• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

土壤有机碳的稳定和形成:机制和模型

周正虎, 刘琳, 侯磊

周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成:机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
引用本文: 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成:机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
Citation: Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183

土壤有机碳的稳定和形成:机制和模型

基金项目: 国家自然科学基金项目(31901293),黑龙江省大学生创新创业训练计划项目(S202010225048)
详细信息
    作者简介:

    周正虎,教授。主要研究方向:土壤微生物与全球变化。Email:zhouzhenghuzzh@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学

    责任作者:

    侯磊,副教授。主要研究方向:土壤生态学。Email:465133704@qq.com 地址:860000 西藏自治区林芝市巴宜区育才西路100号西藏农牧学院

  • 中图分类号:  S714.2

Soil organic carbon stabilization and formation: mechanism and model

  • 摘要: 土壤有机碳对自然气候解决方案的贡献可以达到25%,提高土壤碳储量是实现“碳中和”的重要途径。合理的土壤有机碳管理和精准的模型预测依赖于对土壤碳循环过程的清晰认识。然而,土壤有机碳的长期保存机制、来源和环境调控作用还不清楚。本文系统评述了土壤有机碳稳定(生化难分解性、矿物保护和团聚体保护)和形成(腐质化、微生物效率−基质稳定框架和微生物碳泵理论)的前沿理论和机制,在此基础上分析了目前土壤碳循环模型的发展(Century模型、微生物模型和微生物−矿物模型),并提出了未来试验和模型研究中亟需解决的关键科学问题。
    Abstract: Soil organic carbon (SOC) represents 25% of the potential of natural climate solutions, improvement of SOC storage is a critical pathway to realize “carbon neutralization”. Reasonable SOC management and accurate model prediction require deep understanding of soil carbon cycling processes. However, the persistence mechanism of SOC, pathways controlling SOC formation, and their environmental regulations are not clear. Here, we first synthesized the frontier theories and mechanisms of SOC stabilization (biochemical recalcitrance, mineral protection, and aggregation protection) and formation (humification, microbial efficiency-matrix stabilization framework, and microbial carbon pump theory); we then reviewed the development of soil carbon cycling models (Century model, microbial model, and microbial-mineral model); we finally proposed the urgent scientific question for future experimental and modelling studies.
  • 图  1   土壤有机碳的矿物保护和团聚体保护

    a. 矿物保护机制;b,c. 干旱和湿润条件下土壤团聚体间的隔离情况,参考Wilpiszeski等[34]绘制;d. 团聚体孔隙对有机碳的闭蓄保护作用(图片来源于Schlüter等[35]);e. 新鲜凋落物−矿物界面(电镜扫描照片来源于Witzgall等[36])。a, mechanisms of mineral protection; b and c, the isolation of soil aggregates under dry and wet conditions, referring to Wilpiszeski, et al.[34]; d, occlusion of soil organic carbon by aggregation (image from Schlüter, et al.[35]); e, scanning electron microscopy image of the interface of plant litter and soil minerals (image from Witzgall, et al.[36]).

    Figure  1.   Mineral and aggregate protection of soil organic carbon

    图  2   土壤有机碳的形成和稳定机制

    cPOC. 粗颗粒有机碳;fPOC. 细颗粒有机碳;DOC. 溶解性有机碳;MBC. 微生物生物量碳;MAOC. 矿物结合有机碳。下同。cPOC, coarse particulate organic carbon; fPOC, fine particulate organic carbon; DOC, dissolved organic carbon; MBC, microbial biomass carbon; MAOC, mineral-associated organic carbon. The same below.

    Figure  2.   Mechanisms of soil organic carbon formation and stabilization

    图  3   代表性土壤碳循环模型

    a. 经典Century模型[69];b. 微生物模型[54];c. COMISSION模型[77]。a, conventional Century model[69]; b, microbial model[54]; c, COMISSION model[77].

