高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北针叶林与阔叶林乔灌草组成特征及碳汇功能对比研究

王文杰 王凯 王媛媛 温慧 于景华 王庆贵 韩士杰

王文杰, 王凯, 王媛媛, 温慧, 于景华, 王庆贵, 韩士杰. 东北针叶林与阔叶林乔灌草组成特征及碳汇功能对比研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220202
引用本文: 王文杰, 王凯, 王媛媛, 温慧, 于景华, 王庆贵, 韩士杰. 东北针叶林与阔叶林乔灌草组成特征及碳汇功能对比研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220202
Wang Wenjie, Wang Kai, Wang Yuanyuan, Wen Hui, Yu Jinghua, Wang Qinggui, Han Shijie. Comparative study on tree, shrub and herbs composition and carbon sink function between coniferous and broadleaved forests in Northeast China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220202
Citation: Wang Wenjie, Wang Kai, Wang Yuanyuan, Wen Hui, Yu Jinghua, Wang Qinggui, Han Shijie. Comparative study on tree, shrub and herbs composition and carbon sink function between coniferous and broadleaved forests in Northeast China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220202

东北针叶林与阔叶林乔灌草组成特征及碳汇功能对比研究

doi: 10.12171/j.1000-1522.20220202
基金项目: 国家自然基金重点项目(41730641),中央高校项目(2572021DT03)
详细信息
    作者简介:

    王文杰,教授,博士生导师。主要研究方向:植物生态学 Email:wjwang225@hotmail.com 地址:100054黑龙江省哈尔滨市香坊区东北林业大学化学化工与资源利用学院

Comparative study on tree, shrub and herbs composition and carbon sink function between coniferous and broadleaved forests in Northeast China

  • 摘要:   目的  针叶林和阔叶林构成了北半球高纬度地区森林的主体,科学区分二者林分特征和碳汇功能差异预期助力基于林型差异的精准林分管理和多样性保护。  方法  本文以东北大、小兴安岭地区森林为研究对象,共调查野外1 275块乔木样地(针叶林698块,阔叶林577块),详细记录植物科、属、种、乔灌草植株大小与密度、地理位置(经纬度、海拔、坡向、坡位、坡度),计算优势种相对多度、多样性特征、地上碳储量,并以树种耐逆境特征与耐分解特征为基础,评价生物量碳汇功能的稳定性。  结果  (1)针叶林共有植物479种,隶属于79科228属,阔叶林共有植物546种,隶属于81科,255属。针、阔叶林乔、灌、草优势种变化明显,以乔木种类差异最大:针叶林以落叶松、红松、樟子松更多,而阔叶林以白桦、山杨和蒙古栎等多度更高。针叶林灌木以越橘和绣线菊为主,较阔叶林高1.6 ~ 2.3倍。整体来看乔木多达90%指标针阔叶林差异显著,而灌木为65%,草本为35%。(2)针叶林树更高更粗,较阔叶林高1.5 m、胸径粗2.4 cm,但密度较阔叶林低15%;灌木高度与盖度林分间差异不明显,针叶林草本植物高度较矮、但密度更高。(3)针叶林的碳储量、耐分解稳定性显著高于阔叶林,分别高25.54%和43.24%,但环境稳定较阔叶林低8%(P < 0.05)。相比阔叶林,禾本科在针叶林重要性从7.5%增加10.2%。相比而言,同期林业普查碳储量数据可能低估林分生物量碳密度35%左右。(4)与历史数据相比,针、阔叶林乔木高度均降低数米,林分密度高700 ~ 1 000 株/hm2,重要林下资源植物减少明显,保守估计森林层厚度年降低量10 cm以上,生态服务功能损失值得警惕。(5)与邻国俄罗斯相比,我国森林珍贵的常绿松类、云杉和冷杉树种占比很低,而落叶松和杨桦占比过大,生物量碳储量与俄罗斯最低质量森林相当。  结论  本研究基于大量野外样方调查对东北森林带核心区域针、阔叶林乔灌草植物组成、个体大小与碳汇功能的差异进行了细致刻画,并与历史数据和邻国俄罗斯数据进行了比较。相关结果为东北地区的森林管理提供了基础数据,建议深入开展林分树种组成变化的长期生态学意义与生态风险管控研究,加强基于林分差异的精准管理,并继续加强保护力度,提升生态服务功能,助力国家双碳目标实现。

     

  • 图  1  本研究调查的针、阔叶林实测样地分布图

    Figure  1.  Geographical location of the coniferous and broad-leaved forest plots used in this paper

    2  针叶林与阔叶林乔灌草物种组成对比分析

    饼图中标出乔灌草层重要值排名前5的科、属、种重要值占比,数字上等于某科、属、种重要值/所有科属种的重要值之和。In the pie chart, the names of the top five families, genera, and species in the important values of tree, shrub, and grass layer are highlighted with their relative importance values, as the ratio of the importance value of a specific family, genus and species to their total sum for all.

