• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

采伐强度对阔叶红松林生态系统碳密度恢复的影响

范春楠, 刘强, 郑金萍, 郭忠玲, 张文涛, 刘英龙, 谢遵俊, 任增君

范春楠, 刘强, 郑金萍, 郭忠玲, 张文涛, 刘英龙, 谢遵俊, 任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响[J]. 北京林业大学学报, 2022, 44(10): 33-42. DOI: 10.12171/j.1000-1522.20220190
引用本文: 范春楠, 刘强, 郑金萍, 郭忠玲, 张文涛, 刘英龙, 谢遵俊, 任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响[J]. 北京林业大学学报, 2022, 44(10): 33-42. DOI: 10.12171/j.1000-1522.20220190
Fan Chunnan, Liu Qiang, Zheng Jinping, Guo Zhongling, Zhang Wentao, Liu Yinglong, Xie Zunjun, Ren Zengjun. Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem[J]. Journal of Beijing Forestry University, 2022, 44(10): 33-42. DOI: 10.12171/j.1000-1522.20220190
Citation: Fan Chunnan, Liu Qiang, Zheng Jinping, Guo Zhongling, Zhang Wentao, Liu Yinglong, Xie Zunjun, Ren Zengjun. Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem[J]. Journal of Beijing Forestry University, 2022, 44(10): 33-42. DOI: 10.12171/j.1000-1522.20220190

采伐强度对阔叶红松林生态系统碳密度恢复的影响

基金项目: 国家自然科学基金项目(30770369),吉林省科技发展计划项目(20210509016RQ)
详细信息
    作者简介:

    范春楠,副教授。主要研究方向:森林生态系统结构与功能。Email:fanchunnan@126.com 地址:132013 吉林省吉林市丰满区滨江东路3999号北华大学林学院

    责任作者:

    郭忠玲,教授。主要研究方向:森林生态系统结构与功能。Email:gzl65@163.com 地址:同上

  • 中图分类号: S753.5

Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem

  • 摘要:
      目的  通过对不同采伐强度干扰阔叶红松林生态系统碳密度的估算,探讨其伐后30年的恢复状况,解析采伐强度、生态系统各组分碳密度及其与林分结构间的关系,为以生态系统碳汇功能提升和物种多样性保护等为目标的森林经营提供科学依据。
      方法  以汪清林业局不同采伐强度干扰的阔叶红松林为对象,通过对未采伐和Ⅰ级(30%)、Ⅱ级(40%)、Ⅲ级(50%)、Ⅳ级(60%以上)、Ⅴ级(皆伐)采伐强度干扰林分植被、枯落物和土壤特征的调查和样品采集与测试分析,系统估算其植被、枯落物和土壤的碳密度,并对比分析其差异,以及他们之间及其与采伐强度、林分结构之间的关系。
      结果  虽经30年的恢复,因采伐强度的显著负效应影响,阔叶红松林的植被碳密度仍显著低于对照,但在除皆伐外的其他采伐强度之间已恢复至无差异水平。虽然伐后林分乔木层碳密度的小径级和中小径级林木比例有一定程度的增加,但仍无法弥补40 cm以上大径林木的碳密度损失;幼树和草本植物的碳密度受采伐强度的影响不显著;灌木植物的碳密度与采伐强度呈极显著的正相关,但仅皆伐干扰显著增加。皆伐干扰显著降低了枯落物和B层土壤的碳密度,而其他采伐强度的土壤碳密度则因B层的增加而整体接近或高于对照林分。与对照相比,皆伐和Ⅰ、Ⅱ级采伐强度干扰的生态系统碳密度显著降低,Ⅲ、Ⅳ级采伐强度干扰的生态系统碳密度则分别恢复为与之接近和略高。生态系统碳密度的组成以土壤的碳密度占比最高,冠下植被和枯落物的碳密度合计不足生态系统碳密度的3%。采伐强度对树高均匀度指数、胸径香农指数和胸径均匀度指数的负效应仍显著,林分结构对乔木层碳密度产生了显著的正效应,对灌木植物碳密度为显著的负效应。受采伐的强烈负效应影响,乔木层碳密度与灌木植物的碳密度、枯落物碳密度、草本植物丰富度,以及枯落物碳密度与土壤碳密度和草本植物丰富度间均存在显著的相关关系。
      结论  阔叶红松林伐后30年,除皆伐干扰外的生态系统碳密度已基本接近或超过未采伐林分,碳密度的恢复主要源于土壤相对快速的累积,而植被的碳密度损失还尚需一定时间的恢复。采伐强度、生态系统各组分碳密度及其与林分结构间存在着显著的相关关系,主要动因为采伐负效应引起的林分结构改变,导致了乔木层、冠下植被、枯落物和土壤的联动变化。
    Abstract:
      Objective  Based on the estimation of ecosystem carbon density in broadleaved Korean pine forest disturbed by different logging intensities, the recovery status of the forest after 30 years of logging was discussed, and the relationship among logging intensity, composition of ecosystem carbon density, and stand structure was analyzed to provide a scientific basis for forest management, aiming at enhancing ecosystem carbon sink function and protecting species diversity.
      Method  The current study took the broadleaved Korean pine forest disturbed by different logging intensities in Wangqing Forestry Bureau, Jilin Province of northeastern China as the research object. The vegetation, litter and soil characteristics of different logging disturbance stands, unharvested, class Ⅰ (30%), class Ⅱ (40%), class Ⅲ (50%), class Ⅳ (above 60%) and class Ⅴ (clear cut), were investigated and analyzed, and the carbon densities of vegetation, litter and soil were systematically estimated, and their differences were also compared and analyzed, as well as their relationship with logging intensities and stand structure.
      Result  Although the broadleaved Korean pine forest disturbed by different logging intensities had been restored for 30 years, its vegetation carbon density was still significantly lower than that of the control sample plots due to the significant negative effect of logging, but the carbon density had recovered to no significant difference between different logging intensity sample plots, except for clear-cutting. The tree layer carbon densities of disturbed stands with different logging intensities increased to a certain extent in the small- and medium-small-diameter trees, but it still could not make up for the carbon density loss of the large-diameter trees above 40 cm. The carbon densities of young trees and herbs were not significantly affected by logging intensity, but the carbon density of shrub plants was significantly positively correlated with logging intensity and only the disturbance of clear cutting increased significantly. Clear-cutting disturbance significantly reduced the carbon density of litter and soil layer B, while the soil carbon densities of other logging intensities were generally close to or higher than that of control stands due to the increase of soil carbon density of layer B. Compared with the control groups, the ecosystem carbon densities disturbed by clear cutting, class Ⅰ and class Ⅱ logging intensities decreased significantly, while the ecosystem carbon densities disturbed by class Ⅲ and class Ⅳ logging intensities were close to and slightly higher than control, respectively. In the composition of ecosystem carbon density, the proportion of soil carbon density was the highest, and the total proportion of under-canopy vegetation and litter was less than 3%. The negative effects of logging intensities on tree height uniformity index, DBH Shannon index and DBH uniformity index were still significant, and the change of stand structure had a significant positive effect on carbon density of tree layer, but it had a significant negative effect on the carbon density of shrubs. Affected by the strong negative effect of logging, tree layer carbon density was significantly correlated with shrub carbon density, litter carbon density, and herb richness. Moreover, there were also significant correlations between litter carbon density and soil carbon density and herb richness.
      Conclusion  After 30 years of logging disturbance in broadleaved Korean pine forests, the carbon density of ecosystems has basically recovered or exceeded the level of unharvested stands, except for clear-cutting, and the recovery of carbon density is mainly due to the relatively rapid accumulation of soil carbon, while the loss of vegetation carbon density still needs more time to recover. The negative effect of logging causes the change of stand structure, leading to the linkage changes of arbor layer, under-canopy vegetation, litter and soil, therefore, there are significant correlations among logging intensities, ecosystem carbon density and stand structure.
  • 鉴于目前迫切需要解决的全球气候变化问题,人们普遍认识到维持和增加森林中的碳储量是综合性缓解办法的重要组成部分[1-2],而且相对于工业减排,增加森林碳汇更具成本有效性[3],其关键问题是如何最大化地增加森林生态系统的碳储存和减少碳排放[1-2],同时优化森林的结构、功能和保护生物多样性等也仍然是重要的管理目标。中国森林具有较大的碳汇潜力,但受林地资源的约束,森林碳汇的增加还需要从根本上改善林分质量,注重森林抚育、合理间伐和科学保护管理等,以扩大森林碳汇供给和碳中和能力[4-6]