    Figure  3.   Representative soil carbon cycle models

    图  4   未来研究展望

    Figure  4.   Future research prospects

    表  1   颗粒有机碳和矿物结合有机碳功能特性

    Table  1   Functional traits of particulate organic carbon and mineral-associated organic carbon

    项目
    Item
    颗粒有机碳
    Particulate organic carbon
    矿物结合有机碳
    Mineral-associated organic carbon
    主要来源
    Main source
    植物残体和真菌菌丝
    Plant residues and fungal hyphae
    植物和微生物残体
    Plant and microbial residues
    分子量 Molecular mass/Da > 600 ~ 1 000
    < 600 ~ 1 000
    密度 Density 低 Low 高 High
    碳库上限 Upper limit of C pool 无 No 有 Yes
    主要稳定机制
    Main stabilization mechanism
    生化难分解性和团聚体保护
    Biochemical recalcitrance and aggregate protection
    矿物保护和团聚体保护
    Mineral and aggregate protection
    温度敏感性 Temperature sensitivity 高 High 低 Low
    周转时间 Turnover time < 10年 ~ 数十年 < ten years – decades 数十年 ~ 数百年 Decades – centuries
    下载: 导出CSV
  • [1]

    Wiesmeier M, Urbanski L, Hobley E, et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149−162. doi: 10.1016/j.geoderma.2018.07.026

    [2]

    Wall D H, Nielsen U N, Six J. Soil biodiversity and human health[J]. Nature, 2015, 528: 69−76. doi: 10.1038/nature15744

    [3]

    Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478: 49−56. doi: 10.1038/nature10386

    [4]

    Li X G, Li F M, Zed R, et al. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland[J]. Geoderma, 2007, 139(1−2): 98−105.

    [5]

    Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371: 783−785. doi: 10.1038/371783a0

    [6]

    O’rourke S M, Angers D A, Holden N M, et al. Soil organic carbon across scales[J]. Global Change Biology, 2015, 21(10): 3561−3574. doi: 10.1111/gcb.12959

    [7]

    Laban P, Metternicht G, Davies J. Soil biodiversity and soil organic carbon: keeping drylands alive[M]. Gland: IUCN, 2018.

    [8]

    Batjes N H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61−68. doi: 10.1016/j.geoderma.2016.01.034

    [9]

    Bossio D A, Cook-Patton S C, Ellis P W, et al. The role of soil carbon in natural climate solutions[J]. Nature Sustainability, 2020, 3(5): 391−398. doi: 10.1038/s41893-020-0491-z

    [10]

    Beillouin D, Cardinael R, Berre D, et al. A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon[J]. Global Change Biology, 2022, 28(4): 1690−1702. doi: 10.1111/gcb.15998

    [11]

    Sollins P, Homann P, Caldwell B A. Stabilization and destabilization of soil organic matter: mechanisms and controls[J]. Geoderma, 1996, 74(1−2): 65−105. doi: 10.1016/S0016-7061(96)00036-5

    [12]

    Grigatti M, Perez M D, Blok W J, et al. A standardized method for the determination of the intrinsic carbon and nitrogen mineralization capacity of natural organic matter sources[J]. Soil Biology and Biochemistry, 2007, 39(7): 1493−1503. doi: 10.1016/j.soilbio.2006.12.035

    [13]

    Feng W T, Shi Z, Jiang J, et al. Methodological uncertainty in estimating carbon turnover times of soil fractions[J]. Soil Biology and Biochemistry, 2016, 100: 118−124. doi: 10.1016/j.soilbio.2016.06.003

    [14]

    von Lützow M, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review[J]. European Journal of Soil Science, 2006, 57(4): 426−445. doi: 10.1111/j.1365-2389.2006.00809.x

    [15]

    Mayer L M. The inertness of being organic[J]. Marine Chemistry, 2004, 92(1−4): 135−140. doi: 10.1016/j.marchem.2004.06.022

    [16]

    Sokol N W, Sanderman J, Bradford M A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2019, 25(1): 12−24. doi: 10.1111/gcb.14482

    [17]

    Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261−273. doi: 10.1111/gcb.14859

    [18]

    Lugato E, Lavallee J M, Haddix M L, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter[J]. Nature Geoscience, 2021, 14(5): 295−300. doi: 10.1038/s41561-021-00744-x

    [19]