    2.  Comparative analysis of tree, shrub, and grass species composition in coniferous and broadleaved forests

    图  3  针、阔叶林碳储量Cabg、耐分解稳定性RS和环境稳定性ES的空间分布差异

    Figure  3.  Distribution of carbon storage density Cabg, carbon recalcitrant stability RS, and environmental stability ES in coniferous and broadleaved forests

    图  4  针、阔叶林碳储量Cabg、耐分解稳定性RS和环境稳定性ES频率分布图差异

    左侧为针叶林;右侧为阔叶林。Left: coniferous forests; Right: broadleaf forests.

    Figure  4.  Frequency distribution of biomass carbon storage density Cabg, carbon recalcitrant stability RS, and environmental stability EF

    表  1  本文使用的树木异速生长方程

    Table  1.   The allometry equations of trees used in this paper

    树种
    Species
    干的生物量
    Steam biomass (Ws)
    枝的生物量
    Branch biomass (Wb)
    叶的生物量
    Foliage biomass (Wl)
    白桦 Betula platyphylla 0.119 3(D2H)0.837 2 0.002(D2H)1.12 0.000 015(D2H)1.47
    臭冷杉 Abies nephrolepis 0.028 6(D2H)0.975 6 0.021 3(D2H)0.716 5 0.007 8(D2H)0.670 1
    春榆 Ulmus davidiana var. japonica 0.0314 6(D2H)1.032 0.007 429D2.674 5 0.002 754D2.496 5
    椴树 Tilia tuan 0.012 75(D2H)1.009 0.008 24(D2H)0.975 0.000 24(D2H)0.991
    枫桦 Betula costata 0.079 36(D2H)0.901 0.014 167(D2H)0.764 0.010 86(D2H)0.847
    黑桦 Betula dahurica 0.141 14(D2H)0.723 0.007 24(D2H)1.0225 0.007 9(D2H)0.808 5
    红松 Pinus koraiensis 0.014 5(D2H)1.006 0.000 063(D2H)1.536 0.001 04(D2H) 1.148
    胡桃楸 Juglans mandshurica 0.025 11(D2H)0.927 0.009 57(D2H) 0.974 0.872 5(D2H) 0.203 4
    黄檗 Phellodendron amurense 0.228 6(D2H)0.693 8 0.024 7(D2H) 0.737 8 0.010 8(D2H) 0.818 1
    裂叶榆 Ulmus laciniata 0.031 46(D2H)1.032 0.007 429D2.674 5 0.002 754D2.496 5
    落叶松 Larix gmelinii 0.028 6(D2H)0.975 6 0.021 3(D2H)0.716 5 0.007 8(D2H)0.670 1
    蒙古栎 Quercus mongolica 0.031 41(D2H)0.733 0.002 127D2.950 4 0.003 21D2.473 5
    山槐 Albizia kalkora 0.069D0.254 0.068D1.89 0.001 5D3.26
    山杨 Pobulus davidiana 0.228 6(D2H)0.693 8 0.024 7(D2H)0.737 8 0.010 8(D2H)0.818 1
    水曲柳 Fraxinus mandschurica 0.060 13(D2H)0.891 0.006 52(D2H)1.169 0.004 4(D2H)0.991 9
    香杨 Populus koreana 0.228 6(D2H)0.693 8 0.024 7(D2H)0.737 8 0.010 8(D2H)0.818 1
    云杉 Picea asperata 0.057D2.475 3 0.011 6D2.405 4 0.008 3D2.373 3
    樟子松 Pinus sylvestris var. sylvestris 0.013 4(D2H)1.020 0.010 5(D2H)0.738 6 0.181D1.841 5
    紫椴 Tilia amurensis 0.012 75(D2H)1.009 0.008 24(D2H)0.975 0.000 24(D2H)0.991
    其他树种 Other species 0.0396(D2H)0.933 0.0055(D2H)1.027 (Ws + Wbr)/23.8 + 0.033 3(Ws + Wbr)
    注:引自文献[15-19]。Note: cited from [15-19].
    下载: 导出CSV

    表  2  乔木层优势科、属、种相对多度针叶林和阔叶林对比分析

    Table  2.   Comparison of the relative abundance of dominant family, genus, and species in the tree layer between coniferous and broadleaf forests

    项目
    Item
    名称
    Name
    多度 Abundance/%显著性 Sig.增加率 Increase rate/%
    针叶林 CF阔叶林 BF

