Effects of storage substances and endogenous hormones on seed germination and seedling formation of Quercus variabilis
-
摘要:目的
分析栓皮栎大、中、小粒种子的萌发出苗特性,解析种子贮藏物质和内源激素影响其萌发出苗特性的生理机制,从种子规格角度阐明栓皮栎的更新策略。
方法称量采集的5 000粒种子的单粒质量,聚类分成大粒(Ⅰ)、中粒(Ⅱ)和小粒(Ⅲ)共3个规格等级,后于人工气候培养箱育种并观测萌发出苗动态。采用酶解法测定种子可溶性糖与淀粉含量,考马斯亮蓝G-250染色法测定可溶性蛋白含量,高效液相色谱法测定赤霉素(GA3)、脱落酸(ABA)、吲哚乙酸(IAA)含量,并利用主成分分析法探究影响种子萌发与出苗的主要因素。
结果(1)栓皮栎Ⅰ、Ⅱ、Ⅲ级种子数量所占比例分别为23.82%、42.78%、33.40%。不同规格种子的淀粉、可溶性蛋白、ABA含量均值存在显著差异,Ⅰ级种子的淀粉含量均值分别是Ⅱ、Ⅲ级种子的2.02、2.37倍;Ⅰ 级种子的可溶性蛋白含量均值分别是Ⅱ、Ⅲ 级种子的1.05、1.87倍,Ⅰ 级种子ABA的含量分别是Ⅱ、Ⅲ 级种子的0.86、0.60倍。(2)种子萌发出苗试验结果显示:Ⅰ、Ⅱ、Ⅲ 级种子累计萌发率分别为91%、84%、77%,累计出苗率分别为90%、81%、70%,萌发未出苗的种子比例分别占1%、3%、9%,萌发至出苗结束所需天数分别为17、18、23 d。(3)主成分分析结果显示:贮藏物质与植物激素对种子萌发出苗均具有一定影响,以ABA与可溶性蛋白含量影响最为显著。
结论栓皮栎规格大的种子所占比例小,萌发和出苗速度快,萌发和出苗率高,规格小的种子则相反,资源分配与萌发特性存在权衡;不同规格大小的种子萌发出苗之间的差异受到贮藏物质以及植物激素的影响。因此,人工培育苗木时,先将种子分级后再播种可提高苗木整齐性,降低挑苗、分级育苗的人工成本。
Abstract:ObjectiveThis paper aims to analyze the germination and emergence characteristics of large, medium and small seeds of Quercus variabilis, and elucidates the physiological mechanisms, by which seed storage substances and endogenous hormones affect its germination and emergence characteristics. From the perspective of seed specifications, the regeneration strategy of Q. variabilis was clarified.
MethodThe single-seed mass of 5 000 collected seeds was measured, and classified into three size grades, i.e. large (Ⅰ), medium (Ⅱ), and small (Ⅲ). Then they were subjected to artificial climate cultivation in a growth chamber to observe the germination and seedling dynamics. The soluble sugar and starch content, soluble protein content, content of gibberellin (GA3), abscisic acid (ABA), and indoleacetic acid (IAA) were measured using enzymatic, coomassie brilliant blue G-250 staining, high-performance liquid chromatography (HPLC) methods, respectively. Principal component analysis was used to explore the main factors influencing seed germination and seedling emergence.
Result(1) The number of seeds of Q. variabilis Ⅰ, Ⅱ and Ⅲ accounted for 23.82%, 42.78% and 33.40%, respectively. There were significant differences in the average content of starch, soluble protein, and ABA among three size grades. The average starch content of Ⅰ seeds was 2.02 and 2.37 times of Ⅱ and Ⅲ seeds, the average soluble protein content of Ⅰ seeds was 1.05 and 1.87 times of Ⅱ and Ⅲ seeds, and the ABA content in Ⅰ seeds was 0.86 and 0.60 times of Ⅱ and Ⅲ seeds, respectively. (2) Seed germination and emergence experiment showed that the cumulative germination percents of Ⅰ, Ⅱ and Ⅲ seeds were 91%, 84% and 77%, and the cumulative emergence percents were 90%, 81% and 70%, respectively. The proportion of germination but not emergence accounted for 1%, 3% and 9%, respectively. The days from germination to the end of emergence for Ⅰ, Ⅱ and Ⅲ were 17, 18 and 23 d, respectively. (3) Principal component analysis showed that seed germination and seedling emergence were affected not only by seed reserves, but also by plant hormones, especially the content of ABA and soluble protein.
