Leaf stoichiometry of two conifer species with different life forms in northern Daxing’an Mountains
-
摘要:
目的 研究寒温带落叶树种和常绿树种针叶生态化学计量特征的差异及随龄级增加的变化规律,揭示不同生活型针叶树种生态化学计量特征与生长阶段之间的关系,为寒温带植物生长与养分供给的研究提供帮助。 方法 以大兴安岭北部兴安落叶松和樟子松为对象,研究5—9月针叶C、N、P含量及化学计量特征,利用内稳性指数和Pearson相关系数分析C、N、P之间及与环境因子的相关性。 结果 (1)不同生长阶段兴安落叶松和樟子松针叶N、P月平均含量表现为随龄级的增长而降低,C含量则是随龄级的增加而增加,且5—8月兴安落叶松针叶N、P含量高于樟子松,C含量则低于樟子松。(2)兴安落叶松针叶C∶N、C∶P和N∶P月平均值均高于樟子松,4个龄级兴安落叶松针叶N∶P均小于14,而樟子松在5—7月N∶P小于14,8—9月N∶P大于16。兴安落叶松针叶N、P以及N∶P稳定性大于樟子松。(3)土壤含水率与2树种针叶生态化学计量特征呈极显著相关,樟子松针叶N含量与C、N、P化学计量比呈显著相关,兴安落叶松针叶C含量与N∶P、土壤铵态氮和硝态氮显著相关。 结论 大兴安岭北部不同生活型的2种针叶树种,叶片生态化学计量对寒冷气候和冻土生境的适应策略不同,兴安落叶松是本区的顶级群落优势种,但其生长受到N的限制,而樟子松生长的限制因子因季节变化而不同。 Abstract:Objective Study on the difference in ecological stoichiometric characteristics and their changes with increasing age of conifers of deciduous and evergreen species in the cold temperate zone to reveal the relationship between ecological stoichiometric characteristics and growth stage of two different life forms of conifers, and to provide help for the study of plant growth and nutrient supply in cold-temperate of China. Method The contents and stoichiometric characteristics of C, N, P in Larix gmelinii and Pinus sylvestris var. mongolica from May to September were studied. The correlation between C, N, P and environmental factors was analyzed by homeostasis index and Pearson correlation coefficient. Result (1) During the different growth stage, monthly average N, P content of Larix gmelinii and Pinus sylvestris var. mongolica needles were both decreased with the increase of age class, while the C content increased with the increase of age class. The N and P contents of needles of Larix gmelinii from May to August were higher than those of Pinus sylvestris var. mongolica, while the C content was lower than those of Pinus sylvestris var. mongolica. (2) The monthly mean values of C∶N, C∶P and N∶P of needles of Larix gmelinii were higher than those of Pinus sylvestris var. mongolica. The N∶P of needles of Larix gmelinii of four age classs were all less than 14, while the N∶P of needles of Pinus sylvestris of four age classes from May to July was less than 14, and the N∶P of needles of Pinus sylvestris var. mongolica of four age classes was more than 16. The homeostasis of N, P and N∶P of Larix gmelinii needles was greater than that of Pinus sylvestris var. mongolica. (3) Soil moisture content was significantly correlated with the ecological stoichiometric characteristics of the needles of the two species. The N content of needles of Pinus sylvestris var. mongolica was significantly correlated with the stoichiometric ratio of C, N and P, and the C content of needles of Larix gmelinii was significantly correlated with N∶P and soil ammonium and nitrate nitrogen. Conclusion The two conifer species with different life forms in the northern Daxing’an Mountains have different adaptation strategies to cold climate and frozen soil.The Larix gmelinii is the dominant species in the top community, but its different growth stages were both limited by N. However, Pinus sylvestris var. mongolica the growth limiting factors of Pinus sylvestris var. mongolica are different due to seasonal changes. -
Key words:
- cold temperate zone /
- nutrient content /
- Stoichiometry /
- Conifer species /
- Age class
-
图 2 不同龄级兴安落叶松和樟子松针叶氮含量变化特征
同一月份不同龄级间差异用大写字母表示A、B、C;同一龄级不同月份间差异用小写字母表示a、b、c。下同。Differences between different age groups in the same month are represented by capital letters A, B and C; Differences between the same age group and different months are represented by lowercase letters a, b and c. The same below.