    采伐作为最重要的森林经营措施,以不同的方式和强度改变着森林生态系统的结构和功能,同时亦影响了群落的小气候、凋落物输入、细根生物量、死生物质和土壤微生物群落及其活性等[7-8]。一直以来,人们都在寻找最佳的采伐方法,以确保最大限度地利用林地的潜力生产高质量的木材,并发挥森林的碳汇、生物多样性等生态功能[8-12]

    通常,采伐引起的林木数量、林分蓄积和生物量生产的减少,直接导致了林分碳储量、碳积累量和净生态系统生产力(net ecosystem productivity,NEP)的降低[8],但增加了上层乔木和冠下植物的可用资源,可促使树木直径生长率、林下植物生长和多样性的增加[8,13-15]。因此,NEP的降低是暂时的[16-17],但因生物量损失而造成的碳密度降低,则需要一个相对长期的恢复过程[18-19],且恢复过程与采伐干扰强度、采伐间隔期和采伐的空间格局等密切相关[19-20]

    2020年,中国政府提出二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和,这对提升森林生态系统质量的发展目标提出了更高的要求。本研究选取长白山林区森林经营活动相对频繁,且干扰历史较为明确的汪清林业局为研究区,通过对不同采伐强度干扰的阔叶红松(Pinus koraiensis)林植被、凋落物、土壤状况等的调查和测试分析,系统估算森林生态系统碳密度,并解析采伐强度、生态系统碳密度及其组成和林分结构之间的关系,旨在为制定以碳汇管理和多样性保护为目标的森林经营措施提供科学依据。

    汪清林业局位于吉林省延边朝鲜族自治州东北部,地理坐标129°59′ ~ 131°04′E,43°05′ ~ 43°40′N,隶属于长白山森工集团。气候类型属中温带季风半湿润气候,大陆性季风明显,年平均气温3.9 ℃,年降水量约580 mm,多集中在6—8月,无霜期为110 ~ 130 d。植被属长白山植物区系,森林群落以阔叶红松林采伐干扰后的天然次生林为主,乔木植物主要有红松、臭冷杉(Abies nephrolepis)、水曲柳(Fraxinus mandshurica)、紫椴(Tilia amurensis)、蒙古栎(Quercus mongolica)、色木槭(Acer mono)、山杨(Populus davidiana)、白桦(Betula platyphylla)等,灌木植物主要有毛榛(Corylus mandshurica)、长白忍冬(Lonicera ruprechtiana)、刺五加(Acanthopanax senticosus)等,草本植物多为毛缘薹草(Carex pilosa)、猴腿蹄盖蕨(Athyrium multidentatum)、木贼(Equisetum hyemale)等。主要土壤类型为典型暗棕壤。

    研究通过资源档案查阅、技术员问询和现地查验等途径,在汪清林业局的沙金沟林场选取不同采伐强度干扰的阔叶红松林次生群落代表性地段。群落基本特征的调查采用样方法,首先利用罗盘仪设置面积为30 m × 30 m的样地,再利用网格法将其划分为36个5 m × 5 m的小样方,分别以每个小样方为单位测定乔木植物的种类、胸径、树高、生长势等。同时对样地内采伐后残留的伐桩、倒木等进行详查,记录伐桩树种和直径,估测其腐烂等级。此外,调查还在样地内选择建群种的优势木4 ~ 5株,利用生长锥在树高1.3 m处由南向北钻取年轮条,经年轮条的处理和年轮分析仪测定[21],解析其释压反应特征,用于佐证采伐年限和采伐强度[22]

    根据均匀性原则在样地内均匀布设2 m × 2 m和1 m × 1 m的小样方各10个(草本小样方嵌套在灌木小样方的中心),分别调查灌木和草本植物的种类、平均高度、株数和盖度等。再利用收获法分别将各小样方内的灌木和草本植物全部挖出,用于其生物量的测定。

    在各草本植物调查小样方内再设立0.5 m × 0.5 m的小样方各1个,分别测定各小样方的枯落物盖度和厚度,收获各小样方内的全部枯落物。

    土壤调查于样地的中心位置挖取剖面1处,测定和描述土壤剖面特征,分别于中心剖面和样地的四角采集各发生层的土壤样品,经充分混合后以四分法保留500 g左右样品,同步于各样点按土壤发生层采集土壤环刀样品,样品带回室内测定其土壤有机碳含量和土壤密度等。

    灌木、草本生物量和枯落物现存量的测定,经各收获样品的分选、分包后(灌木植物分选为枝、叶、根,草本植物分选为地上和地下,枯落物根据腐烂级别分选为未分解和半分解物),置于80 ℃的干燥箱内烘干至质量恒定后称其质量,经统计获得各样地灌木、草本生物量和枯落物现存量[23]

    灌木植物、草本植物和枯落物含碳率测定的样品从生物量测定样品中分取,经植物和土壤样品的制备[23],釆用重铬酸钾硫酸氧化湿烧法[24]测定其有机碳储量。

    本研究综合了资源档案查询、林场技术员问询、现地伐桩调查和年轮分析的释压反应特征等方法确定采伐强度和采伐时间。以海拔800 m左右,坡度15°以内的阴坡和半阴坡的中下坡位相似立地条件,筛选恢复时间约为30年的不同采伐强度干扰调查样地15块,采伐强度分别约为30%(Ⅰ级)、40%(Ⅱ级)、50%(Ⅲ级)、60%以上(Ⅳ级)和皆伐(Ⅴ级),以30年内未进行过主伐的3块阔叶红松林样地为对照(CK,干扰强度在5%以内),现阶段各样地林分恢复的基本情况见表1所示。