ConclusionThe proportion of large-sized seeds in Q. variabilis is small, with fast germination and emergence rates, while small-sized seeds are the opposite. There is a trade-off between resource allocation and germination characteristics. The differences in germination and emergence of seeds of different sizes are influenced by storage substances and plant hormones. Therefore, when artificially cultivating seedlings, first grading the seeds before sowing can improve the uniformity of the seedlings and reduce the labor cost of picking and grading seedlings.
-
Keywords:
- Quercus variabilis /
- seed /
- soluble protein /
- abscisic acid /
- germination and emergence of seedlings
-
-
表 1 栓皮栎不同规格种子单粒质量相关信息(n = 5 000)
Table 1 Information of the single-seed mass of different specifications of Quercus variabilis seeds (n = 5 000)
指标
Index小粒种子
Small seed (Ⅲ)中粒种子
Medium seed (Ⅱ)大粒种子
Large seed (Ⅰ)单粒质量范围 Single-seed mass range/g < 4.05 [4.05,5.46) ≥ 5.46 所占比例 Proportion/% 33.40 42.78 23.82 单粒质量最小值 Min. mass of single seed/g 0.23 4.05 5.46 单粒质量最大值 Max. mass of single seed/g 4.04 5.45 9.61 单粒质量均值 Mean mass of single seed/g 3.38 4.72 6.17 种子平均长度 Average length of seed/mm 21.100 0 ± 0.218 6c 22.300 0 ± 0.295 0b 23.500 0 ± 0.292 8a 种子平均宽度 Average width of seed/mm 16.800 0 ± 0.189 6c 18.600 0 ± 0.164 2b 20.700 0 ± 0.214 2a 种子平均长度/平均宽度 Average length/average width of seed 1.300 0 ± 0.016 3a 1.200 0 ± 0.021 1b 1.100 0 ± 0.017 5c 注:不同小写字母表示不同规格种子差异显著(P < 0.05)。Note: different small letters indicate significant difference between seeds of varied classes (P < 0.05). 表 2 影响栓皮栎种子萌发与出苗相关指标的主成分分析
Table 2 Principal component analysis of related indexes affecting seed germination and emergence of Q. quercus
主成分
Principal component可溶性糖
Soluble sugar淀粉
Starch可溶性蛋白
Soluble protein脱落酸
ABA赤霉素
GA3生长素
IAA赤霉素/脱落酸
GA3/ABA累计方差贡献率
Cumulative variance
contribution rate/%1 −0.007 0.183 0.239 −0.241 −0.087 0.190 0.203 66.344 2 −0.375 0.128 −0.201 0.153 0.411 0.109 0.073 100.000 -
[1] 管康林. 种子生理生态学[M]. 北京: 中国农业出版社, 2009. Guan K L. Seed physiological ecology [M]. Beijing: China Agriculture Press, 2009.
[2] Bewley J D, Bradford K J, Hilhorst H W M, et al. Seeds: physiology of development, germination and dormancy[M]. 3rd ed. New York: Springer, 2012.
[3] Fenner M, Thompson K. The ecology of seeds[M]. Cambridge: Cambridge University Press, 2005.
[4] 王任飞. 北京鹫峰地区栓皮栎种子雨特征的时间动态及其应用[D]. 北京: 北京林业大学, 2020. Wang R F. Time dynamics and use of Quercus variabilis seed rain character in Beijing Jiufeng Community[D]. Beijing: Beijing Forestry University, 2020.
[5] Chang G, Jin T Z, Pei J F, et al. Seed dispersal of three sympatric oak species by forest rodents in the Qinling Mountains, Central China[J]. Plant Ecology, 2012, 213(10): 1633−1642. doi: 10.1007/s11258-012-0118-1
[6] Baraloto C, Forget P M, Goldberg D. Seed mass, seedling size and neotropical tree seedling establishment[J]. Journal of Ecology, 2005, 93(6): 1156−1166. doi: 10.1111/j.1365-2745.2005.01041.x
[7] Yi X F, Wang Z Y, Liu C Q, et al. Acorn cotyledons are larger than their seedlings’ need: evidence from artificial cutting experiments[J]. Scientific Reports, 2015, 5(1): 8112. doi: 10.1038/srep08112
[8] 武高林, 杜国祯. 植物种子大小与幼苗生长策略研究进展[J]. 应用生态学报, 2008, 19(1): 191−197. Wu G L, Du G Z. Relationships between seed size and seedling growth strategy of herbaceous plant: a review[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 191−197.
