Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应

党毅, 王维, 张永娥, 王渝淞, 丁兵兵, 樊登星, 贾国栋, 余新晓, 董俊杰

党毅, 王维, 张永娥, 王渝淞, 丁兵兵, 樊登星, 贾国栋, 余新晓, 董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应[J]. 北京林业大学学报, 2023, 45(5): 106-118. DOI: 10.12171/j.1000-1522.20220220
引用本文: 党毅, 王维, 张永娥, 王渝淞, 丁兵兵, 樊登星, 贾国栋, 余新晓, 董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应[J]. 北京林业大学学报, 2023, 45(5): 106-118. DOI: 10.12171/j.1000-1522.20220220
Dang Yi, Wang Wei, Zhang Yonge, Wang Yusong, Ding Bingbing, Fan Dengxing, Jia Guodong, Yu Xinxiao, Dong Junjie. Dynamic response of soil moisture content to rainfall under different vegetation cover types on the Bashang Plateau, northwestern Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(5): 106-118. DOI: 10.12171/j.1000-1522.20220220
Citation: Dang Yi, Wang Wei, Zhang Yonge, Wang Yusong, Ding Bingbing, Fan Dengxing, Jia Guodong, Yu Xinxiao, Dong Junjie. Dynamic response of soil moisture content to rainfall under different vegetation cover types on the Bashang Plateau, northwestern Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(5): 106-118. DOI: 10.12171/j.1000-1522.20220220

坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应

基金项目: 国家重点研发计划(2022YFF1302502-03)
详细信息
    作者简介:

    党毅。主要研究方向:水土保持、生态水文。Email:dangyi1234567890@163.com 地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    余新晓,博士,教授。主要研究方向:水土保持、生态水文。Email:yuxinxiao111@126.com 地址:同上

  • 中图分类号: S714;S791.24

Dynamic response of soil moisture content to rainfall under different vegetation cover types on the Bashang Plateau, northwestern Hebei Province of northern China