    Angst G, Mueller K E, Nierop K G J, et al. Plant- or microbial-derived? a review on the molecular composition of stabilized soil organic matter[J]. Soil Biology and Biochemistry, 2021, 156: 108189. doi: 10.1016/j.soilbio.2021.108189

    [20]

    Lehmann J, Hansel C M, Kaiser C, et al. Persistence of soil organic carbon caused by functional complexity[J]. Nature Geoscience, 2020, 13(8): 529−534. doi: 10.1038/s41561-020-0612-3

    [21]

    Han L F, Sun K, Jin J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94: 107−121. doi: 10.1016/j.soilbio.2015.11.023

    [22]

    Feng X J, Simpson M J. The distribution and degradation of biomarkers in Alberta grassland soil profiles[J]. Organic Geochemistry, 2007, 38(9): 1558−1570. doi: 10.1016/j.orggeochem.2007.05.001

    [23]

    Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528: 60−68. doi: 10.1038/nature16069

    [24]

    Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3): 621−626. doi: 10.2307/1936780

    [25]

    Otto A, Simpson M J. Degradation and preservation of vascular plant–derived biomarkers in grassland and forest soils from Western Canada[J]. Biogeochemistry, 2005, 74(3): 377−409. doi: 10.1007/s10533-004-5834-8

    [26]

    Otto A, Simpson M J. Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada[J]. Organic Geochemistry, 2006, 37(4): 385−407. doi: 10.1016/j.orggeochem.2005.12.011

    [27]

    Amelung W. Methods using amino sugars as markers for microbial residues in soil[M]//Assessment methods for soil carbon. Boca Raton: Lewis Publishers, 2001.

    [28]

    Gunina A, Kuzyakov Y. From energy to (soil organic) matter[J]. Global Change Biology, 2022, 28(7): 2169−2182. doi: 10.1111/gcb.16071

    [29]

    Wattel-Koekkoek E J W, Buurman P, van der Plicht J, et al. Mean residence time of soil organic matter associated with kaolinite and smectite[J]. European Journal of Soil Science, 2003, 54(2): 269−278. doi: 10.1046/j.1365-2389.2003.00512.x

    [30]

    Kleber M, Bourg I C, Coward E K, et al. Dynamic interactions at the mineral-organic matter interface[J]. Nature Reviews Earth and Environment, 2021, 2(6): 402−421. doi: 10.1038/s43017-021-00162-y

    [31]

    del Nero M, Galindo C, Bucher G, et al. Speciation of oxalate at corundum colloid-solution interfaces and its effect on colloid aggregation under conditions relevant to freshwaters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418: 165−173.

    [32]

    Kunhi M Y, Kučerík J, Diehl D, et al. Cation-mediated cross-linking in natural organic matter: a review[J]. Reviews in Environmental Science and Bio/technology, 2012, 11(1): 41−54. doi: 10.1007/s11157-011-9258-3

    [33]

    Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: the role of aromatic π-systems[J]. Environmental Science and Technology, 2009, 43(10): 3421−3429. doi: 10.1021/es8033044

    [34]

    Wilpiszeski R L, Aufrecht J A, Retterer S T, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14): e00324−19.

    [35]

    Schlüter S, Leuther F, Albrecht L, et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime[J]. Nature Communications, 2022, 13(1): 1−14. doi: 10.1038/s41467-021-27699-2

    [36]

    Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications, 2021, 12(1): 4115. doi: 10.1038/s41467-021-24192-8

    [37]

    Ni J, Pignatello J J. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids[J]. Environmental Science: Processes and Impacts, 2018, 20(9): 1225−1233. doi: 10.1039/C8EM00255J

    [38]

    Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1): 27−49.