[9] Shi W H, Pedro V S, Douglass F J, et al. Simulated predation of Quercus variabilis acorns impairs nutrient remobilization and seedling performance irrespective of soil fertility[J]. Plant and Soil, 2018, 423(1): 295−306.
[10] Perea R, Miguel A S, Gil L. Leftovers in seed dispersal: ecological implications of partial seed consumption for oak regeneration[J]. Journal of Ecology, 2011, 99(1): 194−201. doi: 10.1111/j.1365-2745.2010.01749.x
[11] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Science Research, 2005, 15(4): 281−307.
[12] 王娜, 杨钦淞, 李国雷, 等. 栓皮栎种子萌发出苗特征与生理生化变化[J]. 林业科学, 2022, 58(4): 1−10. doi: 10.11707/j.1001-7488.20220401 Wang N, Yang Q S, Li G L, et al. Seed germination and emergence characteristics and physiological and biochemical changes of Quercus variabilis[J]. Scientia Silvae Sinicae, 2022, 58(4): 1−10. doi: 10.11707/j.1001-7488.20220401
[13] 李迎超, 于海燕, 付甜, 等. 中国栓皮栎资源生产燃料乙醇的潜力及其空间分布[J]. 林业科学, 2013, 49(11): 129−134. Li Y C, Yu H Y, Fu T, et al. Spatial distribution and bio-ethanol potential of Quercus variabilis in China[J]. Scientia Silvae Sinicae, 2013, 49(11): 129−134.
[14] 李垚, 张兴旺, 方炎明. 气候变暖对中国栓皮栎地理分布格局影响的预测[J]. 应用生态学报, 2014, 25(12): 3381−3389. doi: 10.13287/j.1001-9332.20140925.005 Li Y, Zhang X W, Fang Y M. Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3381−3389. doi: 10.13287/j.1001-9332.20140925.005
[15] Landhausser S M, Chow P S, Dickman L T, et al. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates[J]. Tree Physiology, 2018, 38(12): 1764−1778. doi: 10.1093/treephys/tpy118
[16] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. Gao J F. Experimental guidance in plant physiology[M]. Beijing: Higher Education Press, 2006.
[17] 肖爱华, 陈发菊, 贾忠奎, 等. 梯度洗脱高效液相色谱法测定红花玉兰中4种植物激素[J]. 分析试验室, 2020, 39(3): 249−254. Xiao A H, Chen F J, Jia Z K, et al. Determination of 4 plant hormones in Magnolia wufengensis by gradient elution high performance liquid chromatography[J]. Chinese Journal of Analysis Laboratory, 2020, 39(3): 249−254.
[18] Hay F R, Mead A, Bloomberg M. Modelling seed germination in response to continuous variables: use and limitations of probit analysis and alternative approaches[J]. Seed Science Research, 2014, 24(3): 165−186. doi: 10.1017/S096025851400021X
[19] Pesendorfer M B. The effect of seed size variation in Quercus pacifica on seedling establishment and growth [J]. General Technical Report PSW-GTR-251, 2014: 407−412.
[20] Pandey R, Bargali K, Bargali S S. Does seed size affect water stress tolerance in Quercus leucotrichophora A. Camus at germination and early seedling growth stage?[J]. Biodiversity International Journal, 2017, 1(1): 24−30.