    Family
    松科 Pinaceae 50.05 27.32 < 0.01 83.18
    桦木科 Betulaceae 26.76 33.57 < 0.01 −20.28
    壳斗科 Fagaceae 8.11 15.39 < 0.01 −47.29
    杨柳科 Salicaceae 5.21 10.26 < 0.01 −49.25
    无患子科 Sapindaceae 3.70 3.61 0.86 2.48

    Genus
    落叶松属 Larix 41.70 10.30 < 0.01 3.04
    桦木属 Betula 21.50 36.70 < 0.01 −41.42
    松属 Pinus 8.80 4.30 < 0.01 1.05
    栎属 Quercus 5.70 18.50 < 0.01 −69.19
    杨属 Populus 3.20 10.40 < 0.01 −69.23

    Species
    落叶松 Larix gmelinii 44.80 6.30 < 0.01 6.11
    白桦 Betula platyphylla 15.60 33.30 < 0.01 −53.15
    红松 Pinus koraiensis 6.20 1.60 < 0.01 2.88
    蒙古栎 Quercus mongolica 5.30 19 < 0.01 −72.11
    臭冷杉 Abies nephrolepis 3.50 1.90 < 0.01 84.21%
    红皮云杉 Picea koraiensis 3.40 1.10 < 0.01 2.09
    樟子松 Pinus sylvestris var. mongolica 3.40 0.80 < 0.01 3.25
    水曲柳 Fraxinus mandshurica 1.80 2.10 0.6 −14.29%
    黑桦 Betula dahurica 1.60 5.10 < 0.01 −68.63%
    山杨 Populus davidiana 1.30 12.20 < 0.01 −89.34%
    注:增加率 = (针叶林均值 − 阔叶林均值)/阔叶林均值。粗体表示两林分间差异达到统计学显著。下同。Notes: increase rate = (CF − BF)/BF. Bold font mean significant differences between two forests. The below is the same.
    下载: 导出CSV

    表  3  灌木层优势科、属、种相对多度针叶林和阔叶林对比分析

    Table  3.   Comparison of the relative abundance of dominant family, genus, and species in the shrub layer between coniferous and broadleaf forests

    项目
    Item
    名称
    Name
    多度 Abundance/%显著性
    Sig
    增加率
    Increased rate/%
    针叶林 CF阔叶林
    BF

    Family
    蔷薇科 Rosaceae 31.75 25.38 < 0.05 25.13
    桦木科 Betulaceae 25.69 33.02 < 0.01 −22.22
    杜鹃花科 Ericaceae 21.14 10.27 < 0.01 1.06
    忍冬科 Caprifoliaceae 6.40 8.77 0.084 −27.09
    豆科 Fabaceae 3.64 7.04 < 0.05 −48.32

    Genus
    绣线菊属 Spiraea 22.93 16.73 < 0.01 37.07
    榛属 Corylus 22.18 32.16 < 0.01 −31.02
    越橘属 Vaccinium 18.04 7.96 < 0.01 1.27
    忍冬属 Lonicera 6.76 9.64 0.05 −29.83
    蔷薇属 Vaccinium 5.05 5.30 < 0.01 −4.70

    Species
    榛子 Corylus eterophylla 21.56 29.35 < 0.01 −26.56
    绣线菊 Spiraea salicifolia 17.44 10.80 < 0.01 61.47
    越橘 Vaccinium itis-idaea 15.40 6.56 < 0.01 1.35
    金花忍冬 Lonicera hrysantha 5.51 8.46 < 0.05 −34.90
    珍珠梅 Sorbaria orbifolia 5.04 4.46 0.6 13.02
    山刺玫 Rosa avurica 4.79 4.84 0.96 −1.06
    柴桦 Betula fruticosa 3.85 2.21 0.14 74.13
    胡枝子 Lespedeza icolor 3.74 7.06 < 0.05 −47.04
    刺五加 Eleutherococcus enticosus 3.42 5.69 < 0.05 −39.93
    兴安杜鹃 Rhododendron auricum 2.58 2.27 0.73 13.57
    下载: 导出CSV

    表  4  草本层优势科、属、种相对多度针叶林和阔叶林对比分析

    Table  4.   Comparison of the relative abundance of dominant family, genus, and species in the herb layer between coniferous and broadleaf forests

    项目
    Item
    名称
    Name
    多度 Abundance/%显著性
    Sig
    增加率
    Increase rate/%
    针叶林
    CF
    阔叶林
    BF

    Family
    莎草科 Cyperaceae 20.08 19.24 0.64 4.32
    禾本科 Poaceae 14.96 11.95 < 0.01 25.12
    蔷薇科 Rosaceae 8.12 7.58 0.42 7.12
    天门冬科 Asparagaceae 6.60 6.32 0.65 4.34
    菊科 Asteraceae 5.73 4.59 < 0.01 24.78

