [32] 袁艺, 杜国华, 谢中稳, 等. 板栗空篷发生的主要营养物质的变化[J]. 武汉植物学研究, 1997, 15(3): 243−249.

    Yuan Y, Du G H, Xie Z W, et al. Changes of some main nutritional substances during the development course of empty-shell chestnut[J]. Journal of Wuhan Botanical Research, 1997, 15(3): 243−249.
    [33] 文李, 刘盖, 张再君, 等. 红莲型水稻细胞质雄性不育花药蛋白质组学初步分析[J]. 遗传, 2006, 28(3): 311−316. doi: 10.3321/j.issn:0253-9772.2006.03.011

    Wen L, Liu G, Zhang Z J, et al. Preliminary proteomics analysis of the total proteins of hl type cytoplasmic male sterility rice anther[J]. Hereditas, 2006, 28(3): 311−316. doi: 10.3321/j.issn:0253-9772.2006.03.011
    [34] Osorio S, Vallarino J G, Szecowka M, et al. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation[J]. Plant Physiology, 2013, 161(2): 628−643. doi: 10.1104/pp.112.211094
    [35] 刘静, 张鲁刚, 王风敏, 等. 萝卜花蕾败育过程中的组织细胞学特征观察[J]. 西北农业学报, 2008, 17(5): 272−276. doi: 10.3969/j.issn.1004-1389.2008.05.059

    Liu J, Zhang L G, Wang F M, et al. Observation of histocytological feature on radish flower bud during aborting[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2008, 17(5): 272−276. doi: 10.3969/j.issn.1004-1389.2008.05.059
    [36] 位明明, 王俊生, 张改生, 等. GAPDH基因表达与小麦生理型雄性不育花药败育的关系[J]. 分子植物育种, 2009, 7(4): 679−684. doi: 10.3969/mpb.007.000679

    Wei M M, Wang J S, Zhang G S, et al. Relationship between the expression of GAPDH gene and anther abortion of physiological male sterile of wheat[J]. Molecular Plant Breeding, 2009, 7(4): 679−684. doi: 10.3969/mpb.007.000679
    [37] 刘浩, 柳燕贞, 王静, 等. ‘白核’龙眼种子败育不同时期差异蛋白分析[J]. 园艺学报, 2009, 36(12): 1725−1732. doi: 10.3321/j.issn:0513-353X.2009.12.002

    Liu H, Liu Y Z, Wang J, et al. Analysis of differentially expressed proteins during the different states of longan seed abortion[J]. Acta Horticulturae Sinica, 2009, 36(12): 1725−1732. doi: 10.3321/j.issn:0513-353X.2009.12.002
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  30
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-06-08
  • 录用日期:  2023-05-31
  • 网络出版日期:  2023-06-02

目录

    /

    返回文章
    返回