[21] Mechergui T, Pardos M, Jacobs D. Effect of acorn size on survival and growth of Quercus suber L. seedlings under water stress[J]. European Journal of Forest Research, 2021, 140(1): 175−186. doi: 10.1007/s10342-020-01323-2
[22] Sun X Q, Song Y G, Ge B J, et al. Intermediate epicotyl physiological dormancy in the recalcitrant seed of Quercus chungii F. P. Metcalf with the elongated cotyledonary petiole[J]. Forests, 2021, 12(3): 263. doi: 10.3390/f12030263
[23] McCartan S A, Jinks R L, Barsoum N. Using thermal time models to predict the impact of assisted migration on the synchronization of germination and shoot emergence of oak ( Quercus robur L.)[J]. Annals of Forest Science, 2015, 72(4): 479−487. doi: 10.1007/s13595-014-0454-5
[24] Lai X, Guo C, Xiao Z S. Trait-mediated seed predation, dispersal and survival among frugivore-dispersed plants in a fragmented subtropical forest, Southwest China[J]. Integrative Zoology, 2014, 9(3): 246−254. doi: 10.1111/1749-4877.12046
[25] 李松南. 中国短柄枹栎种子的营养成分及其淀粉特性研究[D]. 合肥: 安徽农业大学, 2016. Li S N. Nutrient composition and starch characteristics of Quercus glandulifera Bl. seeds from China[D]. Hefei: Anhui Agricultural University, 2016.
[26] 郝丽丽, 张存旭, 杨阳. 栓皮栎种胚发育过程中储藏物质积累变化研究[J]. 西北林学院学报, 2011, 26(4): 128−131. Hao L L, Zhang C X, Yang Y. Changes of storage substance accumulation during zygote embryos development of Quercus variabilis[J]. Journal of Northwest Forestry University, 2011, 26(4): 128−131.
[27] 张杰, 邹学忠, 杨传平, 等. 硝酸还原酶和可溶性蛋白对蒙古栎种源生长的影响[J]. 植物研究, 2005, 25(3): 317−321. doi: 10.7525/j.issn.1673-5102.2005.03.017 Zhang J, Zou X Z, Yang C P, et al. The influence of nitrate reductase and soluble protein on the provenance growth of Quercus mongolica[J]. Bulletin of Botanical Research, 2005, 25(3): 317−321. doi: 10.7525/j.issn.1673-5102.2005.03.017
[28] Nambara E, Okamoto M, Tatematsu k, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55−67. doi: 10.1017/S0960258510000012
[29] Shibata M, Coelho C M M, Garighan J A D, et al. Seed development of Araucaria angustifolia: plant hormones and germinability in 2 years of seeds production[J]. New Forests, 2021, 52(5): 759−775. doi: 10.1007/s11056-020-09821-2
[30] 黄雍容, 庄凯, 吴鹏飞, 等. 福建青冈( Cyclobalanopsis chungii)种子萌发与生长特性[J]. 生态学杂志, 2017, 36(5): 1251−1258. Huang Y R, Zhuang K, Wu P F, et al. Seed germination and growth characteristics of Cyclobalanopsis chungii[J]. Chinese Journal of Ecology, 2017, 36(5): 1251−1258.
[31] Kanno Y, Jikumaru Y, Hanada A, et al. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions[J]. Plant Cell Physiology, 2010, 51(12): 1988−2001. doi: 10.1093/pcp/pcq158
[32] Michalski L U M K. The content of abscisic acid in the developing seeds of oak ( Quercus robur)[J]. Biologia Plantarum, 1986, 28(6): 434−439. doi: 10.1007/BF02885047
[33] Yu F Y, Chen S F. Morphological and biochemical changes of Aesculus chinensis seeds in the process of maturation[J]. New Forests, 2011, 43(4): 429−440.
-
期刊类型引用(6)
1. 张友谊,李松柏,钟磊. 基于地形因子的震后泥石流降雨阈值分析. 科学技术与工程. 2024(32): 13708-13717 . 百度学术
2. 曹永强,张若凝,范帅邦. 辽宁省降雨型泥石流环境特征及分类预警. 华北水利水电大学学报(自然科学版). 2022(02): 60-68 . 百度学术
3. 曹永强,张若凝,李玲慧,路洁,宁月. 辽宁省泥石流与不同时间尺度下降水因子的关系研究. 灾害学. 2021(03): 51-56 . 百度学术
4. 乔建平. 降雨型滑坡泥石流灾害预警原理及系统结构. 人民长江. 2020(01): 50-55+74 . 百度学术
5. 胡凯衡,魏丽,刘双,李秀珍. 横断山区泥石流空间格局和激发雨量分异性研究. 地理学报. 2019(11): 2303-2313 . 百度学术
6. 凌訸,陶蓉,白晓华. 平凉鸭儿沟泥石流形成过程及特征分析. 甘肃水利水电技术. 2017(01): 18-21 . 百度学术
其他类型引用(3)