    Genus
    薹草属 Caldesia 25.43 29.04 < 0.05 −12.44
    野青茅属 Filipendula 14.94 11.90 < 0.05 25.55
    木贼属 Sanguisorba 5.37 5.69 0.72 −5.60
    蚊子草属 Vicia 4.42 3.76 0.25 17.61
    拉拉藤属 Pyrola 2.31 3.11 < 0.05 −25.78

    Species
    小叶章 Deyeuxia purpurea 14.52 11.97 0.09 21.30
    皱果薹草 Carex dispalata 11.75 18.05 < 0.01 −34.92
    羊须草 Carex callitrichos 5.14 3.03 < 0.05 69.69
    蚊子草 Filipendula palmata 4.28 3.73 0.34 14.67
    舞鹤草 Maianthemum bifolium 3.36 3.40 0.92 −1.33
    林木贼 Equisetum sylvaticum 2.57 3.23 0.26 −20.50
    地榆 Sanguisorba officinalis 1.76 1.29 0.11 36.35
    铃兰 Convallaria majalis 1.60 1.79 0.49 −11.05
    Pteridium aquilinum var. latiusculum 1.42 1.51 0.78 −5.95
    唐松草 Thalictrum aquilegiifolium var. sibiricum 0.98 1.02 0.82 −3.97
    下载: 导出CSV

    表  5  针、阔叶林森林群落特征均值比较

    Table  5.   Comparison of mean values of forest community characteristics between coniferous forests and broadleaf forests


    Layer
    结构特征
    Forest structure
    单位
    Units
    针叶林
    CF
    阔叶林
    BF
    增加率
    Increase rate/%
    乔木层
    Tree layer
    平均密度 Mean density 棵/m2 0.17(0.01)a 0.20(0.01)b −15.0
    平均高 Mean Height m 11.48(0.17)a 10.01(0.19)b 14.7
    平均胸径 Mean DBH cm 14.4(0.33)a 13.06(0.3)b 10.3
    灌木层
    Shrub layer
    平均高 Mean height m 0.46(0.03)a 0.50(0.02)a −8.0
    平均盖度 Mean coverage % 0.39(0.34)a 0.43(0.33)a −9.3
    草本层
    Herb layer
    平均高 Mean height m 0.24(0.01)a 0.28(0.01)b −14.3
    平均盖度 Mean coverage % 0.11(0.01)a 0.07(0.01)b 57.1
    注:数据表示为(平均值 ± 标准误)。同一行不同小写字母表示差异显著(P < 0.05),相同字母表示差异不显著(P > 0.05)。Notes: ata expressed (mean ± standard deviation). Different lowercase letters on the same line indicate a significant difference (P < 0.05), and the same letters indicate an insignificant difference (P > 0.05).
    下载: 导出CSV

    表  6  针、阔叶林碳储量和碳汇稳定性对比

    Table  6.   Aboveground carbon storage density and stability comparison of coniferous and broadleaved forests

    项目
    Item
    针叶林
    CF
    阔叶林
    BF
    显著性
    Sig.
    增加率
    Increase rate/%
    碳密度/(Mg·hm−2Cabg/(Mg·ha−1 64.40 51.30 < 0.01 25.54
    耐分解稳定性(RS) 0.53 0.37 < 0.01 43.24
    环境稳定性(ES) 0.41 0.44 < 0.01 −6.82
    下载: 导出CSV

    表  7  基于研究区域历史资料与本次研究的乔灌草植物组成与多度比较

    Table  7.   Comparison of species composition and abundance based on historical information and this studies in the studied regions

    地点
    Site
    生活型
    Biotype
    本研究
    This research
    历史研究
    History research
    针叶林 CF 乔木 Tree 落叶松(45%)、白桦(20%) 落叶松 (1950年近90%,1987年66%,2003年48%),红松(15%−50%, 1960—1980)
    灌木 Shrub 越橘、榛、兴安杜鹃、绣线菊、山刺梅、金花忍冬 越橘、笃斯越橘、兴安杜鹃、小檗等
    草本 Herb 小叶章、皱果薹草、地榆、舞鹤草、蚊子草、羊须草 红花鹿蹄草、羊草、七瓣莲、舞鹤草、北极花、小斑叶兰等
    阔叶林 BF 乔木 Tree 落叶松 (22%),白桦 (22%),红松 (6%) 蒙古栎 (20%),白桦 (1956年12.6%,2003年36%)
    灌木 Shrub 绣线菊、榛、金花忍冬、胡枝子、珍珠梅 毛榛子、东北山梅花、黄花忍冬、刺五加等
    草本 Herb 小叶章、蚊子草、皱果薹草、林木贼、舞鹤草 羊胡子苔草、乌苏里苔草、林问荆
    注:历史资料[24-26-31-33],主要来自于研究区域大兴安岭和小兴安岭历史数据。Notes: historical data was mainly from researches published in history.
    下载: 导出CSV