  • 摘要:
      目的  土壤水是连接大气降水、地表水、地下水的关键因子,在地表径流、降雨入渗和植被蒸腾等生态水文过程中发挥重要作用。分析坝上高原地区不同雨量降雨事件中各植被类型覆盖下土壤水分含量动态响应过程及差异,将有助于深入探讨该区土壤水分含量的补给效应特性,对优化区域植被结构具有十分重要的理论及现实的意义。
      方法  选取河北省张北县草地、柠条灌木林、杨树乔木林为研究对象,通过监测2019年4—10月连续土壤水分含量和降雨数据,分析不同植被类型覆盖下土壤水分含量对大小降雨事件的动态响应过程及差异。
      结果  (1)研究区主要降雨事件由小雨和中雨构成,但主要降雨量由大雨提供。小雨和中雨发生次数占比为81.58%,其贡献的降雨量仅占年总降雨量42.66%;大雨发生次数占比仅为18.42%,却提供了年总降雨量的57.34%。(2)4—10月杨树乔木林土壤水分含量均值显著高于草地(P < 0.05),而柠条灌木林波动最为强烈。各植被类型覆盖下土壤水分含量均值分别为杨树乔木林(13.99 ± 2.04)% > 柠条灌木林(12.63 ± 0.93)% > 草地(10.67 ± 2.77)%,土壤水分含量变异系数均值呈柠条灌木林(26.22%) > 杨树乔木林(20.51%) > 草地(13.89%),均为中等强度变异。(3)草地20 ~ 40 cm土层的土壤水分含量显著高于0 ~ 20 cm及40 ~ 100 cm的4个土层(P < 0.05);柠条灌木林在20 ~ 40 cm和80 ~ 100 cm土层之间、0 ~ 20 cm和40 ~ 60 cm之间均不存在显著差异,且20 ~ 40 cm和80 ~ 100 cm土层土壤水分含量均显著高于其他3层(P < 0.05);杨树乔木林80 ~ 100 cm土层的土壤水分含量显著高于其他4个土层(P < 0.05)。(4)在不同雨量降雨作用下,除某些特殊情况外,柠条灌木林对降雨响应的各指标常与其他两种植被类型呈显著差异(P < 0.05)。各植被类型覆盖的土壤水分含量开始响应速度均值、补给量均值、补给速率均值为柠条灌木林最大而杨树乔木林最小。小雨、中雨只能使3种植被类型0 ~ 20 cm土层做出响应,补给较为有限;而大雨作用下草地响应土层为0 ~ 60 cm,乔、灌木均为0 ~ 80 cm。3种植被类型覆盖下土壤水分含量响应速度、达峰速度、补给量、补给速率均随着土壤深度增加而变弱,上层土壤对于降雨的响应总是快于且幅度大于下层土壤。
      结论  在当前降雨条件下,柠条灌木林对降雨响应最为敏感且响应效应最为强烈,而杨树乔木林响应速度最慢且响应效应最弱。此外,只有在大雨作用下,3种植被类型所覆被的中下层土壤水分含量才会得到明显的响应与补充。本研究结果为该地区未来营造防护林过程中改变重乔木轻灌木的传统观点,合理调整灌木比重,实现生态水文功能的整体提高等提供了一定的科学依据。
    Abstract:
      Objective  Soil moisture is a key factor linking atmospheric precipitation, surface water and groundwater, and plays an important role in eco-hydrological processes such as surface runoff, rainfall infiltration and vegetation transpiration. The analysis of dynamic response process and differences in soil moisture content of various covers under rainfall events in Bashang Plateau of northwestern Hebei Province of northern China will be helpful to explore the characteristics of replenishment effects of soil moisture content in this region, which is of great theoretical and practical significance to optimizing regional vegetation structure.
      Method  The grassland, Caragana korshinskii shrub land and poplar forest land in Zhangbei County, Hebei Province were selected as research objects. The dynamic response process and differences of soil moisture to different types of rainfall under various vegetation cover types were analyzed by monitoring continuous soil moisture content data and rainfall data from April to October, 2019.
      Result  (1) The main rainfall events in the study area were light rain and moderate rain, but the main amount of water was provided by heavy rain. The percentage of light rain and moderate rain occurrences was 81.58%, but they only contributed 42.66% to the total annual rainfall. The percentage of occurrences of heavy rain was only 18.42%, but it provided 57.34% of the total annual rainfall. (2) From April to October, the mean value of soil moisture in poplar forest land was significantly higher than that in grassland, and the fluctuation of soil moisture in Caragana korshinskii shrub land was the strongest. The mean soil moisture values under each vegetation cover types were poplar forest land (13.99 ± 2.04)% > Caragana korshinskii shrub land (12.63 ± 0.93)% > grassland (10.67 ± 2.77)%, and the mean soil moisture coefficient of variation was Caragana korshinskii shrub land (26.22%) > poplar forest land (20.51%) > grassland (13.89%). The coefficient of variation at each layer was at a moderate variation level. (3) The soil moisture content in 20−40 cm soil layer of the grassland was significantly higher than that in the other four soil layers (P < 0.05). There was no significant difference in soil moisture content between the 20−40 cm and 80−100 cm soil layers, as well as between the 0−20 cm and 40−60 cm soil layers in the Caragana korshinskii forest, and the soil moisture content in the 20−40 cm and 80−100 cm soil layers was significantly higher than that in the other three layers (P<0.05); the soil moisture content of the 80−100 cm soil layer in the poplar tree forest was significantly higher than that of the other four soil layers (P<0.05). (4) Under the effect of different rainfall amounts, the indicators of soil response to rainfall in shrublands were often significantly different from those of the other two vegetation types, except for some special cases. Among all types of rainfall, the mean values of soil moisture content response rate, recharge amount and recharge rate for each vegetation type cover were the greatest in Caragana korshinskii shrub land but the smallest in poplar forest land. Light and moderate rain can only respond to the 0−20 cm soil layer of the three vegetation types, with limited supply. Under heavy rain, the response of grassland to soil layer was 0−60 cm, while that of trees and shrubs was 0−80 cm. The response speed, peak reaching speed, replenishment amount, and replenishment rate of soil moisture content under three types of vegetation cover weakened with the increase of soil depth, and the response of upper soil to rainfall was always faster and greater than that of lower soil. [ Conclusion ] Under current rainfall conditions, the Caragana korshinskii shrub land responded the fastest and strongest to rainfall, but the poplar forest land responded the slowest and weakest. In addition, the deeper soil moisture under the three vegetation covers only responds significantly during heavy rain and allows the soil moisture to be replenished. The results of this study provide a scientific basis for changing the traditional view of emphasizing arboreal forest land but neglecting shrubs in the process of creating protective forests in the region in the future, and then reasonably adjusting the proportion of shrubs to achieve the overall improvement of eco-hydrological functions.
  • 胡桃楸(Juglans mandshurica)为胡桃科(Juglandaceae)胡桃属(Juglans)落叶乔木,是我国珍贵的“东北三大硬阔”树种之一,是珍贵的用材和经济林树种,应用前景非常广泛[1]。但是由于长期的人为过度采伐与利用,胡桃楸天然林已基本消失殆尽,目前存留的绝大多数为胡桃楸次生林,且林分生长质量较差[2]。因此,加强对胡桃楸次生林林分质量相关研究显得尤为重要。目前关于胡桃楸的相关研究主要集中在遗传育种[34]、栽培技术[5]、生长发育[67]、资源开发利用[8]和生物多样性[910]等方面,有关胡桃楸生长与林龄和林分密度的关系方面研究较少。

