高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

穿透雨减少对红椎人工林土壤有机碳含量和化学组分的影响

王晖 王健 杨予静 陈琳 刘世荣

王晖, 王健, 杨予静, 陈琳, 刘世荣. 穿透雨减少对红椎人工林土壤有机碳含量和化学组分的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220191
引用本文: 王晖, 王健, 杨予静, 陈琳, 刘世荣. 穿透雨减少对红椎人工林土壤有机碳含量和化学组分的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220191
Wang Hui, Wang Jian, Yang Yujing, Chen Lin, Liu Shirong. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in a Castanopsis hystrix plantation[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220191
Citation: Wang Hui, Wang Jian, Yang Yujing, Chen Lin, Liu Shirong. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in a Castanopsis hystrix plantation[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220191

穿透雨减少对红椎人工林土壤有机碳含量和化学组分的影响

doi: 10.12171/j.1000-1522.20220191
基金项目: 中国林业科学研究院基本科研业务费专项资助(CAFYBB2020ZA001);国家重点研发计划课题(2021YFD2200402)
详细信息
    作者简介:

    王晖,研究员。主要研究方向:森林土壤固碳机制。Email:wanghui@caf.ac.cn 地址:100091 北京市海淀区香山路东小府1号

Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in a Castanopsis hystrix plantation

  • 摘要:   目的  在全球气候变化导致的降水格局改变下,通过研究穿透雨减少(减雨)对南亚热带红椎人工林土壤有机碳含量及其化学组分的影响,为准确预测气候变化对人工林生态系统固碳功能的潜在影响提供科学依据。  方法  2012年,在广西友谊关森林生态系统国家定位观测研究站,29年生红椎人工林内随机布设了3个减雨处理样地和3个对照样地,每个样地面积为 20 m × 20 m。减雨处理第6年,分别测定了干季(3月)和湿季(7月)土壤有机碳含量和化学组成、凋落物总量及其组分、细根生物量、土壤微生物量及功能基因丰度,分析了减雨对红椎人工林土壤有机碳和化学稳定性的影响和主导因素。  结果  (1)减雨显著降低了干季土壤含水量和干、湿季细根生物量,而减雨对干、湿季的凋落物总量、凋落物各组分和土壤微生物量无显著影响。(2)干季,减雨显著降低了土壤烷基碳比例和烷基碳/氧烷基碳的值,但显著增加了土壤芳香碳比例和芳香碳/烷基碳;湿季,减雨对土壤有机碳及其化学组分均无显著影响。(3)凋落物量对土壤有机碳化学组分的改变起主要作用。  结论  经过6年的减雨处理,虽然土壤有机碳含量没有明显改变,但是在干季显著降低了稳定性高的土壤烷基碳比例并提高了土壤有机碳芳香化程度。因此,南亚热带地区未来降水减少情境有可能降低红椎人工林的土壤有机碳的化学稳定性。

     

  • 图  1  红椎人工林对照(a)和穿透雨减少(b)样地现状

    Figure  1.  Status of control (a) and throughfall reduction plots (b) in C. hystrix plantations

    图  2  干季(a)和湿季(b)红椎人工林凋落物各组分量

    Figure  2.  Mass of litterfall components of C. hystrix plantations in dry season (a) and wet season (b)

    图  3  穿透雨减少对红椎人工林土壤细根生物量的影响

    不同小写字母表示湿季的减雨处理与对照的差异显著性(P < 0.05)。下同。Different small letters showed significant difference in wet season treatment group (P < 0.05). The same below.

    Figure  3.  Effect of throughfall reduction on the fine root biomass in C. hystrix plantations

    图  4  干季红椎人工林土壤有机碳化学组分(a)和指数(b)

    Figure  4.  Chemical composition (a) and index (b) of soil organic carbon in C. hystrix plantations in dry season

    图  5  湿季红椎人工林土壤有机碳化学组分(a)和指数(b)

    Figure  5.  Chemical composition (a) and index (b) of soil organic carbon in C. hystrix plantations in wet season

    图  6  土壤有机碳化学组分与植物、土壤和微生物指标相关性

    TL.凋落物总量;LT.凋落物枝;LL.凋落物叶片;OL.其他凋落物;LS.凋落物皮;LN.凋落物针叶;LF.凋落物果实;FR.细根;ST.土壤温度;SM.土壤湿度;SBD.土壤密度;AFP.通气孔隙度;C:N.土壤碳/氮;MBC.微生物量碳;MBN.微生物量氮;16S rRNAA.16S rRNA 基因丰度;ITSA. ITS 基因丰度。TL, total litter;LT, litter twig;LL, litter leaf;OL, other litter;LS, litter skin;LN, litter needle;LF, litter fruit;FR, fine root;ST, soil temperature;SM, soil moisture;SBD, soil bulk density; AFP, Air-filled porosity; C:N, soil C:N; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen, 16S rRNAA, 16S rRNA abundance; ITSA, ITS abundance.