    表  8  针、阔叶林森林树高、胸径、灌木高和草本高度的历史和现状数据比较

    Table  8.   Comparison of historical and current data on tree height, diameter at breast height, shrub height, and herbaceous height in coniferous and broadleaved forests

    项目
    Item
    现在数据 Toda data历史数据 History
    针叶林 CF降低速率/(cm·a−1
    Declining rate/(cm·year−1
    阔叶林 BF降低速率/(cm·a−1
    Declining rate/(cm·year−1
    树高 tree height/m 11.48 −18.98 10.01 −21.75 22.60 ~ 20.50
    年代 Year 2018 2018 1965
    胸径 DBH/cm 14.4 −2.57 13.06 −2.83 23.10 ~ 31.90
    年代 Year 2018 2018 1967
    灌木高 Shrub height/m 0.46 −0.34 0.5 −0.28 0.80 ~ 0.50
    年代 Year 2018 2018 1960
    草本高 Herb height/m 0.24 −0.69 0.28 −0.63 0.35 ~ 0.94
    年代Year 2018 2018 1959
    注:括号中的数据是数据测量的平均年份;降低速度 = (历史数据 − 本研究数据)/2018年 − 历史数据年限[22-28-33-40]。Notes: Data in parentheses were average years of data measurement; declining rate = (historical data − data for this study)/(2018 − historical years).
    下载: 导出CSV
  • [1] Marshall J D, Waring R H. Conifers and Broadleaf species: stomatal sensitivity differs in western Oregon[J]. Canadian Journal of Forest Research, 1984, 14(6): 905−908. doi: 10.1139/x84-161
    [2] 周以良, 中国东北植被地理[M]. 北京: 科学出版社, 1997.

    Zhou Y L, Vegetation geography of northeast China[M]. Beijing: Science Press, 1997.
    [3] Liu C, Xiang W H, Lei P F, et al. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient[J]. Plant and Soil, 2013, 376(1-2): 445−459.
    [4] Chen Z, Zhang X, He X, et al. Extension of summer (June–August) temperature records for northern Inner Mongolia (1715–2008), China using tree rings[J]. Quaternary International, 2013, 283: 21−29. doi: 10.1016/j.quaint.2012.07.005
    [5] Sheng H, Cai T. Influence of rainfall on canopy interception in mixed broad-leaved—Korean pine forest in Xiaoxing’an Mountains, Northeastern China[J]. Forests, 2019, 10(3): 248.
    [6] 王玉庆. 生物多样性保护和国际合作[J]. 世界环境, 1998(3): 3−9.

    Wang Y Q. Biodiversity conservation and international cooperation[J]. World Environment, 1998(3): 3−9.
    [7] 王献溥. 国际生物多样性保护战略研究计划的主要内容和预期成果[J]. 农村生态环境, 1991(2): 6−8.

    Wang X B. The main contents and desired products of international biodiversity conservation strategy programme[J]. Rural Eco-environment, 1991(2): 6−8.
    [8] 杨云博. 林业有害生物防治现状及对策探讨[J]. 南方农业, 2018, 12(33): 66−67. doi: 10.19415/j.cnki.1673-890x.2021.05.056

    Yang Y B. Forestry pest control status and countermeasures discussion[J]. South China Agriculture, 2018, 12(33): 66−67. doi: 10.19415/j.cnki.1673-890x.2021.05.056
    [9] 钱小瑜. 中国林业资源及非木纤维供给分析[J]. 中华纸业, 2014, 35(9): 23−27. doi: 10.3969/j.issn.1007-9211.2014.09.006

    Qian X Y. Analysis of forestry resources and non-wood fiber supply in China[J]. China Pulp & Paper Industry, 2014, 35(9): 23−27. doi: 10.3969/j.issn.1007-9211.2014.09.006
    [10] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the World’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
    [11] King A W, Hayes D J, Huntzinger D N, et al. North American carbon dioxide sources and sinks: magnitude, attribution, and uncertainty[J]. Frontiers in Ecology and the Environment, 2012, 10(10): 512−519. doi: 10.1890/120066
    [12] Smriti M. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586: 482−484. doi: 10.1038/d41586-020-02927-9
    [13] Wang Y L, Wang X H, Wang K, et al. The size of the land carbon sink in China[J]. Nature, 2022, 603: 1−3.
    [14] Wang Y, Yu J, Xiao L, et al. Dominant species abundance, vertical structure and plant diversity response to Nature Forest Protection in Northeastern China: conservation effects and implications[J]. Forests, 2020, 11(3): 295. doi: 10.3390/f11030295
    [15] 造林项目碳汇计量监测指南[M]. 北京: 中国林业出版社, 2014.