    不同年龄种群在不同地点的林分平均个体大小和密度之间的关系称之为林分密度效应[11],林分密度是影响树木生长的主要因子之一,适宜的林分密度可以增强林分生长[1215]和稳定性[1617],并在一定程度上影响林分的空间结构[16,18]、蓄积[1920]、生物量[2122]、碳储量[2324]和土壤养分[2528]等。由于林分密度在树木生长和林分经营中的重要性,众多学者对不同树种做了研究,其中关于水曲柳(Fraxinus mandshurica[14,21]、桉树(Eucalyptus[19]和马尾松(Pinus massoniana[26]的研究结果表明,适宜的中等林分密度最有利于林分内树木的生长,而关于杨树(Populus[12]、银合欢(Leucaena leucocephala[13]、樟子松(Pinus sylvestris[22]、落叶松(Larix gmelinii[25]和杉木(Cunninghamia lanceolata[2728]等的研究表明,随着林分密度的增加,林分内树种各生长指标会逐渐降低。出现以上不同结果,主要是因为所研究的林分林龄较为单一,是处于静态变化下的研究,并不能反映林分整个生长过程下的变化情况。

    基于此,众多学者引入林龄指标,同时分析了林分密度和林龄对林分生长的影响,其中通过对亚热带阔叶树种木荷(Schima superba)在不同林龄下的研究发现,不同级别径材需求的木荷,应栽培在不同密度、不同生境下,以保证其更好地生长[29]。对华北落叶松(Larix gmelinii var. principis-rupprechtii)的研究发现,不同林龄,不同密度下其生长速率不一,且呈单峰曲线生长趋势[30]。对南方杉木的研究则发现,随着林分林龄和密度的增加,个体间分化程度会增大,且变化不一[31]。上述研究虽对针阔叶树种的林分密度和林龄进行了分析,但并没有将二者共同作用对林分生长的影响进行分析,且多以人工林为主。因此,本研究依据胡桃楸林龄和林分密度从各自单一条件影响和共同作用两方面进行分析,旨在确定胡桃楸天然次生林不同林龄的适宜林分密度,以期为后期经营管理提供支撑。

    东北东部地区属温带大陆性季风气候,四季分明,雨热同季,夏季高温多雨,冬季寒冷漫长。气温年较差在35 ~ 42℃,年均降水量为400 ~ 600 mm,平均无霜期达到130 d,土壤类型主要以黑土为主,该地区的植被类型隶属于长白山植物区系,主要乔木树种有胡桃楸、水曲柳、黄檗(Phellodendron amurense)、蒙古栎(Quercus mongolica)、紫椴(Tilia amurensis)、糠椴(Tilia mandshurica)、春榆(Ulmus pumila)、色木槭(Acer mono)、暴马丁香(Syringa reticulata)、稠李(Prunus padus)、白桦(Betula platyphylla)、枫桦(Betula costata)、山杨(Populus davidiana)、山槐(Albizia kalkora)、白牛槭(Acer mandshuricum)红松(Pinus koraiensis)、樟子松、臭松(Abies nephrolepis)、落叶松等。

    按山脉和纬度分布情况,分别在张广才岭、老爷岭、长白山和哈达岭地区(123°58′13″ ~ 130°24′10″E,40°52′25″ ~ 46°48′50″N)对胡桃楸天然次生林基本情况进行了全面调查,共计调查样地80块。

    对4个研究区内进行全面踏查,选择胡桃楸作为优势树种且占比较高的次生林进行样地设置,每个地区设置不同密度的胡桃楸次生林样地各20块,共计80块,样地采用样圆法进行设置,即以某一点为圆心,以17.85 m为半径建立圆形样地,样地距离林缘大于20 m,不跨河流、道路或伐开的调查线,分别对样圆内胸径 ≥ 5 cm的所有活立木进行调查、挂号并定位,调查内容包括树种名称、胸径、树高、冠幅(S-N、W-E)、角度和距圆心的距离等,并同时记录每块样地的经纬度、海拔、坡度、坡向、坡位、土壤深度和腐殖质层深度等,样地基本情况如表1

    表  1  样地基本情况
    Table  1.  Basic situation of sample plots
    指标 Index ZGCL LYL CBS HDL
    样方数 Number of quadrat 20 20 20 20
    纬度 Latitude 43°27′10″ ~ 46°03′03″N 42°48′56″ ~ 45°59′41″N 41°19′36″ ~ 43°32′29″N 41°57′11″ ~ 43°08′01″N
    海拔 Altitude/m 235 ~ 570 261 ~ 680 322 ~ 752 381 ~ 711
    坡度 Slope/(°) 0 ~ 21 0 ~ 21 0 ~ 21 0 ~ 21
    坡向 Aspect 阴坡、半阴坡
    Shady slope, semi-
    shady slope
    阴坡、半阴坡
    Shady slope, semi-
    shady slope
    阴坡、半阴坡
    Shady slope, semi-
    shady slope
    阴坡、半阴坡
    Shady slope, semi-
    shady slope
    坡位 Slope position 中下坡 Mid-downhill slope 中下坡 Mid-downhill slope 中下坡 Mid-downhill slope 中下坡 Mid-downhill slope
    土层深度 Soil depth/cm 7.6 ~ 48.2 11.8 ~ 45.6 5.5 ~ 29.6 7.9 ~ 29.8
    腐质层厚度 Humus thickness/cm 5 ~ 31 6 ~ 14 7 ~ 23 7 ~ 15
    注:ZGCL. 张广才岭;LYL. 老爷岭;CBS. 长白山;HDL. 哈达岭。下同。Notes: ZGCL, Zhangguangcailing; LYL, Laoyeling; CBS, Changbai Mountain; HDL, Hadaling. The same below.
    下载: 导出CSV 
    | 显示表格