    表  1  样地基本情况
    Table  1.  Basic information of the sample plots
    样地
    Sample plot
    树种组成
    Tree species composition
    采伐强度
    Logging
    intensity/%
    恢复时间/a
    Restoration time/
    year
    乔木密度/
    (株·hm−2
    Tree density/
    (tree·ha−1)
    平均胸径
    Mean
    DBH/cm
    蓄积/(m3·hm−2)
    Accumulation/
    (m3·ha−1)
    草本物种数
    Species
    number
    of herb
    灌木物种数
    Species
    number
    of shrub
    乔木物种数
    Species
    number
    of tree
    CK1 4PK 4T1A1B < 5 30 1 111 15.04 257.81 17 11 15
    CK2 4T3PK1AN2O < 5 33 1 222 15.59 249.99 15 7 17
    CK3 4PK2T1A1P2O < 5 31 1 233 14.30 251.58 16 9 21
    1 5PK2B1P1L1T 31 31 1 567 12.20 225.16 26 6 28
    2 3PK3B2T1P1A 31 28 1 356 13.72 205.85 23 14 18
    3 3PK2B2A1F1Q1O 29 30 1 178 14.36 199.07 24 5 23
    1 4PK2T2A1AN1O 36 28 1 400 13.85 228.80 25 9 21
    2 3PK3B2U1F1O 40 34 933 16.97 213.70 27 4 25
    3 3PK3T1F1AN1A1O 42 28 1 233 16.15 217.27 28 11 29
    1 5P2B1PK1A1O 51 30 1 878 10.60 189.34 23 10 28
    2 3T2B2A1PK1F1O 49 30 1 211 14.03 164.54 27 10 21
    3 5PK1T1AN1B1A1O 48 30 1 456 12.90 202.64 29 14 22
    1 3B2PK2AN1A1U1O 67 28 1 311 14.35 187.97 21 4 12
    2 2PK2T2B1AN1L1A 64 33 1 689 12.21 193.49 29 12 19
    3 4PK2AN2B1PA1O 69 32 889 16.35 210.33 34 13 32
    V1 5B3P1U1O 100 30 1 922 12.00 155.71 21 4 18
    2 3P2J2T2Q1A 100 30 1 878 10.96 114.76 26 9 21
    3 5J2P2T1A 100 30 2 000 10.37 115.58 26 10 23
    注:PK.红松;T. 椴;A. 槭;B. 白桦;AN. 臭冷杉;P. 杨;L. 落叶松;F. 水曲柳;Q. 蒙古栎;U. 榆;PA. 黄檗;J. 胡桃楸;O. 其他。Notes: PK. Pinus koraiensis;T. Tilia sp.;A. Acer sp.;B. Betula platyphylla;AN. Abies nephrolepis;P. Populus sp.;L. Larix olgensis;F. Fraxinus mandschurica;Q. Quercus mongolica;U. Ulmus sp.;PA. Phellodendron amurense;J. Juglans mandshurica;O. Others.
    下载: 导出CSV 
    | 显示表格

    在综合比较各学者建模地点、样本数量、径级范围以及收获和测定方法等基础上,选取各树种异速生长方程[25-26]和幼树生物量方程[27],乔木树种碳转换系数采用范春楠[23]的研究结果。灌木、草本植物生物量、枯落物现存量和碳转换系数均为各样地收获法调查的实测值和测试分析结果。土壤碳密度利用各发生层的土壤密度、土壤厚度和土壤含碳率的测定结果统计。考虑到按发生层统计土壤碳密度会因各样地土层厚度不一而造成较大差异(A层(淋溶层)土壤相对浅薄,平均厚度为(11.40 ± 2.17) cm;B层(淀积层)土壤较为深厚,平均厚度为(37.60 ± 6.22) cm),为此研究综合考虑了各样地的土层厚度和土壤碳密度“表聚”分布的特点[18-19],土壤碳密度均以40 cm土层厚度为准进行统计,其中A层土壤厚度为各样地的实测值,B层土壤厚度即为40 cm减去A层土壤厚度。为获取碳密度与林分结构多样性间的关系,研究采用了树种、胸径和树高的香农指数、均匀度指数以及乔木、灌木和草本植物丰富度9个指标,分别以1 cm和1 m为步长划分胸径和树高等级,统计乔木层各树种、胸径级和树高级个体数,代入到香农指数和均匀度指数公式,求得树种、胸径和树高的香农指数与均匀度指数[10],乔木、灌木和草本植物的丰富度均为物种的种类数。利用SPSS、Sigmaplot等软件对数据进行处理和图形绘制。

    虽然经过了30年的恢复,但不同采伐强度干扰阔叶红松林的植被碳密度整体仍存在极显著差异(F = 30.67,P < 0.001)。受采伐强度极显著的负效应影响,与对照相比,乔木层(DBH ≥ 5 cm)碳密度尽管从Ⅰ、Ⅱ、Ⅲ到Ⅳ级采伐强度干扰依次显著降低,但在它们之间已恢复至无差异水平;而皆伐干扰后天然恢复的次生林乔木层碳密度则显著低于对照和其他采伐强度干扰。地上部分是乔木层碳密度的主体,其与地下碳密度的比值介于3.44 ~ 4.50之间,二者在不同采伐强度间的差异均与乔木层整体碳密度相一致(表2)。虽然采伐强度对幼树(DBH < 5 cm)和草本植物的碳密度也有负效应,但作用关系均不显著(表3),二者碳密度在各采伐强度和对照间也均呈显著差异;而灌木植物的碳密度与采伐强度间存在极显著的正相关关系(表3),但仅以皆伐干扰显著高于对照和其他采伐强度干扰(表2)。

    表  2  不同采伐强度的植被碳密度 Mg/hm2
    Table  2.  Carbon density of vegetation with different logging intensities Mg/ha
    采伐强度
    Logging intensity
    乔木层 DBH ≥ 5 cm Trees DBH ≥ 5 cm冠下层植被 Understory vegetation合计
    Total
    地上
    Aboveground
    地下
    Belowground
    小计
    Sub-total
    幼树 DBH < 5 cm
    Sapling DBH < 5 cm
    灌木
    Shrub
    草本
    Herb
    CK83.90 ± 6.31a19.97 ± 0.28a103.87 ± 6.54a3.57 ± 0.83a0.17 ± 0.02b0.42 ± 0.12a108.04 ± 6.93a
    62.94 ± 1.30b17.21 ± 0.50b80.15 ± 1.21b3.13 ± 1.24a0.20 ± 0.05b0.69 ± 0.27a84.18 ± 0.69b
    65.09 ± 2.09b17.22 ± 0.80b82.31 ± 1.53b4.22 ± 2.65a0.24 ± 0.05b0.70 ± 0.02a87.47 ± 3.57b
    60.87 ± 2.23b15.33 ± 0.56b76.20 ± 2.29b4.99 ± 1.98a0.27 ± 0.05b0.62 ± 0.14a82.08 ± 0.76b
    58.66 ± 0.14b15.24 ± 1.29b73.90 ± 1.21b3.40 ± 0.73a0.31 ± 0.04b0.60 ± 0.47a78.22 ± 2.09b
    40.83 ± 7.60c10.82 ± 3.20c51.65 ± 10.73c2.62 ± 0.73a0.48 ± 0.19a0.47 ± 0.17a55.21 ± 10.15c
    注:采伐强度: CK(< 5%)、Ⅰ级(30%)、Ⅱ级(40%)、Ⅲ级(50%)、Ⅳ级(> 60%)和Ⅴ级(皆伐)。a、b、c 表示各变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。Notes: logging intensities: CK (< 5%), class Ⅰ (30%), class Ⅱ (40%), class Ⅲ (50%), class Ⅳ (> 60%) and class Ⅴ (clear cut). a, b, and c indicate the difference of each variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.
    下载: 导出CSV 
    | 显示表格
    表  3  采伐强度、生态系统各组分碳密度及其与林分结构的相关分析
    Table  3.  Correlation analysis of thinning intensity, component carbon density of ecosystem and stand structure
    指标 Index采伐强度
    Logging intensity
    乔木地下
    碳密度
    Belowground
    carbon density of tree
    乔木地上
    碳密度
    Aboveground
    carbon density of tree
    乔木碳密度
    Tree carbon density
    幼树碳密度
    Sapling carbon density
    灌木碳密度
    Shrub carbon density
    草本碳密度
    Herb carbon density
    枯落物
    碳密度
    Litter carbon density
    土壤碳密度
    Soil carbon density
    乔木地下碳密度
    Belowground carbon density of tree
    −0.898**
    乔木地上碳密度
    Aboveground carbon density of tree
    −0.921** 0.926**
    乔木碳密度
    Tree carbon density
    −0.927** 0.951** 0.997**
    幼树碳密度
    Sapling carbon density
    −0.170 0.138 0.139 0.141
    灌木碳密度
    Shrub carbon density
    0.797** −0.720** −0.727** −0.734** −0.150
    草本碳密度
    Herb carbon density
    −0.010 0.146 −0.021 0.010 0.077 −0.205
    枯落物碳密度
    Litter carbon density
    −0.443 0.461 0.557* 0.545* −0.031 −0.297 0.125
    土壤碳密度
    Soil carbon density
    −0.063 0.249 0.250 0.253 −0.199 −0.111 0.146 0.640**
    树种香农指数
    Shannon index of
    tree species
    0.047 −0.187 −0.180 −0.188 0.408 0.037 −0.276 −0.325 0.005
    树种均匀度指数
    Eveness index of
    tree species
    −0.196 0.062 0.060 0.062 0.292 −0.185 −0.315 −0.256 0.077
    树高香农指数
    Shannon index of
    tree height
    −0.375 0.381 0.414 0.392 −0.283 −0.483* 0.330 0.340 0.115
    树高均匀度指数
    Eveness index of
    tree height
    −0.569* 0.548* 0.555* 0.556* −0.241 −0.579* 0.070 0.247 0.164
    胸径香农指数
    Shannon index of DBH
    −0.572* 0.580* 0.621** 0.594** −0.168 −0.536* 0.061 0.087 0.205
    胸径均匀度指数
    Eveness index of DBH
    −0.578* 0.567* 0.590** 0.578* −0.124 −0.544* −0.008 0.085 0.176
    草本丰富度
    Richness of herb
    0.466 −0.506* −0.555* −0.552* 0.014 0.280 −0.061 −0.477* −0.062
    灌木丰富度
    Richness of shrub
    −0.059 −0.086 0.004 −0.013 0.114 0.025 −0.570* 0.100 0.163
    乔木丰富度
    Richness of tree
    0.053 −0.249 −0.154 −0.174 0.125 0.028 −0.094 −0.348 −0.300
    注:**P< 0.01极显著,*P< 0.05显著。Notes: ** means P < 0.01, extremely significant; * means P < 0.05, significant.
    下载: 导出CSV 
    | 显示表格