Figure 2. Variation characteristics of nitrogen content in needles of Larix gmelinii and Pinus sylvestris var. mongolica at different age levels
表 1 样地基本情况
Table 1. Basic situation of the sample site
森林植被类型
Forest vegetation types海拔
Altitude/m坡度
Gradient/(°)平均胸径
DBH/cm平均树高
Hight of tree/m树种组成
Species composition密度/(株·hm−2)
Density/(tree·ha−1)郁闭度
Canopy density兴安落叶松林
Larix gmelinii forest305 5 13.67 11.44 8落1樟1白 1 300 0.8 樟子松林
Pinus sylvestris var.
mongolica forest290 10 22.90 23.18 7樟2落1白 716 0.6 表 2 土壤理化性质
Table 2. Physical and chemical properties of Soil
树种类型
Tree types月份
Month温度
temperature/℃含水率
water
content/%酸碱度
pH全碳
TOC/
(mg·g−1)全氮
TN/(mg·g−1)全磷
TP/(mg·g−1)铵态氮
NH+ 4-N/
(mg·kg−1)硝态氮
NO− 3-N/
(mg·kg−1)有效磷
AP/
(mg·kg−1)兴安落叶松林
Larix gmelinii
forest5 4.44 ± 0.15 45.86 ± 0.16 4.23 ± 0.25 31.71 ± 8.64 3.27 ± 1.05 0.73 ± 0.34 17.40 ± 0.61 1.92 ± 0.82 60.48 ± 33.05 6 10.67 ± 0.15 45.69 ± 0.13 4.27 ± 0.17 25.53 ± 8.5 3.09 ± 0.73 0.86 ± 0.5 12.45 ± 0.58 276 ± 0.24 42.49 ± 6.39 7 15.43 ± 0.01 40.81 ± 0.11 4.25 ± 0.15 29.03 ± 17.51 2.37 ± 0.96 0.54 ± 0.22 9.97 ± 0.43 2.63 ± 0.11 35.20 ± 13.76 8 13.43 ± 0.01 35.62 ± 0.15 4.27 ± 0.1 44.28 ± 10.81 3.69 ± 1.13 0.93 ± 0.44 24.91 ± 0.93 1.90 ± 0.70 34.61 ± 8.48 9 6.83 ± 0.17 30.57 ± 0.18 4.37 ± 0.14 37.14 ± 7.66 4.06 ± 1.23 0.89 ± 0.19 23.13 ± 0.54 1.64 ± 0.32 42.12 ± 10.42 樟子松林
Pinus sylvestris
var. mongolica
forest5 4.44 ± 0.17 13.85 ± 0.21 4.41 ± 0.35 30.24 ± 8.06 1.20 ± 0.34 0.33 ± 0.15 10.88 ± 0.31 1.67 ± 0.15 45.63 ± 16.78 6 10.67 ± 0.28 11.53 ± 0.34 4.31 ± 0.25 23.68 ± 2.76 1.19 ± 0.16 0.62 ± 0.31 9.03 ± 0.11 2.54 ± 0.14 40.76 ± 7.78 7 15.43 ± 0.23 9.84 ± 0.16 4.09 ± 0.24 29.54 ± 11.71 1.29 ± 0.49 0.3 ± 0.1 12.31 ± 0.39 2.43 ± 0.15 44.15 ± 25.39 8 13.43 ± 0.23 6.89 ± 0.14 4.27 ± 0.29 38.78 ± 18.32 1.49 ± 0.72 0.74 ± 0.22 12.37 ± 0.57 2.42 ± 0.15 51.30 ± 17.44 9 6.83 ± 0.02 6.39 ± 0.17 4.67 ± 0.18 31.61 ± 9.72 1.52 ± 0.27 0.3 ± 0.05 13.60 ± 0.35 1.76 ± 0.21 33.76 ± 12.46 表 3 C、N、P含量及其生态化学计量相关系数
Table 3. C, N, P contents and their ecological stoichiometric correlation coefficients between
树种 Tree species 叶 leaf C N P C∶N C∶P N∶P 兴安落叶松 Larix gmelinii C 1 −0.547** −0.456** 0.503** 0.460** −0.274* N 1 0.837** −0.885** −0.806** 0.428** P 1 −0.579** −0.953** −0.122 C∶N 1 0.632** −0.676** C∶P 1 .115 N∶P 1 樟子松 Pinus sylvestris var. mongolica C 1 −0.024 −0.658** 0.209 0.726** 0.619** N 1 0.125 −0.964** −0.124 0.360** P 1 −0.244 −0.952** −0.846** C∶N 1 0.234 −0.249 C∶P 1 0.874** N∶P 1 注:**表示在 0.01 水平(双侧)上显著相关,*表示在 0.05 水平(双侧)上显著相关。下同。Notes: **, means significantly correlated at 0.01 level (bilateral), * means significantly correlated at 0.05 level (bilateral). The same below. 表 4 C、N、P生态化学计量与土壤因子相关性分析
Table 4. C, N, P ecological stoichiometry and environmental factors correlation analysis between???