    林龄划分:以优势树种胡桃楸年龄作为林龄进行计算。在每块样地内,用生长锥钻取所有胡桃楸树种的树芯,并保证钻至髓芯,保存并标记好后好带回实验室,用WinDendro年轮分析系统测定年龄。根据所测年龄范围,应用系统聚类分析法,将所测胡桃楸林龄划分为 < 20龄(Ⅰ)、20 ~ 40龄(Ⅱ)、40 ~ 60龄(Ⅲ)和 > 60龄(Ⅳ)4个龄组。

    林分密度划分:经调查计算,各地区样地胡桃楸次生林林分密度均在368 ~ 667株/hm2范围内,应用系统聚类分析法,同时结合实际林分密度分布情况,将所有林分密度划分为3个不同密度等级,分别为低密度林分(L),350 ~ 450株/hm2;中密度林分(M),450 ~ 550株/hm2;高密度林分(H),大于550株/hm2。且在密度划分结果中,保证每个地区每种密度林分均 ≥ 5块。

    本文采用常见的7种模型进行拟合,拟合模型如下

    线y=ax+b (1)
    y=alnx+b (2)
    y=aebx (3)
    y=ax2+bx+c (4)
    Logisticy=a/[1+e(b+cx)] (5)
    Weibully=a[1exp(bx)c] (6)
    Richardy=a[1exp(bx)]c (7)

    式中:y表示胡桃楸生长指标胸径、树高和蓄积;x表示林龄和林分密度;abc分别为各模型参数。

    实验数据和表格建立均采用Excel 2007进行整理,同时采用SPSS 19对数据进行相关分析和比较,采用SigmaPlot 12.0进行作图。

    通过对不同地区胡桃楸生长情况调查发现(表2),长白山地区胡桃楸平均胸径最大,达到20.31 cm,显著大于其他地区(P < 0.05),其次为老爷岭和张广才岭,二者之间差异不显著,哈达岭地区平均胸径最小,为18.96 cm,显著小于其他地区(P < 0.05)。各地区的树高大小关系为CBS > LYL > ZGCL > HDL,与胸径大小关系一致,长白山地区胡桃楸树高显著大于其他地区(P < 0.05)。各地区胡桃楸蓄积量同样是长白山地区表现最大,且显著高于其他地区(P < 0.05),老爷岭和张广才岭地区次之,哈达岭地区则显著小于其他地区(P < 0.05)。表明长白山地区胡桃楸生长较之其他地区更好。

    表  2  胡桃楸生长情况
    Table  2.  Growth situation of J. mandshurica
    区域 Area 胸径 DBH/cm 树高 Tree height/m 蓄积量/(m3·hm−2
    Volume/(m3·ha−1
    张广才岭 ZGCL 19.59 ± 0.87b 16.47 ± 0.52c 78.36 ± 1.23b
    老爷岭 LYL 19.65 ± 0.96b 16.58 ± 0.43b 81.59 ± 0.89b
    长白山 CBS 20.31 ± 0.75a 16.84 ± 0.58a 86.13 ± 1.51a
    哈达岭 HDL 18.96 ± 0.65c 16.41 ± 0.61c 75.55 ± 0.99c
    注:同列不同小写字母表示不同地区差异显著(P < 0.05)。Note: different lowercase letters in the same column indicate significant differences in different regions (P < 0.05).
    下载: 导出CSV 
    | 显示表格

    为确定胡桃楸林龄和林分密度与生长关系的最优模型,现对常见的模型进行拟合。由表3可知林龄与胡桃楸胸径、树高和蓄积的最优拟合模型均为Logistic模型,R2值最大,分别为0.983、0.962和0.973,平均绝对误差(MAE)值最小,分别为6.070、2.078和23.936。林分密度与胸径、树高和蓄积的最优拟合模型均为二次项模型,R2值最大,分别为0.834、0.666和0.859,平均绝对误差(MAE)值最小,分别为5.258、1.843和24.203。因此本研究可由Logistic、二项式模型分别表示林龄、林分密度与胡桃楸胸径、树高和蓄积的关系。