    采伐干扰还明显改变了乔木层不同径级林木的碳密度及其比例。皆伐干扰显著增加了5.0 ~ 9.9 cm小径级林木的碳密度,为其乔木层碳密度的主体(66.76%),但显著降低了10.0 ~ 19.9 cm中小径级林木的碳密度。其他采伐强度5.0 ~ 9.9 cm和20.0 ~ 29.9 cm的小径级和中等径级林木碳密度间及其与对照间均无显著差异,随采伐强度的增大小径级林木的碳密度比例略有增加,而中等径级林木的碳密度比例则稳定在23%左右;10.0 ~ 19.0 cm中小径林木的碳密度及其比例随采伐强度的增大呈增加变化,至Ⅳ级采伐强度时,其碳密度较对照显著增加了10.62 Mg/hm2,比例为对照的2.15倍;在30.0 ~ 39.9 cm的中大径级林木中,其碳密度仅以Ⅲ级采伐强度显著高于对照和其他强度干扰。对照林分的40 cm以上大径林木碳密度高达34.95 Mg/hm2,为其乔木层碳密度的主体(33.64%),显著高于Ⅰ、Ⅱ、Ⅲ级采伐;随采伐强度的增大,大径木的碳密度及其比例明显减小,至Ⅲ级采伐强度时仅余1.65 Mg/hm2,占其乔木层碳密度的2.17%,在Ⅳ、Ⅴ级采伐强度林分中缺失(图1)。

    图  1  不同采伐强度干扰的乔木层碳密度径级分布及比例(DBH ≥ 5 cm)
    a、b、c 表示相同径级变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。 a, b, and c indicate the difference of same diameter class variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.
    Figure  1.  Carbon density and percentage of tree layer in different diameter classes under different logging treatments (DBH ≥ 5 cm)

    综上所述,采伐干扰显著降低了40 cm以上大径林木的碳密度及其比例,为伐后林分乔木层碳密度显著低于对照的主要原因;同时采伐干扰一定程度的增加了小径和中小径林木的碳密度及其比例,但却不足以弥补大径林木的碳密度损失;除皆伐外,伐后中等径级林木的碳密度及其比例差异不大。

    枯落物碳密度整体介于1.45 ~ 2.72 Mg/hm2,以皆伐干扰林分的碳密度最小,显著低于对照;以对照林分的碳密度最高,与除皆伐外的其他采伐强度间差异均不显著,在除皆伐外的各采伐强度间的差异也不显著,表明其枯落物碳密度已基本恢复至未干扰水平。

    土壤碳密度介于148.45 ~ 271.44 Mg/hm2,以Ⅳ级采伐强度显著高于Ⅰ、Ⅱ级采伐强度和皆伐,碳密度分别为对照和皆伐林分的1.36和1.83倍;以皆伐干扰的碳密度最低,但仅与Ⅳ级采伐强度存在显著差异,为对照样地的74.26%。采伐干扰对土壤碳密度的影响并非源于A层(碳密度在不同采伐干扰和对照间均无显著差异),而是在B层差异显著。其中,B层土壤碳密度仍以皆伐林分最低,显著低于对照和其他各采伐强度干扰,仍以Ⅳ级采伐强度最高,显著高于除Ⅲ级采伐干扰外的其他林分(图2)。可见,皆伐显著降低了林分的枯落物和B层土壤的碳密度,而强度和极强度采伐(Ⅲ级和Ⅳ级)干扰的B层土壤碳密度有增加趋势。

    图  2  不同采伐强度干扰的枯落物和土壤碳密度
    a、b、c 表示同类变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。a, b and c indicate the difference of each same variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.
    Figure  2.  Litter and soil carbon density under different logging treatments

    不同采伐干扰的生态系统碳密度介于205.12 ~ 351.78 Mg/hm2。以皆伐恢复林分的生态系统碳密度最低,仅为对照的66.03%,其碳密度的损失乔木层和土壤各占了49%,另有2%来源于幼树和凋落物碳密度的降低;Ⅰ级和Ⅱ级采伐干扰的生态系统碳密度分别损失了48.95和53.95 Mg/hm2,二者碳密度的损失量乔木层和土壤合计贡献了98%以上,前者的乔木层和土壤碳密度的损失比例相当,而后者以土壤损失相对较高(59.98%)。Ⅲ级采伐干扰的生态系统碳密度略低于对照,生态系统碳密度的损失量与乔木层碳密度的损失量相比略低,土壤碳密度损失占比仅为2.59%,而幼树碳密度约有占比损失量5%的增加;Ⅳ级采伐干扰的生态系统碳密度较对照略高,虽因采伐乔木层碳密度降低了29.97 Mg/hm2,但土壤碳密度却增长了71.54 Mg/hm2。随采伐强度的增加生态系统碳密度从Ⅰ级至Ⅳ级呈增加变化,但Ⅰ、Ⅱ、Ⅲ级采伐干扰的生态系统碳密度无显著差异,表明中等以下采伐干扰对生态系统碳密度的恢复的影响不大,而Ⅳ级的强度采伐干扰生态系统碳密度显著提高,则源于土壤碳密度的增加。

    此外,采伐干扰还明显改变了生态系统碳密度的组成比例,因乔木层碳密度的显著减少,土壤碳密度的主体优势更为明显。与对照相比,皆伐使土壤和植被碳密度的比例分别增加和减少了8.02%和8.26%。其他采伐干扰的土壤碳密度比例则随采伐强度的增大呈增加的变化趋势,乔木层碳密度比例的变化与之相反。冠下植被和枯落物碳密度所占的比例甚小,合计不足生态系统碳密度的3%,整体以幼树略高,占比介于1% ~ 2%,其次为枯落物,占比约为0.7%,灌木和草本植物合计仅为0.3%左右(图3)。