    Figure  6.  Correlation of chemical components of soil organic carbon with plant, soil and microbial indices

    图  7  土壤有机碳化学组分与环境因子之间的冗余分析

    AC.烷基碳;OAC.氧烷基碳;ACC.芳香碳;CC.羰基碳。实线为土壤有机碳化学组分,虚线为环境因子。凋落物总量、凋落物果实、凋落物叶片、微生物量碳/氮对土壤有机碳4种碳化学组分有显著影响(P < 0.05)。AC, Alkyl C; OAC, O-alkyl C; ACC, Aromatic C; CC, Carbonyl C. The solid line is the chemical composition of soil organic carbon, the dotted line is the environmental factor. The total litter, litter fruit, litter leaf and microbial biomass carbon/nitrogen had significant effects on the four carbon chemical components of soil organic carbon (P < 0.05).

    Figure  7.  Redundancy analysis (RDA) between the chemical compositions of soil organic carbon and environmental variables

    图  8  土壤湿度、细根生物量与凋落物量和土壤微生物量碳的关系

    阴影部分代表95%置信区间。The shaded portion represents the 95% confidence interval.

    Figure  8.  Relationship between soil moisture, fine root biomass and litter mass, soil microbial biomass carbon

    表  1  土壤基本理化性质

    Table  1.   Soil basic physical and chemical properties

    组别
    Group
    土壤温度
    Soil temperature/℃
    土壤湿度
    Soil moisture/%
    土壤密度
    Soil bulk density/(g·cm−3
    通气孔隙度
    Air-filled porosity/%
    土壤pH
    Soil pH
    土壤有机碳
    soil organic carbon/(g·kg−1
    土壤碳氮比
    Soil C∶N
    干季
    Dry season
    对照
    Control
    18.47 ± 0.12 19.05 ± 0.41A 1.00 ± 0.04 5.82 ± 0.59 3.96 ± 0.02 3.97 ± 0.55 14.91 ± 0.83
    处理
    Treatment
    18.60 ± 0.31 13.82 ± 0.83B 1.01 ± 0.07 8.53 ± 0.58 3.96 ± 0.02 3.26 ± 0.49 13.08 ± 0.74
    湿季
    Wet season
    对照
    Control
    23.81 ± 0.09 31.31 ± 3.37 0.99 ± 0.03 5.10 ± 0.66 3.90 ± 0.04 4.49 ± 0.38 15.79 ± 2.01
    处理
    Treatment
    24.04 ± 0.21 27.57 ± 0.77 0.86 ± 0.03 6.50 ± 0.04 3.92 ± 0.04 3.65 ± 0.44 13.20 ± 0.63
    不同大写字母表示干季的减雨处理与对照的差异显著性(P < 0.05)。下同。Different capital letters showed significant difference in dry season treatment group (P < 0.05). The same below.
    下载: 导出CSV

    表  2  土壤微生物量和群落组成

    Table  2.   Soil microbial biomass and community

    季节
    Season
    组别
    Group
    MBC/(mg·kg−1)MBN/(mg·kg−1)土壤微生物量碳/氮
    MBC∶MBN
    16S rRNA基因丰度
    16S rRNA abundance/
    (107 copies·g−1)
    ITS基因丰度
    ITS abundance/
    (107 copies·g−1)
    干季 Dry season 对照 Control 695.44 ± 171.22 107.69 ± 31.81 6.65 ± 0.88 30.56 ± 4.03 4.43 ± 2.34
    处理 Treatment 596.74 ± 240.91 101.00 ± 28.64 5.35 ± 1.53 23.53 ± 4.47 5.83 ± 0.66
    湿季 Wet season 对照 Control 1 015.32 ± 204.54 118.03 ± 12.40 8.92 ± 2.07 37.24 ± 5.00 3.74 ± 0.65
    处理 Treatment 1037.75 ± 168.01 146.69 ± 16.31 7.10 ± 0.83 43.97 ± 5.78 3.24 ± 0.43
    MBC.微生物量碳;MBN.微生物量氮。MBC, microbial biomass carbon;MBN, microbial biomass nitrogen.
    下载: 导出CSV
  • [1] Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012, 3(1): 52−58. doi: 10.1038/nclimate1633
    [2] Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123−138. doi: 10.3354/cr00953
    [3] IPCC. Climate change 2021: The physical science basis. contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change[J]. Cambridge: Cambridge University Press, 2021.
    [4] Yu G, Chen Z, Piao S, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proceedings of the National Academy of Science, 2014, 111(13): 4910−4915. doi: 10.1073/pnas.1317065111
    [5] Yu G R, Zhu X J, Fu Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China[J]. Global Change Biology, 2013, 19(3): 798−810. doi: 10.1111/gcb.12079
    [6] Yu G R, Zheng Z M, Wang Q F, et al. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: the development of a geostatistical model and its simulation[J]. Environmental Science and Technology, 2010, 44(16): 6074−6080. doi: 10.1021/es100979s
    [7] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437−5448.

    Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448.
    [8] Crow S E, Lajtha K, Filley T R, et al. Sources of plant-derived carbon and stability of organic matter in soil: implications for global change[J]. Global Change Biology, 2009, 15(8): 2003−2019. doi: 10.1111/j.1365-2486.2009.01850.x
    [9] Margenot A J, Calderón F J, Bowles T M, et al. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields[J]. Soil Science Society of America Journal, 2015, 79(3): 772−782. doi: 10.2136/sssaj2015.02.0070
    [10] Lorenz K, Lal R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio[J]. Geoderma, 2007, 141(3−4): 294−301.
    [11] Baldock J A, Oades J M, Waters A G, et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J]. Biogeochemistry, 1992, 16(1): 1−42. doi: 10.1007/BF02402261
    [12] Lorenz K, Lal R, Preston C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules[J]. Geoderma, 2007, 142(1-2): 1−10. doi: 10.1016/j.geoderma.2007.07.013
    [13] Marco A D, Spaccini R, Vittozzi P, et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy[J]. Soil Biology and Biochemistry, 2012, 51: 1−15. doi: 10.1016/j.soilbio.2012.03.025
    [14] Chang J, Zhu J, Xu L, et al. Rational land-use types in the karst regions of China: Insights from soil organic matter composition and stability[J]. Catena, 2018, 160: 345−353. doi: 10.1016/j.catena.2017.09.029
    [15] Chen C R, Xu Z H, Mathers N J. Soil carbon pools in adjacent natural and plantation forests of subtropical Australia[J]. Soil Science Society of America Journal, 2004, 68(1): 282−291. doi: 10.2136/sssaj2004.2820
    [16] Huang Z, Xu Z, Chen C, et al. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia[J]. Forest Ecology and Management, 2008, 254(1): 46−55. doi: 10.1016/j.foreco.2007.07.021
    [17] Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 2002, 34(2): 139−162. doi: 10.1016/S0038-0717(01)00158-4
    [18] Zhu E, Liu T, Zhou L, et al. Leaching of organic carbon from grassland soils under anaerobiosis[J]. Soil Biology and Biochemistry, 2019, 141: 107684. doi: 10.1016/j.soilbio.2019.107684
    [19] Cusack D F, Halterman S M, Tanner E V J, et al. Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon[J]. Soil Biology and Biochemistry, 2018, 124: 199−209. doi: 10.1016/j.soilbio.2018.06.005
    [20] Deng L, Peng C, Kim D-G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems[J/OL]. Earth-Science Reviews, 2021, 214: 103501[2022.05.01]. doi: 10.1016/j.earscirev.2020.103501
    [21] Canarini A, Kiær L P, Dijkstra F A. Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 112: 90−99. doi: 10.1016/j.soilbio.2017.04.020
    [22] Su X, Su X L, Yang S, et al. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest[J/OL]. Science of the Total Environment, 2020, 736: 139568[2022.05.01]. doi: 10.1016/j.scitotenv.2020.139568
    [23] Su X I, Su X, Zhou G Y, et al. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest[J/OL]. Soil Biology and Biochemistry, 2020, 148: 107898[2022.05.01]. doi: 10.1016/j.soilbio.2020.107898
    [24] Olesinski J, Lavigne M B, Krasowski M J. Effects of soil moisture manipulations on fine root dynamics in a mature balsam fir (Abies balsamea L. Mill.) forest[J]. Tree Physiol, 2011, 31(3): 339−348. doi: 10.1093/treephys/tpr006
    [25] Moser G, Schuldt B, Hertel D, et al. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought[J]. Global Change Biology, 2014, 20(5): 1481−1497. doi: 10.1111/gcb.12424
    [26] 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055−1070. doi: 10.17521/cjpe.2018.0156