    [39]

    Totsche K U, Amelung W, Gerzabek M H, et al. Microaggregates in soils[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(1): 104−136. doi: 10.1002/jpln.201600451

    [40]

    Kaiser K, Guggenberger G. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation[J]. European Journal of Soil Science, 2007, 58(1): 45−59. doi: 10.1111/j.1365-2389.2006.00799.x

    [41]

    Mayer L M, Schick L L, Hardy K R, et al. Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19): 3863−3872. doi: 10.1016/j.gca.2004.03.019

    [42]

    Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271−1284. doi: 10.1016/0016-7037(94)90381-6

    [43] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277−1284. doi: 10.16258/j.cnki.1674-5906.2020.06.025

    Liu H M, Li R Y, Gao J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics[J]. Ecology and Environmental Sciences, 2020, 29(6): 1277−1284. doi: 10.16258/j.cnki.1674-5906.2020.06.025

    [44]

    Ranjard L, Poly F, Combrisson J, et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA)[J]. Microbial Ecology, 2000, 39(4): 263−272.

    [45]

    Young I M, Crawford J W. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304: 1634−1637. doi: 10.1126/science.1097394

    [46]

    Barreto R C, Madari B E, Maddock J E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil[J]. Agriculture, Ecosystems and Environment, 2009, 132(3−4): 243−251. doi: 10.1016/j.agee.2009.04.008

    [47]

    Sexstone A J, Revsbech N P, Parkin T B, et al. Direct measurement of oxygen profiles and denitrification rates in soil aggregates[J]. Soil Science Society of America Journal, 1985, 49(3): 645−651. doi: 10.2136/sssaj1985.03615995004900030024x

    [48]

    Wang B, An S, Liang C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry, 2021, 162: 108422. doi: 10.1016/j.soilbio.2021.108422

    [49]

    Cotrufo M F, Wallenstein M D, Boot C M, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995. doi: 10.1111/gcb.12113

    [50]

    Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105. doi: 10.1038/nmicrobiol.2017.105

    [51]

    Castellano M J, Mueller K E, Olk D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3200−3209. doi: 10.1111/gcb.12982

    [52]

    Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7−8): 319−361. doi: 10.1016/S0146-6380(97)00056-9

    [53]

    Fan X, Gao D, Zhao C, et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool[J]. The ISME Journal, 2021, 15(8): 2248−2263. doi: 10.1038/s41396-021-00914-0

    [54]

    Schimel J P, Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model[J]. Soil Biology and Biochemistry, 2003, 35(4): 549−563. doi: 10.1016/S0038-0717(03)00015-4

    [55]

    Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8: 593−599. doi: 10.1038/nrmicro2386

    [56]

    Jiao N, Herndl G J, Hansell D A, et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool[J]. Nature Reviews Microbiology, 2011, 9: 555.

    [57]

    Lu W, Luo Y, Yan X, et al. Modeling the contribution of the microbial carbon pump to carbon sequestration in the South China Sea[J]. Science China Earth Sciences, 2018, 61(11): 1594−1604. doi: 10.1007/s11430-017-9180-y

    [58] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(5): 680−695.

    Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Science China Earth Sciences, 2021, 51(5): 680−695.

    [59] 胡慧蓉, 马焕成, 罗承德, 等. 森林土壤有机碳分组及其测定方法[J]. 土壤通报, 2010, 41(4): 1018−1024. doi: 10.19336/j.cnki.trtb.2010.04.049

    Hu H R, Ma H C, Luo C D, et al. Forest soil organic carbon fraction and its measure methods[J]. Chinese Journal of Soil Science, 2010, 41(4): 1018−1024. doi: 10.19336/j.cnki.trtb.2010.04.049

    [60]

    Bailey V L, Bond-Lamberty B, de Angelis K, et al. Soil carbon cycling proxies: understanding their critical role in predicting climate change feedbacks[J]. Global Change Biology, 2018, 24(3): 895−905. doi: 10.1111/gcb.13926

    [61] 张丽敏, 徐明岗, 娄翼来, 等. 土壤有机碳分组方法概述[J]. 中国土壤与肥料, 2014(4): 1−6. doi: 10.11838/sfsc.20140401

    Zhang L M, Xu M G, Lou Y L, et al. Soil organic carbon fractionation methods[J]. Soil and Fertilizer Sciences in China, 2014(4): 1−6. doi: 10.11838/sfsc.20140401

    [62] 张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用[J]. 应用生态学报, 2011, 22(7): 1921−1930. doi: 10.13287/j.1001-9332.2011.0264

    Zhang G, Cao Z P, Hu C J. Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1921−1930. doi: 10.13287/j.1001-9332.2011.0264