    图  3  不同采伐干扰的生态系统碳密度及其组成比例
    a、b、c 表示各变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。a, b, and c indicate the difference of each variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.
    Figure  3.  Carbon density and composition ratio of ecosystem under different logging treatments

    受采伐干扰的强烈影响,生态系统各组分碳密度间呈现出显著或极显著的联动变化。由表3可知:灌木植物碳密度与乔木地上、地下和整体碳密度间均呈现极显著的负相关关系;枯落物碳密度与乔木地上和整体碳密度间均存在显著的正相关关系,与土壤碳密度存在极显著的正相关关系。

    虽然经过了30年的恢复,采伐干扰仍然对林分结构有明显的影响,表现为对树高均匀度指数、胸径香农指数和胸径均匀度指数的显著负效应。树高均匀度、胸径多样性和均匀度的变化与乔木地上、地下和整体碳密度间均呈显著或极显著的正相关,树高多样性、均匀度和胸径多样性、均匀度与灌木植物碳密度均呈显著的负相关;虽然采伐对树种香农指数、草本和乔木植物的丰富度(物种的种类数)有正效应,对树种均匀度指数、树高香农指数和灌木植物的丰富度有负效应,但相关关系均不显著;且林分结构与幼树、草本植物、枯落物和土壤的碳密度关系也均不显著;而受采伐强度负效应极显著影响的乔木层地上、地下和整体碳密度与草本植物丰富度间却均存在显著的负相关关系。此外,草本和灌木植物的丰富度还分别与枯落物碳密度和草本植物碳密度存在显著的负相关关系。

    尽管采伐显著降低了净生态系统生产力,但通过调整和优化林分结构,降低了林分密度,减少了竞争,改善的光照、水分和释放的资源空间等能够有效促进保留木的生长,因而其生产力在伐后短期内即可得以恢复[14-15],加之地面植被碳吸收的增加,低强度采伐干扰林分的净生态系统碳交换量甚至不会发生显著的改变[28]。然而大径木在森林生态系统中占有着重要的地位,采伐引起的大径木的损失和自然死亡等是植被碳密度降低的主体[29],虽然促进了小径木的生长和进界木的增加,并减少其枯死木的比率[12],可一定程度上减少碳密度的损失,但短期内仍无法弥补植被碳密度的损失[12,29],其恢复需要一个相对长期的过程[12,18]。相关研究[18]表明:阔叶红松林经采伐干扰后恢复40年左右,植被碳密度亦尚未达到顶级群落的稳定状态。本研究中不同强度采伐干扰的阔叶红松林,虽然经过了30年的恢复,乔木层碳密度仍显著低于未采伐林分,中小径级林木的碳密度及其比例的增加与大径林木的损失相比较小,但在除皆伐外的不同采伐强度间的乔木层碳密度已恢复至无显著差异水平。

    采伐通过对森林生态过程和环境的干扰,而引起枯落物数量、质量以及根系分泌物等变化,进而影响土壤碳库的输入和输出,直接或间接地影响森林土壤碳密度以及碳过程[30]。伐后林木数量的减少降低了枯落物的输入,加之林地微环境的变化加快了枯落物的分解,使枯落物现存量在伐后一段时期内呈下降变化,其现存量的下降有随采伐强度的增加而增大的变化趋势[17,31-32];随着林分的恢复,枯落物的输入随林木个体数和叶、枝生长量的增加而增大,同时林分的郁闭减弱了林内光照强度,降低了枯落物的分解[33],此时枯落物现存量又进入增长恢复阶段。本研究得出除皆伐外不同采伐强度林分的枯落物碳密度虽略低于对照林分,但已恢复至与对照无差异水平,而皆伐林分的枯落物碳密度则仍显著低于对照林分,则取决于伐后枯落物输入和输出的累积关系。

    通常森林采伐破坏了土壤结构的稳定,改变了林分小气候,从而刺激微生物的活动和枯落物的分解,导致土壤碳密度在最初的几十年内减少,然后是土壤碳密度恢复或完全恢复期或是增加的部分[34-36],但因采伐方式、森林类型、采伐剩余物管理以及微生物因子作用等差异,导致其对土壤碳库的影响存在不确定性[30]。相关研究[18]表明:采伐导致了阔叶红松林土壤碳密度的减少,且表现出与采伐强度间显著的负相关关系,然而这种流失可能是短期的(12年以内),随之恢复不断增加;皆伐后37年的白桦林和人工落叶松林土壤碳密度即已经恢复至与原始阔叶红松林较为接近。本研究的结果表明:不同采伐强度的土壤碳密度均得以完全或是基本恢复,虽以皆伐的林分相对较小,但与对照相比已无显著差异,而强度和极强度采伐(Ⅲ级和Ⅳ级)林分的土壤碳密度则分别基本接近和高于对照林分。

    植被—枯落物—土壤连续体作为记录森林生态系统碳循环过程的重要载体,三者各自变化且又相互影响,存在着密切的关联关系。采伐通过改变林分密度、林分结构而直接或间接作用于物种多样性和林分生产力[10],其组成和结构的改变随采伐强度的增加而增大[10,37],而组成和结构的恢复则与之相反。短期内(10年),弱度和中度采伐的亚热带天然林和长白山云冷杉林的林分结构即可恢复至与伐前差异不大,而强度和极强度采伐,尤其是皆伐所引起的林分结构变化明显;除皆伐外不同采伐强度的物种丰富度均较采伐前有所增加[37-38]。本研究得出:阔叶红松林伐后30年,采伐强度对树高均匀度指数、胸径香农指数和胸径均匀度指数的负效应仍显著,其结构的变化又均对乔木地上、地下和整体碳密度产生了显著的正效应,但对灌木植物碳密度而言则是负效应。而受采伐强烈的负效应影响的乔木层碳密度与灌木植物的碳密度、枯落物碳密度、草本植物丰富度,以及枯落物碳密度与土壤碳密度和草本植物丰富度的显著相关关系,归根结底则是因采伐引起的上层植被变化,改变了林分结构,增加了林下环境异质性,促进林下层灌木和草本的生长和物种数量的增加[8,39-40],改变了枯落物的输入和输出,进而又影响到土壤碳密度等[41-42]

    此外,采伐对林下植物生长和种类增加的促进作用,不仅有短期效应[8,39,43],同样体现在较长的时间尺度[35,40],但除皆伐之外,采伐对于木本植物的物种丰富度的影响则不大[10,43]。因此,在综合考虑林木生长和维持物种多样性两个方面,何怀江等[43]提出东北近熟针阔混交林的最适宜采伐强度为34.74%;若兼顾阔叶红松林生态系统恢复、木材生产与固碳功能,齐麟等[18]得出了适合的采伐强度为30%,轮伐期为45年。

    与未采伐的阔叶红松林相比,强度和极强度采伐干扰的生态系统碳密度已恢复至基本接近或超过未采伐水平,然而碳密度的恢复主要来源于土壤相对快速的累积,植被碳密度与未采伐的阔叶红松林相比,还存在一定的差异;皆伐林分的土壤碳密度虽与未采伐林分相近,但植被的碳密度损失则需要较长的时间恢复。采伐干扰强度、生态系统各组分碳密度及其与林分结构间存在着显著的相关关系,主要动因为受采伐负效应影响,导致林分结构改变,引起乔木层和冠下植被、枯落物、土壤的联动变化。

  • 图  1   不同采伐强度干扰的乔木层碳密度径级分布及比例(DBH ≥ 5 cm)

    a、b、c 表示相同径级变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。 a, b, and c indicate the difference of same diameter class variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.