    表  3  模型拟合结果
    Table  3.  Results of model fitting
    模型
    Model
    指标
    Item
    林龄/a Stand age/year 林分密度/(株·hm−2
    Stand density/(tree·ha−1)
    公式 Formula R2 MAE 公式 Formula R2 MAE
    线性
    Linear
    胸径 DBH y = 0.487 6x + 10.007 0 0.880 6.591 y = −0.086 9x + 74.537 0 0.826 6.118
    树高 Tree height y = 0.155 4x + 12.296 0 0.723 2.228 y = −0.026 8x + 32.420 0 0.636 2.282
    蓄积
    Volume
    y = 1.962 3x − 19.633 0 0.920 25.233 y = −0.348 9x + 239.610 0 0.858 24.564
    对数
    Logarithm
    胸径 DBH y = 19.681ln x − 41.670 0.959 6.643 y = −43.45ln x + 300.53 0.806 6.018
    树高Tree height y = 6.523 9ln x − 5.0921 0.852 2.155 y = −13.31ln x + 101.51 0.612 2.057
    蓄积
    Volume
    y = 77.366ln x − 220.890 0.956 25.373 y = −175.5ln x + 1153.2 0.848 24.370
    指数
    Exponent
    胸径 DBH y = 13.812exp(0.017 9x) 0.783 6.700 y = 146.14exp(−0.003x) 0.791 6.708
    树高Tree height y = 12.707exp(0.009 1x) 0.672 2.209 y = 40.654exp(−0.002x) 0.618 1.887
    蓄积
    Volume
    y = 8.738 2exp(0.042 4x) 0.694 33.538 y = 2242.7exp(−0.007x) 0.722 33.791
    二次项
    Quadratic
    term
    胸径 DBH y = −0.010 9x2 + 1.428 8x − 7.826 8 0.983 6.140 y = −0.000 1x2 + 0.028 8x + 45.465 0.834 5.258
    树高 Tree height y = −0.005 0x2 + 0.588 5x + 4.089 4 0.959 2.198 y = 0.000 8x2 + 0.050 6x + 12.953 0 0.666 1.843
    蓄积
    Volume
    y = −0.029 3x2 + 4.499 0x − 67.701 0 0.968 24.064 y = −0.000 1x2− 0.242 9x + 212.980 0 0.859 24.203
    Logistic 胸径 DBH y = 39.966 1/[1 + exp(2.144 6 − 0.088 9x)] 0.983 6.070
    树高 Tree height y = 20.962 4/[1 + exp(1.905 3 − 0.122 2x)] 0.962 2.078
    蓄积
    Volume
    y = 102.023 4/[1 + exp(4.110 8 − 0.117 2x)] 0.973 23.936
    Weibull 胸径 DBH y = 53.836 0[1 − exp(−0.061 3x) 0.345 3] 0.949 6.455
    树高 Tree height y = 22.430 5[1 − exp(−0.232 5x) 0.214 3] 0.910 2.140
    蓄积
    Volume
    y = −210.807 8[1 − exp(−0.231 3x) (−0.026 8)] 0.884 28.643
    Richard 胸径 DBH y = 41.624 9[1 − exp(−0.057 4x)]2.484 6 0.979 6.391
    树高 Tree height y = 21.131 8[1 − exp(0.097 1x)]2.997 2 0.950 2.144
    蓄积
    Volume
    y = 109.834 9[1 − exp(−0.068 2x)]7.610 1 0.972 24.032
    下载: 导出CSV 
    | 显示表格

    通过对各地区胡桃楸胸径、树高和蓄积与林龄之间关系的研究发现(图1),胡桃楸径生长、高生长、蓄积生长随着林龄的增加均呈现出逐渐增大的趋势。径生长和高生长前期增大速度较快,当达到一定林龄范围后,增加趋势变缓。通过林龄与胸径、树高Logistic模型拟合变化来看,各地区胡桃楸生长至50 ~ 60年时,其胸径和树高均进入缓慢生长阶段,并逐渐趋于平缓。蓄积生长前期增加缓慢,中期增加速度较快,当达到一定林龄范围后,后期增加趋势变缓,整体呈“S”型变化。通过林龄和蓄积Logistic模型拟合变化来看,各地区胡桃楸生长至50年之后,其蓄积进入缓慢生长阶段,并逐渐趋于平缓。

    图  1  不同地区胡桃楸林龄对其生长的影响
    Figure  1.  Effects of stand age on growth of J. mandshurica in different regions

    图2可知,各地区胡桃楸径生长、高生长、蓄积生长均随着林分密度的增加呈现出逐渐降低的趋势。林分密度在450株/hm2以内,胡桃楸胸径降低趋势较小,超过450株/hm2后,其胸径降低速度加快;林分密度在500株/hm2以下时,胡桃楸树高降低趋势较小,超过500株/hm2后,其树高值降低速度加快;同时低密度下胡桃楸蓄积量均高于其他林分密度。以上结果均表明林分密度越高对胡桃楸径生长、高生长和蓄积生长影响越大。从整体拟合变化来看,4个地区林分密度与胡桃楸胸径、树高、蓄积均呈单峰曲线关系,在一定林分密度下各生长均存在最大值,即存在最优林分密度。

    图  2  不同地区林分密度对胡桃楸生长的影响
    Figure  2.  Effects of stand density on growth of J. mandshurica in different regions