    [63]

    Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019, 12: 989−994. doi: 10.1038/s41561-019-0484-6

    [64]

    Sokol N W, Whalen E D, Jilling A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: a trait-based perspective[J]. Functional Ecology, 2022, 36(6): 1411−1429. doi: 10.1111/1365-2435.14040

    [65]

    Luo Y, Schuur E A G. Model parameterization to represent processes at unresolved scales and changing properties of evolving systems[J]. Global Change Biology, 2020, 26(3): 1109−1117. doi: 10.1111/gcb.14939

    [66]

    Todd-Brown K E O, Randerson J T, Post W M, et al. Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations[J]. Biogeosciences, 2013, 10(3): 1717−1736. doi: 10.5194/bg-10-1717-2013

    [67]

    Todd-Brown K E O, Randerson J T, Hopkins F, et al. Changes in soil organic carbon storage predicted by earth system models during the 21st century[J]. Biogeosciences, 2014, 11(8): 2341−2356. doi: 10.5194/bg-11-2341-2014

    [68]

    Shi Z, Crowell S, Luo Y, et al. Model structures amplify uncertainty in predicted soil carbon responses to climate change[J]. Nature Communications, 2018, 9(1): 2171. doi: 10.1038/s41467-018-04526-9

    [69]

    Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173−1179. doi: 10.2136/sssaj1987.03615995005100050015x

    [70]

    Lawrence D M, Fisher R A, Koven C D, et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4245−4287. doi: 10.1029/2018MS001583

    [71]

    Liang J, Xia J, Shi Z, et al. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra[J]. Global Change Biology, 2018, 24(10): 4946−4959. doi: 10.1111/gcb.14325

    [72]

    Wang Y P, Law R M, Pak B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere[J]. Biogeosciences, 2010, 7(7): 2261−2282. doi: 10.5194/bg-7-2261-2010

    [73]

    Wieder W R, Bonan G B, Allison S D. Global soil carbon projections are improved by modelling microbial processes[J]. Nature Climate Change, 2013, 3(10): 909−912. doi: 10.1038/nclimate1951

    [74]

    Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336−340. doi: 10.1038/ngeo846

    [75]

    Abramoff R Z, Guenet B, Zhang H, et al. Improved global-scale predictions of soil carbon stocks with Millennial Version 2[J]. Soil Biology and Biochemistry, 2022, 164: 108466. doi: 10.1016/j.soilbio.2021.108466

    [76]

    Six J, Guggenberger G, Paustian K, et al. Sources and composition of soil organic matter fractions between and within soil aggregates[J]. European Journal of Soil Science, 2001, 52(4): 607−618. doi: 10.1046/j.1365-2389.2001.00406.x

    [77]

    Ahrens B, Braakhekke M C, Guggenberger G, et al. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model[J]. Soil Biology and Biochemistry, 2015, 88: 390−402. doi: 10.1016/j.soilbio.2015.06.008

    [78]

    Benbi D K, Boparai A K, Brar K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter[J]. Soil Biology and Biochemistry, 2014, 70: 183−192. doi: 10.1016/j.soilbio.2013.12.032

    [79]

    Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    [80]

    Koven C D, Riley W J, Subin Z M, et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4[J]. Biogeosciences, 2013, 10(11): 7109−7131. doi: 10.5194/bg-10-7109-2013

    [81]

    Wieder W R, Grandy A S, Kallenbach C M, et al. Representing life in the earth system with soil microbial functional traits in the MIMICS model[J]. Geoscientific Model Development, 2015, 8(6): 1789−1808. doi: 10.5194/gmd-8-1789-2015

    [82]

    Huang Y, Lu X, Shi Z, et al. Matrix approach to land carbon cycle modeling: a case study with the Community Land Model[J]. Global Change Biology, 2018, 24(3): 1394−1404. doi: 10.1111/gcb.13948

    [83]

    Angst G, Mueller K E, Eissenstat D M, et al. Soil organic carbon stability in forests: distinct effects of tree species identity and traits[J]. Global Change Biology, 2019, 25(4): 1529−1546. doi: 10.1111/gcb.14548