    Figure  1.   Carbon density and percentage of tree layer in different diameter classes under different logging treatments (DBH ≥ 5 cm)

    图  2   不同采伐强度干扰的枯落物和土壤碳密度

    a、b、c 表示同类变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。a, b and c indicate the difference of each same variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.

    Figure  2.   Litter and soil carbon density under different logging treatments

    图  3   不同采伐干扰的生态系统碳密度及其组成比例

    a、b、c 表示各变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。a, b, and c indicate the difference of each variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.

    Figure  3.   Carbon density and composition ratio of ecosystem under different logging treatments

    表  1   样地基本情况

    Table  1   Basic information of the sample plots

    样地
    Sample plot
    树种组成
    Tree species composition
    采伐强度
    Logging
    intensity/%
    恢复时间/a
    Restoration time/
    year
    乔木密度/
    (株·hm−2
    Tree density/
    (tree·ha−1)
    平均胸径
    Mean
    DBH/cm
    蓄积/(m3·hm−2)
    Accumulation/
    (m3·ha−1)
    草本物种数
    Species
    number
    of herb
    灌木物种数
    Species
    number
    of shrub
    乔木物种数
    Species
    number
    of tree
    CK1 4PK 4T1A1B < 5 30 1 111 15.04 257.81 17 11 15
    CK2 4T3PK1AN2O < 5 33 1 222 15.59 249.99 15 7 17
    CK3 4PK2T1A1P2O < 5 31 1 233 14.30 251.58 16 9 21
    1 5PK2B1P1L1T 31 31 1 567 12.20 225.16 26 6 28
    2 3PK3B2T1P1A 31 28 1 356 13.72 205.85 23 14 18
    3 3PK2B2A1F1Q1O 29 30 1 178 14.36 199.07 24 5 23
    1 4PK2T2A1AN1O 36 28 1 400 13.85 228.80 25 9 21
    2 3PK3B2U1F1O 40 34 933 16.97 213.70 27 4 25
    3 3PK3T1F1AN1A1O 42 28 1 233 16.15 217.27 28 11 29
    1 5P2B1PK1A1O 51 30 1 878 10.60 189.34 23 10 28
    2 3T2B2A1PK1F1O 49 30 1 211 14.03 164.54 27 10 21
    3 5PK1T1AN1B1A1O 48 30 1 456 12.90 202.64 29 14 22
    1 3B2PK2AN1A1U1O 67 28 1 311 14.35 187.97 21 4 12
    2 2PK2T2B1AN1L1A 64 33 1 689 12.21 193.49 29 12 19
    3 4PK2AN2B1PA1O 69 32 889 16.35 210.33 34 13 32
    V1 5B3P1U1O 100 30 1 922 12.00 155.71 21 4 18
    2 3P2J2T2Q1A 100 30 1 878 10.96 114.76 26 9 21
    3 5J2P2T1A 100 30 2 000 10.37 115.58 26 10 23
    注:PK.红松;T. 椴;A. 槭;B. 白桦;AN. 臭冷杉;P. 杨;L. 落叶松;F. 水曲柳;Q. 蒙古栎;U. 榆;PA. 黄檗;J. 胡桃楸;O. 其他。Notes: PK. Pinus koraiensis;T. Tilia sp.;A. Acer sp.;B. Betula platyphylla;AN. Abies nephrolepis;P. Populus sp.;L. Larix olgensis;F. Fraxinus mandschurica;Q. Quercus mongolica;U. Ulmus sp.;PA. Phellodendron amurense;J. Juglans mandshurica;O. Others.
    下载: 导出CSV

    表  2   不同采伐强度的植被碳密度 Mg/hm2

    Table  2   Carbon density of vegetation with different logging intensities Mg/ha

    采伐强度
    Logging intensity
    乔木层 DBH ≥ 5 cm Trees DBH ≥ 5 cm冠下层植被 Understory vegetation合计
    Total
    地上
    Aboveground
    地下
    Belowground
    小计
    Sub-total
    幼树 DBH < 5 cm
    Sapling DBH < 5 cm
    灌木
    Shrub
    草本
    Herb
    CK83.90 ± 6.31a19.97 ± 0.28a103.87 ± 6.54a3.57 ± 0.83a0.17 ± 0.02b0.42 ± 0.12a108.04 ± 6.93a
    62.94 ± 1.30b17.21 ± 0.50b80.15 ± 1.21b3.13 ± 1.24a0.20 ± 0.05b0.69 ± 0.27a84.18 ± 0.69b
    65.09 ± 2.09b17.22 ± 0.80b82.31 ± 1.53b4.22 ± 2.65a0.24 ± 0.05b0.70 ± 0.02a87.47 ± 3.57b
    60.87 ± 2.23b15.33 ± 0.56b76.20 ± 2.29b4.99 ± 1.98a0.27 ± 0.05b0.62 ± 0.14a82.08 ± 0.76b
    58.66 ± 0.14b15.24 ± 1.29b73.90 ± 1.21b3.40 ± 0.73a0.31 ± 0.04b0.60 ± 0.47a78.22 ± 2.09b
    40.83 ± 7.60c10.82 ± 3.20c51.65 ± 10.73c2.62 ± 0.73a0.48 ± 0.19a0.47 ± 0.17a55.21 ± 10.15c
    注:采伐强度: CK(< 5%)、Ⅰ级(30%)、Ⅱ级(40%)、Ⅲ级(50%)、Ⅳ级(> 60%)和Ⅴ级(皆伐)。a、b、c 表示各变量在不同采伐处理下的差异,相同的字母表示没有显著差异,不同的字母表示差异显著。Notes: logging intensities: CK (< 5%), class Ⅰ (30%), class Ⅱ (40%), class Ⅲ (50%), class Ⅳ (> 60%) and class Ⅴ (clear cut). a, b, and c indicate the difference of each variable under different logging treatments, the same letter indicates no significant difference, while different letters indicate significant difference.
    下载: 导出CSV

    表  3   采伐强度、生态系统各组分碳密度及其与林分结构的相关分析

    Table  3   Correlation analysis of thinning intensity, component carbon density of ecosystem and stand structure

    指标 Index采伐强度
    Logging intensity
    乔木地下
    碳密度
    Belowground
    carbon density of tree
    乔木地上
    碳密度
    Aboveground
    carbon density of tree
    乔木碳密度
    Tree carbon density
    幼树碳密度
    Sapling carbon density
    灌木碳密度
    Shrub carbon density
    草本碳密度
    Herb carbon density
    枯落物
    碳密度
    Litter carbon density
    土壤碳密度
    Soil carbon density
    乔木地下碳密度
    Belowground carbon density of tree
    −0.898**
    乔木地上碳密度
    Aboveground carbon density of tree
    −0.921** 0.926**
    乔木碳密度
    Tree carbon density
    −0.927** 0.951** 0.997**
    幼树碳密度
    Sapling carbon density
    −0.170 0.138 0.139 0.141
    灌木碳密度
    Shrub carbon density
    0.797** −0.720** −0.727** −0.734** −0.150
    草本碳密度
    Herb carbon density
    −0.010 0.146 −0.021 0.010 0.077 −0.205
    枯落物碳密度
    Litter carbon density
    −0.443 0.461 0.557* 0.545* −0.031 −0.297 0.125
    土壤碳密度
    Soil carbon density
    −0.063 0.249 0.250 0.253 −0.199 −0.111 0.146 0.640**
    树种香农指数
    Shannon index of
    tree species
    0.047 −0.187 −0.180 −0.188 0.408 0.037 −0.276 −0.325 0.005
    树种均匀度指数
    Eveness index of
    tree species
    −0.196 0.062 0.060 0.062 0.292 −0.185 −0.315 −0.256 0.077
    树高香农指数
    Shannon index of
    tree height
    −0.375 0.381 0.414 0.392 −0.283 −0.483* 0.330 0.340 0.115
    树高均匀度指数
    Eveness index of
    tree height
    −0.569* 0.548* 0.555* 0.556* −0.241 −0.579* 0.070 0.247 0.164
    胸径香农指数
    Shannon index of DBH
    −0.572* 0.580* 0.621** 0.594** −0.168 −0.536* 0.061 0.087 0.205
    胸径均匀度指数
    Eveness index of DBH
    −0.578* 0.567* 0.590** 0.578* −0.124 −0.544* −0.008 0.085 0.176
    草本丰富度
    Richness of herb
    0.466 −0.506* −0.555* −0.552* 0.014 0.280 −0.061 −0.477* −0.062
    灌木丰富度
    Richness of shrub
    −0.059 −0.086 0.004 −0.013 0.114 0.025 −0.570* 0.100 0.163
    乔木丰富度
    Richness of tree
    0.053 −0.249 −0.154 −0.174 0.125 0.028 −0.094 −0.348 −0.300
    注:**P< 0.01极显著,*P< 0.05显著。Notes: ** means P < 0.01, extremely significant; * means P < 0.05, significant.
    下载: 导出CSV
  • [1]