    Guidelines for measuring and monitoring carbon sinks in afforestation projects[M]. Beijing: China Forestry Publishing House, 2014.
    [16] 王洪岩, 王文杰, 邱岭, 等. 兴安落叶松林生物量、地表枯落物量及土壤 有机碳储量随林分生长的变化差[J]. 生态学报, 2012, 32(3): 833−843. doi: 10.5846/stxb201108311276

    Wang H, Wang W, Qiu L, et al. Differences in biomass, litter layer mass and SOC storage changing with tree growth in Larix gmelinii plantations in Northeast China[J]. Acta Ecologica Sinica, 2012, 32(3): 833−843. doi: 10.5846/stxb201108311276
    [17] 刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5): 733−740. doi: 10.3321/j.issn:1000-0933.2000.05.004

    Liu G H, Fu B J, Fang J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecologia Sinica, 2000, 20(5): 733−740. doi: 10.3321/j.issn:1000-0933.2000.05.004
    [18] 范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4): 402−410. doi: 10.3724/SP.J.1258.2011.00402

    Fan W Y, Zhang H Y, Yu Ying, et al. Comparison of three models of forest biomass estimation[J]. Chinese Journal of Plant Ecology, 2011, 35(4): 402−410. doi: 10.3724/SP.J.1258.2011.00402
    [19] Liu C, Li X. Carbon storage and sequestration by urban forests in Shenyang, China[J]. Urban Forestry & Urban Greening, 2012, 11(2): 121−128.
    [20] 王媛媛. 大小兴安岭森林植物组成与生物量碳汇功能耦合机制解析[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2021.

    Wang Y Y. Coupling associations between plant species composition traits and biomass carbon sink function and mechanism of forests in the Greater and Lesser Khingan Mountains[D]. Changchun: University of Chinese Academy of Sciences(Northeast Institute of Geography and Agroecology Chinese Academy of Sciences), 2021.
    [21] 傅沛云, 李冀云, 东北植物检索表, 2版[M]. 北京: 科学出版社, 1995.

    Fu P Y, Li J Y, Northeast plant retrieval table, 2 version[M]. Beijing: Science Press, 1995.
    [22] 周以良. 中国小兴安岭植被[M]. 北京: 科学出版社, 1994.

    Zhou Y L. Vegetation of the lesser hinggan mountains, China[M]. Beijing: Science Press, 1994.
    [23] 关文彬, 陈铁, 董亚杰, 等. 东北地区植被多样性的研究Ⅰ. 寒温带 针叶林区域垂直植被多样性分析[J]. 应用生态学报, 1997, 8(5): 465−470. doi: 10.3321/j.issn:1001-9332.1997.05.004

    Guan W B, Chen T, Dong Y J, et al. Vegetation diversity in northeastern ChinaⅠ. Diversity of vertical vegetation composition in cold temperate coniferous forest region[J]. Chinese Journal of Applied Ecology, 1997, 8(5): 465−470. doi: 10.3321/j.issn:1001-9332.1997.05.004
    [24] 徐化成, 李湛东, 邱扬. 大兴安岭北部地区原始林火干扰历史的研究[J]. 生态学报, 1997, 17(4): 337−343. doi: 10.3321/j.issn:1000-0933.1997.04.001

    Xu H C, Li Z D, Qiu Y. Fire disturbance history in virgin forest in northern region of Daxinganling Mountains[J]. Acta Ecologica Sinica, 1997, 17(4): 337−343. doi: 10.3321/j.issn:1000-0933.1997.04.001
    [25] 陈瑞晶, 明海军, 王君女. 内蒙古大兴安岭林区森林结构特征分析[J]. 内蒙古林业调查设计, 2008, 31(1): 56−58. doi: 10.3969/j.issn.1006-6993.2008.01.025

    Chen R J, Ming H J, Wang J N. Characterization of forest structure in the Greater Khingan Mountains forest area of Inner Mongolia[J]. Inner Mongolia Forestry Investigation and Design, 2008, 31(1): 56−58. doi: 10.3969/j.issn.1006-6993.2008.01.025
    [26] 刘恒丰. 三十多年来大兴安岭林区森林资源的变化[J]. 林业资源管理, 1990(1): 20−26.

    Liu H F. Changes of forest resources in daxing’anling forest area in the past thirty years[J]. Forest Resources Management, 1990(1): 20−26.
    [27] Yuan Z, Ali A, Sanaei A, et al. Few large trees, rather than plant diversity and composition, drive the aboveground biomass stock and dynamics of temperate forests in northeast China[J/OL]. Forest Ecology and Management, 2021, 481: 118698 [2022-04-15]. https://doi.org/10.1016/j.foreco.2020.118698.
    [28] 周以良. 中国大兴安岭植被[M]. 北京: 科学出版社, 1991.