    [84]

    Samson M É, Chantigny M H, Vanasse A, et al. Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs[J]. Soil Biology and Biochemistry, 2020, 149: 107935. doi: 10.1016/j.soilbio.2020.107935

    [85]

    Wiseman C L S, Püttmann W. Interactions between mineral phases in the preservation of soil organic matter[J]. Geoderma, 2006, 134(1−2): 109−118. doi: 10.1016/j.geoderma.2005.09.001

    [86]

    Stewart C E, Plante A F, Paustian K, et al. Soil carbon saturation: linking concept and measurable carbon pools[J]. Soil Science Society of America Journal, 2008, 72(2): 379−392. doi: 10.2136/sssaj2007.0104

    [87]

    Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations[J]. Soil Biology and Biochemistry, 2009, 41(2): 357−366. doi: 10.1016/j.soilbio.2008.11.011

    [88]

    Xia M, Talhelm A F, Pregitzer K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3): 715−726. doi: 10.1111/nph.13494

    [89]

    Farrar J, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4): 827−837. doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2

    [90]

    Toljander J F, Lindahl B D, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS Microbiology Ecology, 2007, 61(2): 295−304. doi: 10.1111/j.1574-6941.2007.00337.x

    [91]

    Frey S D. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 237−259. doi: 10.1146/annurev-ecolsys-110617-062331

    [92]

    Vranova V, Rejsek K, Skene K R, et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(2): 175−199. doi: 10.1002/jpln.201000360

    [93]

    Sokol N W, Kuebbing S E, Karlsen-Ayala E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon[J]. New Phytologist, 2019, 221(1): 233−246. doi: 10.1111/nph.15361

    [94]

    Dijkstra F A, Zhu B, Cheng W. Root effects on soil organic carbon: a double-edged sword[J]. New Phytologist, 2021, 230(1): 60−65. doi: 10.1111/nph.17082

    [95]

    Calvo O C, Franzaring J, Schmid I, et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley[J]. Global Change Biology, 2017, 23(3): 1292−1304. doi: 10.1111/gcb.13503

    [96]

    Song J, Wan S, Piao S, et al. A meta-analysis of 1, 119 manipulative experiments on terrestrial carbon-cycling responses to global change[J]. Nature Ecology and Evolution, 2019, 3(9): 1309−1320. doi: 10.1038/s41559-019-0958-3

    [97] 周艳翔, 吕茂奎, 谢锦升, 等. 深层土壤有机碳的来源、特征与稳定性[J]. 亚热带资源与环境学报, 2013, 8(1): 48−55. doi: 10.3969/j.issn.1673-7105.2013.01.009

    Zhou Y X, Lü M K, Xie J S, et al. Sources, characteristics and stability of organic carbon in deep soil[J]. Journal of Subtropical Resources and Environment, 2013, 8(1): 48−55. doi: 10.3969/j.issn.1673-7105.2013.01.009

    [98]

    Soong J L, Castanha C, Hicks P C E, et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux[J]. Science Advances, 2021, 7(21): eabd1343. doi: 10.1126/sciadv.abd1343

    [99]

    Li J, Pei J, Pendall E, et al. Rising temperature may trigger deep soil carbon loss across forest ecosystems[J]. Advanced Science, 2020, 7(19): 2001242. doi: 10.1002/advs.202001242

    [100]

    Kramer M G, Chadwick O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104−1108. doi: 10.1038/s41558-018-0341-4

    [101]

    Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450: 277−280. doi: 10.1038/nature06275

    [102]

    Tang J, Riley W J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[J]. Nature Climate Change, 2015, 5(1): 56−60. doi: 10.1038/nclimate2438

    [103]

    Opfergelt S. The next generation of climate model should account for the evolution of mineral-organic interactions with permafrost thaw[J]. Environmental Research Letters, 2020, 15(9): 091003. doi: 10.1088/1748-9326/ab9a6d

图(4)  /  表(1)
计量
  • 文章访问数:  4318
  • HTML全文浏览量:  2671
  • PDF下载量:  937
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-10
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-07-13
  • 发布日期:  2022-10-24

目录

    /

    返回文章
    返回