    Mackey B G, Prentice I C, Steffen W, et al. Untangling the confusion around land carbon science and climate change mitigation policy[J]. Nature Climate Change, 2013(3): 552−557. doi: 10.1038/nclimate1804

    [2]

    Keith H, Lindenmayer D, Mackey B, et al. Managing temperate forests for carbon storage: impacts of logging versus forest protection on carbon stocks[J]. Ecosphere, 2014, 5(6): 1−34.

    [3]

    Richards K R, Stokes C. A review of forest carbon sequestration cost studies: a dozen years of research[J]. Climatic Change, 2004, 63: 1−48. doi: 10.1023/B:CLIM.0000018503.10080.89

    [4] 张煜星, 王雪军. 全国森林蓄积生物量模型建立和碳变化研究[J]. 中国科学:生命科学, 2021, 51(2): 199−214.

    Zhang Y X, Wang X J. Study on forest volume-to-biomass modeling and carbon change in forest dynamics in China[J]. Scientia Sinica Life Sciences, 2021, 51(2): 199−214.

    [5] 张煜星, 王雪军, 蒲莹, 等. 1949−2018年中国森林资源碳储量变化研究[J]. 北京林业大学学报, 2021, 43(5): 1−14. doi: 10.12171/j.1000-1522.20200237

    Zhang Y X, Wang X J, Pu Y, et al. Changes in forest resource carbon storage in China between 1949 and 2018[J]. Journal of Beijing Forestry University, 2021, 43(5): 1−14. doi: 10.12171/j.1000-1522.20200237

    [6] 张颖, 李晓格, 温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 2022, 44(1): 38−47. doi: 10.12171/j.1000-1522.20210143

    Zhang Y, Li X G, Wen Y L. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization[J]. Journal of Beijing Forestry University, 2022, 44(1): 38−47. doi: 10.12171/j.1000-1522.20210143

    [7]

    Peng Y, Thomas S C. Soil CO2 efflux in uneven-aged managed forests: temporal patterns following harvest and effects of edaphic heterogeneity[J]. Plant Soil, 2006, 289: 253−264. doi: 10.1007/s11104-006-9133-0

    [8]

    Aun K, Kukumgi M, Varik M, et al. Short-term effect of thinning on the carbon budget of young and middle-aged silver birch (Betula pendula Roth) stands[J]. Forest Ecology and Management, 2021, 480: 1−11.

    [9]

    Stas S M, Le T C, Tran H D, et al. Logging intensity drives variability in carbon stocks in lowland forests in Vietnam-supplementary material[J]. Forest Ecology and Management, 2020, 460: 2−17.

    [10] 魏安然, 张雨秋, 谭凌照, 等. 抚育采伐对针阔混交林林分结构及物种多样性的影响[J]. 北京林业大学学报, 2019, 41(5): 148−158.

    Wei A R, Zhang Y Q, Tan L Z, et al. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest[J]. Journal of Beijing Forestry University, 2019, 41(5): 148−158.

    [11] 李明鲁, 吴兆飞, 邱华, 等. 采伐对吉林蛟河阔叶红松林生态功能的短期影响[J]. 北京林业大学学报, 2019, 41(9): 40−49.

    Li M L, Wu Z F, Qiu H, et al. Short-term effects of tending felling on ecological services of mixed broadleaved-Korean pine forests at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 40−49.

    [12] 陈永富, 乔婷, 雷渊才, 等. 采伐对海南霸王岭热带山地雨林乔木碳储量影响初步研究[J]. 林业科学研究, 2013, 26(3): 337−343. doi: 10.3969/j.issn.1001-1498.2013.03.012

    Chen Y F, Qiao T, Lei Y C, et al. Analysis on early stage trees carbon storage change of tropical montane rain forest in Bawangling of Hainan Island[J]. Forest Research, 2013, 26(3): 337−343. doi: 10.3969/j.issn.1001-1498.2013.03.012

    [13]

    Dodson E K, Ares A, Puettmann K J. Early responses to thinning treatments designed to accelerate late successional forest structure in young coniferous stands of western Oregon, USA[J]. Canadian Journal of Forest Research, 2012, 42: 345−355. doi: 10.1139/x11-188

    [14]

    Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands[J]. Forest Ecology and Management, 2010, 260: 1104−1113. doi: 10.1016/j.foreco.2010.06.023

    [15]

    Burton J I, Ares A, Mulford S E, et al. Above-ground carbon storage, down wood, and understory plant species richness after thinning in western Oregon[J]. USDA Forest Service-General Technical Report PNW, 2013, 880: 91−100.

    [16]

    Dore S, Montes-Helu M, Hart S C, et al. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire[J]. Global Change Biology, 2012, 18: 3171−3185. doi: 10.1111/j.1365-2486.2012.02775.x

    [17] 何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2018.

    He H J. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broadleaved mixed forest in Jiaohe, Jilin Province[D]. Beijing: Beijing Forestry University, 2018.

    [18] 齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303

    Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303

    [19]

    Pinard M A, Cropper W P. Simulated effects of logging on carbon storage in dipterocarp forest[J]. Journal of Applied Ecology, 2000, 37: 267−283. doi: 10.1046/j.1365-2664.2000.00488.x

    [20]

    Harmon M E, Moreno A, Domingo J B. Effects of partial harvest on the carbon stores in Douglas-fir/western hemlock forests: a simulation study[J]. Ecosystems, 2009, 12: 777−791. doi: 10.1007/s10021-009-9256-2

    [21] 范春楠, 刘强, 于舒洋, 等. 天然落叶阔叶林不同年龄紫椴径生长差异及其对气候暖化的响应[J]. 河南师范大学学报(自然科学版), 2021, 49(6): 32−38.

    Fan C N, Liu Q, Yu S Y, et al. The DBH growth difference and response of Tilia amurensis in different ages in natural deciduous broad-leaved forest to climate warming[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(6): 32−38.

    [22] 阳含熙, 谢海生. 长白山红松混交林干扰历史的重构研究[J]. 植物生态学报, 1994, 18(3): 201−208. doi: 10.3321/j.issn:1005-264X.1994.03.007

    Yang H X, Xie H S. Study on the reconstruction of disturbance history of Pinus koraiensis mixed forest in Changbai Mountain[J]. Acta Phytoecologica Sinica, 1994, 18(3): 201−208. doi: 10.3321/j.issn:1005-264X.1994.03.007

    [23] 范春楠. 吉林省森林植被碳估算及其分布特征[D]. 哈尔滨: 东北林业大学, 2014.