    通过对各龄组和不同林分密度与胡桃楸生长指标进行方差分析发现(表4),龄组、林分密度和龄组与林分密度的交互作用对胡桃楸各生长指标的影响均达到极显著差异水平(P < 0.01)。说明胡桃楸的生长受龄组和林分密度,以及两者之间相互作用的影响。

    表  4  龄组和林分密度与胡桃楸生长指标方差分析
    Table  4.  Variance analysis of age groups, stand density and growth index of J. mandshurica
    变量 Variable胸径 DBH树高 Tree height蓄积 Volume
    FPFPFP
    龄组 Age group106.368 < 0.0123.363 < 0.0165.873 < 0.01
    林分密度 Stand density6.761 < 0.012.795 < 0.017.151 < 0.01
    龄组 × 林分密度 Age group × stand density5.325 < 0.012.113 < 0.014.368 < 0.01
    下载: 导出CSV 
    | 显示表格

    因此,为进一步了解胡桃楸林龄与林分密度对其生长的影响规律,现就二者共同作用对胡桃楸生长影响进行分析(表5),结果表明,同一林分密度下,随着林龄的增加,胡桃楸胸径、树高和蓄积均逐渐增加,不同林龄段之间差异性显著(P < 0.05),且在Ⅰ、Ⅱ、Ⅲ林龄段增加幅度大于Ⅳ林龄段。同一林龄下,随着林分密度的增加,胸径、树高和蓄积变化情况不一,在Ⅰ、Ⅱ低林龄段,表现为先增加后降低的趋势,而在Ⅲ、Ⅳ高林龄段,则表现为逐渐降低的趋势。

    表  5  不同地区林分密度和林龄对胡桃楸生长影响
    Table  5.  Effects of stand density and age on growth of J. mandshurica in different regions
    龄组
    Age group
    林分密度/
    (株·hm−2
    Stand density/
    (tree·ha−1
    张广才岭ZGCL 老爷岭LYL
    胸径 DBH/cm 树高 Tree height/m 蓄积/
    (m3·hm−2
    Volume/
    (m3·ha−1
    胸径 DBH/cm 树高 Tree height/m 蓄积/
    (m3·hm−2
    Volume/
    (m3·ha−1
    L 16.81 ± 0.62aC 14.32 ± 0.35aC 12.36 ± 0.15aD 17.12 ± 0.62aD 14.43 ± 0.52aC 13.65 ± 0.12aD
    M 16.93 ± 0.54aC 14.23 ± 0.25aC 13.55 ± 0.32aD 17.33 ± 0.65aD 14.55 ± 0.31aB 14.94 ± 0.09aD
    H 16.65 ± 0.35aC 13.95 ± 0.38aC 12.54 ± 0.25aC 17.15 ± 0.46aC 14.16 ± 0.24aB 12.55 ± 0.15aD
    L 25.36 ± 0.75aB 18.44 ± 0.24aB 36.25 ± 0.15aC 25.68 ± 0.38aC 18.84 ± 0.26aB 39.64 ± 0.32aC
    M 26.74 ± 0.65aB 18.91 ± 0.65aB 41.64 ± 0.16aC 26.99 ± 0.51aC 19.08 ± 0.35aA 42.51 ± 0.18aC
    H 24.22 ± 0.71aB 17.61 ± 0.45aB 31.08 ± 0.19aB 24.84 ± 0.35aB 18.12 ± 0.12aA 33.75 ± 0.29aC
    L 36.05 ± 0.82aA 20.52 ± 0.42aA 80.05 ± 0.45aB 36.76 ± 0.56aB 20.66 ± 0.34aA 81.24 ± 0.33aB
    M 35.85 ± 0.79aA 20.15 ± 0.35aA 77.56 ± 0.38aB 36.12 ± 0.67aB 20.14 ± 0.24aA 76.64 ± 0.51aB
    H 34.12 ± 0.75aA 19.58 ± 0.54aA 65.38 ± 0.34aA 35.11 ± 0.71aA 19.75 ± 0.26aA 69.88 ± 0.24aB
    L 43.96 ± 0.68aA 21.56 ± 0.35aA 105.64 ± 0.33aA 44.25 ± 0.56aA 21.76 ± 0.35aA 111.05 ± 0.55aA
    M 41.24 ± 1.12aA 20.44 ± 0.54aA 91.87 ± 0.25abA 41.83 ± 0.52aA 20.82 ± 0.24aA 96.37 ± 0.26abA
    H 38.83 ± 0.98aA 19.47 ± 0.53aA 77.58 ± 0.16bA 38.62 ± 0.34bA 19.51 ± 0.22aA 85.85 ± 0.16bA
    龄组
    Age group
    林分密度/
    (株·hm−2
    Stand density/
    (tree·ha−1
    长白山 CBS 哈达岭 HDL
    胸径 DBH/cm 树高 Tree height/m 蓄积/(m3·hm−2
    Volume/
    (m3·ha−1
    胸径 DBH/cm 树高 Tree height/m 蓄积/
    (m3·hm−2
    Volume/
    (m3·ha−1
    L 17.32 ± 0.45aD 14.63 ± 0.46aC 14.87 ± 0.25aD 16.43 ± 0.12aD 14.12 ± 0.21aC 12.58 ± 0.25aD
    M 17.63 ± 0.31aD 14.52 ± 0.17aC 15.22 ± 0.22aC 16.52 ± 0.21aD 14.33 ± 0.25aB 13.69 ± 0.34aC
    H 17.25 ± 0.25aC 14.45 ± 0.28aB 13.66 ± 0.13aC 16.46 ± 0.19aC 14.05 ± 0.11aB 13.56 ± 0.16aC
    L 25.88 ± 0.16aC 19.26 ± 0.13aB 41.28 ± 0.25aC 25.15 ± 0.25aC 18.11 ± 0.09aB 35.46 ± 0.35aC
    M 27.19 ± 0.18aC 19.49 ± 0.35aB 44.95 ± 0.36aB 26.24 ± 0.27aC 18.54 ± 0.31aA 39.87 ± 0.25aB
    H 25.31 ± 0.19aB 18.58 ± 0.39aA 37.56 ± 0.33aB 23.91 ± 0.31aB 17.16 ± 0.25aA 28.59 ± 0.28aB
    L 37.04 ± 0.27aB 20.94 ± 0.34aA 88.89 ± 0.42aB 35.58 ± 0.35aB 19.88 ± 0.16aA 77.71 ± 0.19aB
    M 36.55 ± 0.38aB 20.11 ± 0.28bB 79.52 ± 0.25aA 35.15 ± 0.38aB 19.15 ± 0.24abA 71.89 ± 0.41aA
    H 35.66 ± 0.34aA 19.92 ± 0.18bA 71.43 ± 0.28aA 33.72 ± 0.33aA 18.32 ± 0.28bA 62.35 ± 0.35aA
    L 44.87 ± 0.36aA 22.15 ± 0.27aA 112.58 ± 0.38aA 42.86 ± 0.34aA 21.03 ± 0.31aA 99.08 ± 0.37aA
    M 42.14 ± 0.25aA 21.11 ± 0.18aA 89.66 ± 0.44bA 40.64 ± 0.36aA 19.66 ± 0.29abA 86.38 ± 0.22abA
    H 39.15 ± 0.28aA 19.73 ± 0.19bA 76.31 ± 0.35bA 37.93 ± 0.31bA 18.84 ± 0.24bA 73.16 ± 0.28bA
    注:同列不同小写字母表示相同龄组不同密度下差异显著(P < 0.05);同列不同大写字母表示不同龄组相同密度下差异显著(P < 0.05)。Notes: different lowercase letters in the same column indicate significant differences under varied densities in the same age group (P < 0.05); different capital letters in the same column indicate significant differences under same densities in varied age groups (P < 0.05).
    下载: 导出CSV 
    | 显示表格