树种 Tree species 指标 Indicator 含水量 SWC 温度 ST 铵态氮 NH4 +-N 硝态氮 NO3 −-N 兴安落叶松 Larix gmelinii C −0.765** 0.122 0.416** −0.295* N 0.729** −0.169 −0.199 0.147 P 0.436** −0.544** −0.01 −0.099 C∶N −0.744** −0.181 0.246 −0.258* C∶P −0.374** 0.400** 0.039 0.114 N∶P 0.651** 0.575** −0.318* 0.440** 樟子松 Pinus sylvestris var. mongolica C −0.541** 0.296* 0.182 −0.071 N −0.439** 0.187 0.427** −0.124 P 0.479** −0.079 −0.159 0.159 C∶N 0.354** −0.071 −0.335** 0.087 C∶P −0.659** 0.142 0.263* −0.243 N∶P −0.827** 0.204 0.467** −0.307* -
[1] Sardans J, Rivas-Ubach A, Peñuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 2012, 111(1−3), 1−39. [2] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377−385. [3] 白雪娟, 曾全超, 安韶山, 等. 黄土高原不同人工林叶片−凋落叶−土壤生态化学计量特征[J]. 应用生态学报, 2016, 27(12): 3823−3830.Bai X J, Zeng Q C, An S S, et al. Ecological stoichiometry characteristics of leaf-litter-soil in different plantations on the LoessPlateau, China[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3823−3830. [4] 魏晨, 张小平, 罗子渝, 等. 兰州市南山和北山3种乔木叶片生态化学计量特征的对比研究[J]. 生态学报, 2021, 41(6): 2460−2470.Wei C, Zhang X P, Luo Z Y, et al. A comparative study on foliar stoichiometry traits of three trees in north and south mountains of Lanzhou City[J]. Acta Ecologica Sinica, 2021, 41(6): 2460−2470. [5] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937−3947. doi: 10.3321/j.issn:1000-0933.2008.08.054 [6] Koerselman W, Meuleman AF. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441−1450. doi: 10.2307/2404783 [7] 皮发剑, 袁丛军, 喻理飞, 等. 黔中天然次生林主要优势树种叶片生态化学计量特征[J]. 生态环境学报, 2016, 25(5): 801−807. doi: 10.16258/j.cnki.1674-5906.2016.05.011Pi F J, Yuan C J, Yu L F, et al. Ecological stoichiometry characteristics of plant leaves from the main dominant species of natural secondary forest in the central of Guizhou[J]. Ecology and Environmental Sciences, 2016, 25(5): 801−807. doi: 10.16258/j.cnki.1674-5906.2016.05.011 [8] 侯皓, 刘慧, 贺鹏程, 等. 木兰科常绿与落叶物种叶片构建策略的差异 [J]. 热带亚热带植物学报, 2019, 27(3): 272−278.Hou H, Liu H, He P C et al. Different leaf construction strategies in evergreen and deciduous species of Magnoliaceae [J]. Journal of Tropical and Subtropical Botany 2019, 27(3): 272−278. [9] Sardans J, Peñuelas J. Trees increase their P: N ration with size[J]. Global Ecol Biogeogr, 2015, 24(2): 147−156. doi: 10.1111/geb.12231 [10] 何斌, 李青, 冯图, 等. 黔西北不同林龄马尾松人工林针叶−凋落物−土壤 C、N、P 化学计量特征[J]. 生态环境学报, 2019, 28(11): 2149−2157.He B, Li Q, Feng T, et al. Stoichiometry characteristics of C, N, and P in needle leaves, litter, and soil during stand development in A Pinus massoniana plantation in northwest Guizhou Province[J]. Ecology and Environmental Sciences, 2019, 28(11): 2149−2157. [11] 王平安, 宫渊奇, 王琪武, 等. 不同林龄华北落叶松人工林针叶−凋落叶−土壤碳氮磷生态化学计量特征[J]. 西北林学院学报, 2020, 35(6): 1−9. doi: 10.3969/j.issn.1001-7461.2020.06.01Wang P A, Gong Y Q, Wang Q W, et al. Carbon, nitrogen and phosphorus stoichiometry characteristics of needle leaf-leaf litter-soil from Larix principis-rupprechtii plantations with different stand ages[J]. Journal of Northwest Forestry University, 2020, 35(6): 1−9. doi: 10.3969/j.issn.1001-7461.2020.06.01 [12] Phillips R P, Fahey T J. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils[J]. Soilence Society of America Journal, 2008, 72(2): 453−461. doi: 10.2136/sssaj2006.0389 [13] Sterner R W , Elser J J. Ecological stoichiometry: the biology of elements form molecules to the biosphere [M]. Princeton: Princeton University Press, 2003. [14] 杨林. 内蒙古大兴安岭兴安落叶松林植物_土壤生态化学计量特征研究_杨林(1)[D]. 