    Yin H J, Zhang Z L, Liu Q. Root exudates and their ecological consequences in forest ecosystems: Problems and perspective[J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1055−1070. doi: 10.17521/cjpe.2018.0156
    [27] Santonja M, Fernandez C, Gauquelin T, et al. Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions[J]. Plant and Soil, 2015, 393(1-2): 69−82. doi: 10.1007/s11104-015-2471-z
    [28] Hoover D L, Rogers B M. Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling[J]. Global Change Biology, 2016, 22(5): 1809−1820. doi: 10.1111/gcb.13161
    [29] Fest B, Hinko-Najera N, von Fischer J C, et al. Soil Methane Uptake Increases under Continuous Throughfall Reduction in a Temperate Evergreen, Broadleaved Eucalypt Forest[J]. Ecosystems, 2016, 20(2): 368−379. doi: 10.1007/s10021-016-0030-y
    [30] Ren C, Chen J, Lu X, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 2018, 116: 4−10. doi: 10.1016/j.soilbio.2017.09.028
    [31] Ren C, Zhao F, Shi Z, et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J]. Soil Biology and Biochemistry, 2017, 115: 1−10. doi: 10.1016/j.soilbio.2017.08.002
    [32] 卢立华, 贾宏炎, 农友, 等. 红椎经营模式对林木生长及乔木层碳储量的影响[J]. 东北林业大学学报, 2014, 42(12): 63−66,74. doi: 10.13759/j.cnki.dlxb.20141210.008

    Lu L H, Jia H Y, Nong Y, et al. Efects of stand management patterns of castanopsis hystrix on tree growth and carbon storage capacit[J]. Journal of Northeast Forestry Universit, 2014, 42(12): 63−66,74. doi: 10.13759/j.cnki.dlxb.20141210.008
    [33] 赵总, 贾宏炎, 蔡道雄, 等. 红椎天然更新及其影响因子研究[J]. 北京林业大学学报, 2018, 40(11): 76−83. doi: 10.13332/j.1000-1522.20180190

    Zhao Z, Jia H Y, Cai D X, et al. Natural regeneration aild its influencing factors of Castanopsis hystri[J]. Journal of Beijing Forestry University, 2018, 40(11): 76−83. doi: 10.13332/j.1000-1522.20180190
    [34] 杨予静, 刘世荣, 陈琳, 等. 模拟降雨减少对马尾松人工林凋落物量及其化学性质的短期影响[J]. 生态学报, 2018, 38(13): 4770−4778. doi: 10.5846/stxb201708021385

    Yang Y J, Liu S R, Chen L, et al. Short-term effects of manipulated throughfall reduction on the quantity and quality of litterfall in a Pinus massoniana plantation[J]. Acta Ecologica Sinica, 2018, 38(13): 4770−4778. doi: 10.5846/stxb201708021385
    [35] Eze S, Palmer S M, Chapman P J. Soil organic carbon stock and fractional distribution in upland grasslands[J]. Geoderma, 2018, 314: 175−183. doi: 10.1016/j.geoderma.2017.11.017
    [36] Stockmann U, Adams M A, Crawford J W, et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems and Environment, 2013, 164: 80−99. doi: 10.1016/j.agee.2012.10.001
    [37] Zhang Y, Yao S, Mao J, et al. Chemical composition of organic matter in a deep soil changed with a positive priming effect due to glucose addition as investigated by 13C NMR spectroscopy[J]. Soil Biology and Biochemistry, 2015, 85: 137−144. doi: 10.1016/j.soilbio.2015.03.013
    [38] Wang H, Liu S R, Song Z C, et al. Introducing nitrogen-fixing tree species and mixing with Pinus massoniana alters and evenly distributes various chemical compositions of soil organic carbon in a planted forest in southern China[J/OL]. Forest Ecology and Management, 2019, 449: 117477[2022.05.01]. doi: 10.1016/j.foreco.2019.117477
    [39] Schmidt M W I, Knicker H, Hatcher P G, et al. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid[J]. European Journul of Soil Science, 1997, 48: 319−329. doi: 10.1111/j.1365-2389.1997.tb00552.x
    [40] Solomon D, Lehmann J, Kinyangi J, et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems[J]. Global Change Biology, 2007, 13(2): 511−530. doi: 10.1111/j.1365-2486.2006.01304.x
    [41] Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837−842. doi: 10.1016/0038-0717(85)90144-0
    [42] Yakimov M M, La Cono V, Denaro R, et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L ’Atalante, Eastern Mediterranean Sea[J]. The ISME Journal, 2007, 1(8): 743−755. doi: 10.1038/ismej.2007.83
    [43] 杜琳垚, 刘千慧, 申璇璇, 等. 降雨减少对油松人工林凋落叶分解的影响[J]. 北京林业大学学报, 2020, 42(7): 68−76. doi: 10.12171/j.1000-1522.20190211