    4个地区胸径、树高和蓄积生长情况表现为,Ⅰ、Ⅱ林龄阶段时,在450 ~ 550株/hm2林分密度下生长效果最好,但相对于其他林分密度差异不显著,Ⅲ、Ⅳ林龄阶段时,在350 ~ 450株/hm2林分密度下生长效果最好,且Ⅳ林龄阶段时差异显著(P < 0.05)。

    由于地区的不同,林分所处的经纬度、海拔等存在差异,再加上光照、水分和养分等环境因素的不同,导致同一树种生长存在差异[32]。如张闻博等[33]对不同地区毛竹(Phyllostachys edulis)的研究,罗也等[34]对东北不同地区乔木林分生长的研究均发现地区的不同会导致同一树种生长存在差异。本研究发现长白山地区胡桃楸平均胸径、平均树高和蓄积均最大,显著大于其他地区(P < 0.05),各指标大小关系为CBS > LYL > ZGCL > HDL,说明长白山地区胡桃楸生长空间较之其他地区更好,能够获得更多的光照和水肥等生长资源。这与前人[32]的研究结果保持一致,即区域的差异在一定程度上影响着林木的生长。

    林龄反映了林分生长过程的动态变化,各因素对于林木生长的影响在不同林龄下存在较大差异[30]。例如对杉木[35]、木荷[29]、落叶松[30]等的研究均发现,随着林龄的增加,林木径高生长均随之增加。这与本研究结果相一致,即各地区胡桃楸胸径、树高和蓄积大小均随着林龄的增加呈现出逐渐增大的趋势,且前期增大速度较大,当达到一定林龄范围后,增加趋势变缓,直到不再增加。通过拟合和计算,各地区胡桃楸生长至50 ~ 60年之间时,胡桃楸胸径、树高和蓄积出现最大值。这与罗也等[2]关于胡桃楸基准林龄的研究结果保持一致,即胡桃楸在50 ~ 60年时生长趋于稳定。