呼和浩特: 内蒙古农业大学, 2020.Yang L. Study on plant-soil eco-stoichiometry characteristics of Larix gmelinii in Daxing’an Mountains Inner Mongolia[D]. Huhhot: Inner Mongolia Agricultural University, 2020. [15] Reich P B, Oleksyn J. Global patterns of plant leaf Nand P in relation to temperature and latitude[J]. Proceedings of the National Academy of Science of the United States of America, 2004, 101: 11001−11006. doi: 10.1073/pnas.0403588101 [16] 孙书存, 陈灵芝. 东灵山地区辽东栎叶养分的季节动态与回收效率[J]. 植物生态学报, 2001, 25(1): 76−82. doi: 10.3321/j.issn:1005-264X.2001.01.013Sun S C, Chen L Z. Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling mountain region[J]. Chinese Journal of Plant Ecology, 2001, 25(1): 76−82. doi: 10.3321/j.issn:1005-264X.2001.01.013 [17] 吴统贵, 吴明, 刘丽, 等. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010, 34(1): 23−28. doi: 10.3773/j.issn.1005-264x.2010.01.005Wu T G, Wu M, Liu L, et al. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 23−28. doi: 10.3773/j.issn.1005-264x.2010.01.005 [18] 闫芊, 陆健健, 何文珊. 崇明东滩湿地高等植被演替特征[J]. 应用生态学报, 2007, 18(5): 1097−1101. doi: 10.3321/j.issn:1001-9332.2007.05.027Yan Q, Lu J J, He W S. Succession character of salt marsh vegetation in Chongming Dongtan wetland[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 1097−1101. doi: 10.3321/j.issn:1001-9332.2007.05.027 [19] Townsend A R, Cleveland C C, Asner G P, Bustamante M M C. Controls over foliar N: P ratios in tropical forests. Ecology, 2007, 88: 107–118. [20] 刘超, 王洋, 王楠, 等. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11): 1205−1216.Liu C, Wang Y, Wang N, et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial eco-systems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205−1216. [21] E l ser J J, Bracken M E S, Cleland EE, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh water, marine and terrestrial eco-systems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x [22] 张彤彤, 徐福利, 汪有科, 等. 施用氮磷钾对密植梨枣生长与叶片养分季节动态的影响[J]. 植物营养与肥料学报, 2012, 18(1): 241−248. doi: 10.11674/zwyf.2012.11185Zhang T T, Xu F L, Wang Y K, et al. Effects of fertilization on growth and seasonal dynamic of leaf nutrients of close planting pear-jujube trees[J]. Plant Nutrition and Fertilizer Science, 2012, 18(1): 241−248. doi: 10.11674/zwyf.2012.11185 [23] Chapin Ⅲ F S, Johnson D A, M c k end rick J D. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory[J]. Journal of Ecology, 1980, 68: 189−209. doi: 10.2307/2259251 [24] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540−550. doi: 10.1046/j.1461-0248.2000.00185.x [25] 刘微, 李德志, 纪倩倩, 等. 两种生境常绿和落叶树种叶片氮素分配及与光合能力的关系[J]. 生态科学, 2015, 34(1): 1−8.Liu W, Li D Z, Ji Q Q, et al. Leaf nitrogen allocation of evergreen and deciduous broad-leaved tree species and their relationships with photosynthetic capacity in the two habitats[J]. Ecological Science, 2015, 34(1): 1−8. [26] 高三平, 李俊祥, 徐明策, 等. 天童常绿阔叶林不同演替阶段常见种叶片 N、P化学计量学特征[J]. 生态学报, 2007, 27(3): 947−952.Gao S P, Li J X, Xu M C, et al. Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tian tong National Forest Park, Zhe jiang Province, China[J]. Acta Ecologica Sinica, 2007, 27(3): 947−952. [27] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J]. 生态学报, 2010, 30(23): 6581−6590.Liu W D, Su J R, Li S F, et al. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province[J]. Acta Ecologica Sinica, 2010, 30(23): 6581−6590. [28] Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J]. Biogeochemistry, 2003, 65(1): 121−150. doi: 10.1023/A:1026020210887 [29] 武盼盼, 曾利剑, 雷平, 等. 江西武夷山南方铁杉林主要树种叶片养分含量及再吸收效率[J]. 