    Zhou Y L. Vegetation of the Great Hinggan Mountains, China[M]. Beijing: Science Press, 1991.
    [29] 聂绍荃. 东北森林的药用植物[J]. 国土与自然资源研究, 1980(2): 30−35. doi: 10.16202/j.cnki.tnrs.1980.02.005

    Nie S Q. Medicinal plants of the northeast forest[J]. Territory & Natural Resources Study, 1980(2): 30−35. doi: 10.16202/j.cnki.tnrs.1980.02.005
    [30] Gavrikov V L, Sharafutdinov R A, Knorre A A, et al. How much carbon can the Siberian boreal taiga store: a case study of partitioning among the aboveground and soil pools[J]. Journal of Forestry Research, 2016, 27(4): 907−912. doi: 10.1007/s11676-015-0189-7
    [31] 魏绍成, 王秋月, 刘显芝, 等. 大兴安岭中段东西两侧植被的分异性[J]. 草业学报, 1994, 3(2): 12−19.

    Wei S C, Wang Q Y, Liu X Z, et al. The different characteristic of vegetation in both east and west of Great Xing an mountains middle section[J]. Acta Prataculturae Sinica, 1994, 3(2): 12−19.
    [32] 孙明学. 大兴安岭森林植物[M]. 哈尔滨: 东北林业大学出版社, 2006.

    Sun M X. Forest plants of Daxing’anling[M]. Harbin: Northeast Forestry University Press, 2006.
    [33] Wang Y, Wen H, Wang K, et al. Forest plant and macrofungal differences in the Greater and Lesser Khingan Mountains in Northeast China: a regional-historical comparison and its implications[J]. Journal of Forestry Research, 2022, 32(2): 623−641.
    [34] 李文华. 小兴安岭南坡落叶松林群落结构的研究[J]. 北京林学院学报, 1982, 3: 42−51.

    Li W H. Study on the community structure of larch forest in the south slope of Xiaoxing’an mountains[J]. Journal of Beijing Forestry Colleage, 1982, 3: 42−51.
    [35] 宋平, 刘志. 大兴安岭森林植物资源及其开发利用研究[J]. 内蒙古林业调查设计, 1995, 4(27): 24−27.

    Song P. Research on forest plant resources and their development and utilization in Daxing’an mountains[J]. Inner Mongolia Forestry Investigation and Design, 1995, 4(27): 24−27.
    [36] 王震三, 鄭福寬, 石鏃, 等. 草河口林區紅松人工林的初步調查[J]. 林业科学, 1959(3): 12−22.

    Wang Z S, Zheng F K, Shi Z, et al. Preliminary investigation of pinus bungeana plantation in Caohekou Forest Region[J]. Scientia Silvae Sinicae, 1959(3): 12−22.
    [37] 章瑞炽. 大兴安岭干旱阳坡栽植樟子松初步见效[J]. 林业实用技术, 1965(13): 11.

    Zhang R Z. Pinus camphorae planted on the arid sunny slopes of Daxing ’anling has a preliminary efect[J]. Practice Forestry Technology, 1965(13): 11.
    [38] 赵惠勋, 王义弘, 李俊清, 等. 塔河林业局天然落叶松林年龄结构、水平格局及经营[J]. 东北林业大学学报, 1987, 15: 60−64.

    Zhao H X, Wang Y H, Li J Q, et al. Age structure, horizontal pattern and management of Natural Larch Forest in Tahe Forestry Bureau[J]. Journal of Northeast Forestry University, 1987, 15: 60−64.
    [39] 周以良, 李景文. 中国东北东部山地主要植被类型的特征及其分布规律[J]. 植物生态学与地植物学丛刊, 1964, 2(2): 190−205.

    Zhou Y L, Li J W. The characteristics and distribution of the main vegetation types in the eastern mountainous areas of Northeast China[J]. China Journal Plant Ecology, 1964, 2(2): 190−205.
    [40] 周以良, 赵光仪. 小兴安岭—长白山林区天然次. 林的类型、分布及其演替规律[J]. 东北林学院学报, 1964, 2(2): 2.