    Du L Y, Liu Q H, Sheng X X, et al. Effects of rainfall reduction on litter leaf decomposition of Pinus tabuliformis plantation[J]. Journal of Beijing Forestry University, 2020, 42(7): 68−76. doi: 10.12171/j.1000-1522.20190211
    [44] Nie X Q, Wang D, Yang L, et al. Storage and climatic controlling factors of litter standing crop carbon in the Shrublands of the Tibetan Plateau[J]. Forests, 2019, 10(11): 987. doi: 10.3390/f10110987
    [45] Wang H, Liu S R, Chang S X, et al. Soil microbial community composition rather than litter quality is linked with soil organic carbon chemical composition in plantations in subtropical China[J]. Journal of Soils and Sediments, 2015, 15(5): 1094−1103. doi: 10.1007/s11368-015-1118-2
    [46] Zhou X, Zhou L, Nie Y, et al. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis[J]. Agriculture, Ecosystems and Environment, 2016, 228: 70−81. doi: 10.1016/j.agee.2016.04.030
    [47] Li Y, Nie C, Liu Y, et al. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland[J]. Science of The Total Environment, 2019, 654: 264−274. doi: 10.1016/j.scitotenv.2018.11.031
    [48] Fu W, Chen B, Jansa J, et al. Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland[J]. Soil Biology and Biochemistry, 2022, 169: 108670[2022.05.01]. doi: 10.1016/j.soilbio.2022.108670
    [49] Xi N, Chen D, Bahn M, et al. Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems[J]. Science Advances, 2022, 8(18): eabn3368[2022.05.01]. doi: 10.1126/sciadv.abn3368
    [50] Chen X, Su Y, He X, et al. Comparative analysis of basidiomycetous laccase genes in forest soils reveals differences at the cDNA and DNA levels[J]. Plant and Soil, 2013, 366(1-2): 321−331. doi: 10.1007/s11104-012-1440-z
    [51] Baldrian P. Wood-inhabiting ligninolytic basidiomycetes in soils: Ecology and constraints for applicability in bioremediation[J]. Fungal Ecology, 2008, 1(1): 4−12. doi: 10.1016/j.funeco.2008.02.001
    [52] Hättenschwiler S, Tiunov A V, Scheu S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems[J]. Annual Review of Ecology Evolution and Systematics, 2005, 36(1): 191−218. doi: 10.1146/annurev.ecolsys.36.112904.151932
    [53] Martinez D, Challacombe J, Morgenstern I, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion[J]. Proceedings of the National Academy of Sciences, 2009, 106(6): 1954−1959. doi: 10.1073/pnas.0809575106
    [54] Yang Y J, Liu S R, Wang H, et al. Reduction in throughfall reduces soil aggregate stability in two subtropical plantations[J]. European Journal of Soil Science, 2018, 70(2): 301−310. doi: 10.1111/ejss.12734
    [55] Yang Y, Liu S, Schindlbacher A, et al. Topsoil organic carbon increases but its stability declines after five years of reduced throughfall[J]. Soil Biology and Biochemistry, 2021, 156: 108221[2022.05.01]. doi: 10.1016/j.soilbio.2021.108221
    [56] Wang H, Liu S R, Schindlbacher A, et al. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest[J]. Soil Biology and Biochemistry, 2019, 133: 155−164. doi: 10.1016/j.soilbio.2019.03.004
    [57] Sun S Q, Wu Y H, Zhang J, et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353: 283−292. doi: 10.1016/j.geoderma.2019.07.023
    [58] Li F, Peng Y, Chen L, et al. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem[J]. Functional Ecology, 2020, 34(4): 911−922. doi: 10.1111/1365-2435.13489
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  11
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-06-11
  • 网络出版日期:  2022-06-25

目录

    /

    返回文章
    返回