林业科学, 2022, 58(1): 12−21. doi: 10.11707/j.1001-7488.20220102Wu P P, Zeng L J, Lei P et al. Content of leaf nutrients and resorption efficiency of major tree species in Tsuga chinensis forest in Wuyi Mountain, Jiangxi Province[J]. Scientia Silvae Sinicae, 2022, 58(1): 12−21. doi: 10.11707/j.1001-7488.20220102 [30] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Nvironmental Science, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001 [31] Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 10849−10850. doi: 10.1073/pnas.0404222101 [32] Bowman W D. Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities[J]. Oikos, 1994, 70(2): 261−270. doi: 10.2307/3545637 [33] Aerts R, Iii F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Resesrch, 1997, 30: 1−67. [34] Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of terrestrial red filed-type ratios[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351 [35] 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征[J]. 应用生态学报, 2014, 25(3): 632−638.Hu Y S, Yao X Y, Liu Y H. N and P stoichiometric traits of plant and soil in different forest succession stages in Chang-bai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 632−638. [36] Yan Z B, Li P, Chen Y H, et al. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves[J/OL]. Scientific Reports, 2016, 6, 20099[2022−10−09]. https://pubmed.ncbi.nlm.nih.gov/26848020/. [37] 许雪贇, 秦燕燕, 曹建军, 等. 青藏高原火绒草叶片生态化学计量特征随海拔的变化[J]. 应用生态学报, 2018, 29(12): 3934−3940.Xu X Y, Qin Y Y, Cao J J, et al. Elevational variations of leaf stochiometry in Leontopodium leontopodioides on the Qinghai-Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 3934−3940. [38] Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002: 439. [39] Xia C X, Yu D, Wang Z, et al. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecological Engineering, 2014, 70: 406−413. doi: 10.1016/j.ecoleng.2014.06.018 [40] 黄菊莹, 袁志友, 李凌浩. 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化[J]. 植物生态学报, 2009, 33(3): 442−448. doi: 10.3773/j.issn.1005-264x.2009.03.003Huang J Y, Yuan Z Y, Li L H. Changes in N, P and specific leaf area of green leaves ofleymus chinensis along nitrogen, phosphorus and water gra-dients[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 442−448. doi: 10.3773/j.issn.1005-264x.2009.03.003 [41] 陈廷廷, 史顺增, 熊德成, 等. 土壤增温对幼龄杉木细根化学计量学特征的影响[J]. 亚热带资源与环境学报, 2018, 13(2): 13−21. doi: 10.3969/j.issn.1673-7105.2018.02.004Chen T T, Shi S Z, Xiong D C, et al. Effects of soil warming on fine root stoichiometry of young Chinese firseedlings[J]. Journal of Subtropical Resources and Environment, 2018, 13(2): 13−21. doi: 10.3969/j.issn.1673-7105.2018.02.004 [42] 宾振钧, 张仁懿, 张文鹏, 等. 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响[J]. 生态学报, 2015, 35(14): 4699−4706.Bin Z J, Zhang R Y, Zhang W P, et al. Effects of nitrogen, phosphorus and silicon addition on leaf carbon, nitrogen, and phosphorus concentration ofElymus nutans of alpine meadow on Qinghai-Tibetan Plateau, China[J]. Acta Ecologica Sinica, 2015, 35(14): 4699−4706. [43] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011 [44] 丁凡, 廉培勇, 曾德慧. 松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系[J]. 生态学杂志, 2011, 30(1): 77−81.Ding F, Lian P Y, Zeng D H. Chararacteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil ni-trogen and phosphorus concentrations in Songnen Plain meadow[J]. Chinese Journal of Ecology, 2011, 30(1): 77−81. [45] Jonas P, Patrick F, Akira G, et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J]. Oikos, 2010, 119: 741−751. doi: 10.1111/j.1600-0706.2009.18545.x [46] 赵君, 张仁彭, 李新娥, 等. 甘南亚高寒草甸金露梅叶片氮磷化学计量学动态[J]. 兰州大学学报, 2011, 47(2): 88−92.Zhao J, Zhang R P, Li X E, et al. Leaf nitrogen andphosphorus stoichiometry in Potentilla fruticosa L. affected byinternal and external factors in the subalpine in Gannan[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(2): 88−92. -