    Zhou Y L, Zhao G Y. The type, distribution and succession of natural secondary forest in Changbai Mountain forest area: Xiaoxinganling Mountains[J]. Journal of Northeast Forestray University, 1964, 2(2): 2.
    [41] 张春华, 王莉媛, 宋茜薇, 等. 1973—2013 年黑龙江省森林碳储量及其动态变化[J]. 中国环境科学, 2018, 38(12): 4678−4686. doi: 10.3969/j.issn.1000-6923.2018.12.036

    Zhang C H, Wang L Y, Song Q W, et al. Biomass carbon stocks and dynamics of forests in Heilongjiang Province from 1973 to 2013[J]. China Environmental Science, 2018, 38(12): 4678−4686. doi: 10.3969/j.issn.1000-6923.2018.12.036
    [42] Wang W, Zhou W, Wang H, et al. Organic carbon and nitrogen dynamics in different soil fractions between broad-leaved Korean pine forests and aspen-birch forests in northeastern China[J]. Journal of Soils & Sediments, 2017(17): 2257−2273.
    [43] Wei C, Wang Q, Ren M, et al. Soil aggregation accounts for the mineral soil organic carbon and nitrogen accrual in broadleaved forests as compared to that of coniferous forests in Northeast China: Cross‐sites and multiple species comparisons[J]. Land Degradation & Development, 2021, 32(1): 296−309.
    [44] Wei C, Xiao L, Shen G, et al. Effects of tree species on mineral soil C, N, and P, litter and root chemical compositions: cross-sites comparisons and their relationship decoupling in Northeast China[J]. Trees, 2021, 35(6): 1971−1992. doi: 10.1007/s00468-021-02166-z
    [45] Baltzer J L, Day N J, Walker X J, et al. Increasing fire and the decline of fire adapted black spruce in the boreal forest[J/OL]. Proceedings of the National Academy of Sciences, 2021, 118 (45): 2024872118[2022-03-19]. https://www.pnas.org/doi/10.1073/pnas.2024872118.
    [46] Fewster R E, Morris P J, Ivanovic R F, et al. Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia[J]. Nature Climate Change, 2022, 12(4): 373−379. doi: 10.1038/s41558-022-01296-7
    [47] Li Q, Du Y, Liu Y, et al. Canopy gaps improve landscape aesthetic service by promoting autumn color-leaved tree species diversity and color-leaved patch properties in subalpine forests of southwestern China[J]. Forests, 2021, 12(2): 199. doi: 10.3390/f12020199
    [48] Johnston L M, Wang X, Erni S, et al. Wildland fire risk research in Canada[J]. Environmental Reviews, 2020, 28(2): 164−186. doi: 10.1139/er-2019-0046
    [49] Tymstra C, Stocks B J, Cai X, et al. Wildfire management in Canada: review, challenges and opportunities[J/OL]. Progress in Disaster Science, 2020, 5 [2022-03-17]. https://doi.org/10.1016/j.pdisas.2019.100045.
    [50] Miller C, Urban D L. Modeling the effects of fire management alternatives on Sierra Nevada mixed-conifer forests[J]. Ecological Applications, 2000, 10(1): 85−94. doi: 10.1890/1051-0761(2000)010[0085:MTEOFM]2.0.CO;2
    [51] 肖化顺, 刘小永, 曾思齐. 欧美国家林火研究现状与展望[J]. 西北林学院学报, 2012, 27(2): 131−136. doi: 10.3969/j.issn.1001-7461.2012.02.28

    Xiao H S, Liu X Y, Zeng S Q. Status and prospect of forest fire research in Europe and United States[J]. Journal of Northwest Forestry University, 2012, 27(2): 131−136. doi: 10.3969/j.issn.1001-7461.2012.02.28
    [52] 王宏新, 邵俊霖, 于姝婷, 等. 基于再野化理论的东北虎豹国家公园发展前瞻: 兼评荒野保护思想与实践[J]. 自然资源学报, 2021, 36(11): 2955−2965. doi: 10.31497/zrzyxb.20211117

    Wang H X, Shao J L, Yu S T, et al. Prospect of the development of Northeast Tiger and Leopard National Park based on the theory of rewilding: Comments on the thought and practice of wilderness protection[J]. Journal of Natural Resources, 2021, 36(11): 2955−2965. doi: 10.31497/zrzyxb.20211117
    [53] 蒋亚芳, 田静, 赵晶博, 等. 国家公园生态系统完整性的内涵及评价框架: 以东北虎豹国家公园为例[J]. 生物多样性, 2021, 29(10): 1279−1287. doi: 10.17520/biods.2021319

    Jiang Y F, Tian J, Zhao J B, et al. The connotation and assessment framework of national park ecosystem integrity: a case study of the Amur Tiger and Leopard National Park[J]. Biodiversity Science, 2021, 29(10): 1279−1287. doi: 10.17520/biods.2021319
    [54] Mack M C, Walker X J, Johnstone J F, et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees[J]. Science, 2021, 372: 280−283. doi: 10.1126/science.abf3903
    [55] Zhang P, Shao G, Zhao G, et al. China’s forest policy for the 21st century[J]. Science, 2000, 288: 2135−2141. doi: 10.1126/science.288.5474.2135
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  11
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 录用日期:  2022-07-04
  • 修回日期:  2022-05-29
  • 网络出版日期:  2022-07-07

目录

    /

    返回文章
    返回