    Fan C N. The carbon distribution characteristic and storage of forest vegetation in Jilin Province[D]. Harbin: Northeast Forestry University, 2014.

    [24] 国家林业局. 森林土壤有机质的测定及碳氮化的计算: LY/T 1237—1999[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio: LY/T 1237−1999[S]. Beijing: China Standard Press, 1999.

    [25]

    Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222: 9−16. doi: 10.1016/j.foreco.2005.10.074

    [26] 陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989: 158–173.

    Chen C G, Zhu J F. The manual for main tree biomass in northeast China[M]. Beijing: China Forestry Publishing House, 1989: 158–173.

    [27] 范春楠, 庞圣江, 郑金萍, 等. 长白山林区14种幼树生物量估测模型[J]. 北京林业大学学报, 2013, 35(2): 1−9.

    Fan C N, Pang S J, Zheng J P, et al. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, Northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(2): 1−9.

    [28]

    Vesala T, Suni T, Rannik Ü, et al. Effect of thinning on surface fluxes in a boreal forest[J]. Global Biogeochemical Cycles, 2005, 19: 1−11.

    [29]

    Sist P, Mazzei L, Blanc L, et al. Large trees as key elements of carbon storage and dynamics after selective logging in the eastern Amazon[J]. Forest Ecology and Management, 2014, 318: 103−109. doi: 10.1016/j.foreco.2014.01.005

    [30] 雷蕾, 肖文发. 采伐对森林土壤碳库影响的不确定性[J]. 林业科学研究, 2015, 28(6): 892−899. doi: 10.3969/j.issn.1001-1498.2015.06.020

    Lei L, Xiao W F. Uncertainty effect of forest harvest on soil carbon pool: a review[J]. Forest Research, 2015, 28(6): 892−899. doi: 10.3969/j.issn.1001-1498.2015.06.020

    [31] 周新年, 巫志龙, 郑丽凤, 等. 天然林择伐10年后凋落物现存量及其养分含量[J]. 林业科学, 2008, 44(10): 25−28. doi: 10.3321/j.issn:1001-7488.2008.10.005

    Zhou X N, Wu Z L, Zheng L F, et al. Biomass and nutrient content of forest litter in natural forest of different intensity harvesting after ten years[J]. Scientia Silvae Sinicae, 2008, 44(10): 25−28. doi: 10.3321/j.issn:1001-7488.2008.10.005

    [32] 曹旭平, 于世川, 张文辉, 等. 间伐对黄龙山辽东栎林下枯落物持水性的影响[J]. 水土保持通报, 2016, 36(6): 247−251.

    Cao X P, Yu S C, Zhang W H, et al. Effects of thinning on litter’s water holding capacity of Quercus wutaishanica forest understory in Huanglong Mountain[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 247−251.

    [33] 杨曾奖, 曾杰, 徐大平, 等. 森林枯枝落叶分解及其影响因素[J]. 生态环境学报, 2007, 16(2): 649−654. doi: 10.3969/j.issn.1674-5906.2007.02.075

    Yang Z J, Zeng J, Xu D P, et al. The processes and dominant factors of forest litter decomposition: a review[J]. Ecology and Environment, 2007, 16(2): 649−654. doi: 10.3969/j.issn.1674-5906.2007.02.075

    [34]

    Grand S, Lavkulich L M. Effects of forest harvest on soil carbon and related variables in Canadian spodosols[J]. Soil Science Society of America Journal, 2012, 76(5): 1816−1827. doi: 10.2136/sssaj2012.0103

    [35]

    Jiang H, Apps M J, Peng C, et al. Modeling the influence of harvesting on Chinese boreal forest carbon dynamics[J]. Forest Ecology and Management, 2002, 169: 65−82. doi: 10.1016/S0378-1127(02)00299-2

    [36]

    Gong C, Tan Q, Liu G, et al. Forest thinning increases soil carbon stocks in China[J]. Forest Ecology and Management, 2021, 482: 118812. doi: 10.1016/j.foreco.2020.118812

    [37] 郑丽凤, 周新年. 择伐强度对天然林树种组成及物种多样性影响动态[J]. 山地学报, 2008, 26(6): 699−706. doi: 10.3969/j.issn.1008-2786.2008.06.008

    Zheng L F, Zhou X N. Dynamics effects of selective cutting intensity on the species composition and diversity of natural forest[J]. Journal of Mountain Science, 2008, 26(6): 699−706. doi: 10.3969/j.issn.1008-2786.2008.06.008

    [38] 周梦丽, 张青, 亢新刚, 等. 云冷杉天然林乔木树种组成及物种多样性对择伐强度的动态响应[J]. 植物科学学报, 2016, 34(1): 56−66. doi: 10.11913/PSJ.2095-0837.2016.10056

    Zhou M L, Zhang Q, Kang X G, et al. Dynamic response to selective cutting intensity on tree species structure and species diversity in a natural spruce-fir forest[J]. Plant Science Journal, 2016, 34(1): 56−66. doi: 10.11913/PSJ.2095-0837.2016.10056

    [39] 王凯, 马履一, 贾忠奎, 等. 不同林龄油松人工林林下植物对不同间伐强度的短期响应[J]. 东北林业大学学报, 2013, 41(10): 1−9. doi: 10.3969/j.issn.1000-5382.2013.10.001

    Wang K, Ma L Y, Jia Z K, et al. Short-term responses of undergrowth of Pinus tabulaeformis plantation at different stand ages to different thinning intensities[J]. Journal of Northeast Forestry University, 2013, 41(10): 1−9. doi: 10.3969/j.issn.1000-5382.2013.10.001

    [40] 龚固堂, 牛牧, 慕长龙, 等. 间伐强度对柏木人工林生长及林下植物的影响[J]. 林业科学, 2015, 51(4): 8−15.

    Gong G T, Niu M, Mu C L, et al. Impacts of different thinning intensities on growth of Cupressus funebris plantation and understory plants[J]. Scientia Silvae Sinicae, 2015, 51(4): 8−15.

    [41]

    Seedre M, Taylor A R, Brassard B W, et al. Recovery of ecosystem carbon stocks in young boreal forests: a comparison of harvesting and wildfire disturbance[J]. Ecosystems, 2014, 17: 851−863. doi: 10.1007/s10021-014-9763-7

    [42]

    Nilsen P, Strand L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years[J]. Forest Ecology and Management, 2008, 256: 201−208. doi: 10.1016/j.foreco.2008.04.001

    [43] 何怀江, 张忠辉, 张春雨, 等. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响[J]. 林业科学, 2019, 55(2): 1−12.

    He H J, Zhang Z H, Zhang C Y, et al. Short-term effects of thinning intensity on stand growth and species diversity of mixed coniferous and broad-eaved forest in northeastern China[J]. Scientia Silvae Sinicae, 2019, 55(2): 1−12.

  • 期刊类型引用(3)

    1. 岳庆敏,何怀江,张春雨,赵秀海,郝珉辉. 阔叶红松林林木与林分生长对采伐干扰的响应. 生态学报. 2024(05): 2019-2028 . 百度学术
    2. 王浩东,陈梦,袁丛军,何爽,丁访军,杨瑞. 马尾松纯林阔叶化改造对土壤碳氮固持的短期效应. 中南林业科技大学学报. 2024(10): 126-137 . 百度学术
    3. 李大勇. 采伐强度对木兰围场国有林场针阔混交林碳储量的影响. 中国林副特产. 2024(06): 15-16 . 百度学术

    其他类型引用(0)

图(3)  /  表(3)
计量
  • 文章访问数:  625
  • HTML全文浏览量:  124
  • PDF下载量:  109
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-15
  • 修回日期:  2022-09-26
  • 网络出版日期:  2022-09-29
  • 发布日期:  2022-10-24

目录

/

返回文章
返回