    适宜的林分密度有利于林分和树种的健康生长[3637]。不同的林分密度下,林分内树种所接收的光照、吸收的土壤水分和养分是有所不同的,这是导致林分内树种生长产生差异的主要原因[38]。胸径和树高是研究密度控制最主要的指标,有研究表明,林分密度过高会在一定程度上影响树种胸径和树高的生长,例如张程等[19]研究发现,中等密度栽植的桉树林在径高和材积生长上均表现为最好,密度越高其径高和材积生长量越低。也有研究发现,林分密度只与胸径呈负相关关系,但对树高无规律性影响,例如Pachas等[39]研究发现林分密度的不同对银合欢胸径生长有负向作用,但对其树高增长无显著规律。而本研究结果表明各地区胡桃楸胸径、树高和蓄积大小均随着林分密度的增加呈现出逐渐降低的趋势,低密度下降低趋势较小,超过一定密度后,降低速度加快,说明林分密度越高,对胡桃楸生长的抑制作用越大。通过拟合和计算,在一定林分密度下各地区胡桃楸胸径和树高指标存在最大值,即存在生长最优林分密度,而蓄积生长则表现为低密度大于高密度林分,主要是因为林分密度过高时,会造成光照、水分、养分和生存空间的竞争,林木个体所获得的资源减少,从而导致林木生长降低。本研究与部分学者的研究结果一致[4041],但朱仕明等[42]对乐昌含笑(Michelia chapensis),Neilsen等[43]对桉树的研究表明,林分密度对树高无显著影响,这与本结果不同,一方面以上作者的研究多以人工林为主,而本研究以天然次生林为主,另一方面可能与研究的树种、林龄、密度范围、立地条件和经纬度之间的差异有关。

    确定不同林龄下合理的林分密度,对于林分的生长发育和充分利用环境资源具有重要意义[30]。如王翰琛等[44]和杨桂娟等[31]对杉木的研究、楚秀丽等[29]对木荷的研究、王云霓等[30]对华北落叶松的研究,均发现不同密度下,不同年龄树木生长指标之间存在显著差异。本文通过研究发现,同一林分密度下,随着林龄的增加,胡桃楸胸径、树高和蓄积均逐渐增加,且在低林龄段增加幅度大于高林龄段。同一林龄下,随着林分密度的增加,胸径、树高和蓄积变化情况不一,在Ⅱ以下的低林龄段,表现为先增加后降低的趋势,而Ⅱ以后的高林龄段,则表现为逐渐降低的趋势,说明高林龄段胡桃楸适宜较小密度林分,而低林龄段胡桃楸在中等密度下生长最为适合,即胡桃楸林龄越大,对于林分密度的要求越高。总体来看,4个地区胸径、树高和蓄积生长情况表现为:Ⅰ、Ⅱ林龄段,450 ~ 550株/hm2的中等林分密度下生长最好,Ⅲ、Ⅳ林龄段时,350 ~ 450株/hm2的低林分密度下生长最好。

    以上研究结果可为未来胡桃楸林分经营提供数据支持,即在不同地区,胡桃楸不同林龄段内,通过抚育和疏伐控制林分密度,满足其生长空间,同时考虑到本研究是基于大尺度下研究林龄和林分密度对胡桃楸生长的影响,经纬度以及气候因素的变化同样会对生长规律有一定的影响,这也是接下来研究的重点。

  • 图  1   研究区降水特征和土壤体积含水量变化特征

    Figure  1.   Variation characteristics of precipitation and soil volumetric moisture content in the study area

    图  2   不同类型降雨下土壤水分含量动态变化

    LR.小雨;MR.中雨;HR.大雨。GL.草地;SL.灌木林;AL.乔木林。下同。LR, light rain; MR, moderate rain; HR, heavy rain. GL, grassland; SL, shrubland; AL, arbor forest land. Same as below.

    Figure  2.   Dynamic changes of soil moisture content under different rainfall types

    图  3   不同降雨类型前后不同土层水分变化特征

    Figure  3.   Characteristics of water changes in different soil layers before and after varied rainfall types

    表  1   样地基本情况

    Table  1   Basic information of experimental sample plots

    样地类型
    Sample plot type
    坡度
    Slope/(°)
    坡向
    Slope aspect
    盖度
    Coverage/%
    叶面积指数
    Leaf area index
    土壤密度
    Soil bulk density/(g∙cm−3)
    总孔隙度
    Total porosity/%
    草地 Grassland 1.67 西南 Southwest 57.67 2.43 ± 0.13c 1.69 ± 0.04a 32.41 ± 2.91b
    灌木林地 Shrubland 2.25 西南 Southwest 69.33 3.01 ± 0.16b 1.56 ± 0.04b 42.14 ± 2.18a
    乔木林地 Arbor forest land 1.93 西南 Southwest 49.50 3.31 ± 0.29a 1.60 ± 0.03b 37.88 ± 5.10a
    注:表中最后3列数据为平均值 ± 标准差;同列不同小写字母表示不同植被类型之间差异显著(P < 0.05)。Notes: data in the last three columns of the table are mean ± standard deviation. Different lowercase letters in the same column indicate significant differences between varied vegetation types (P < 0.05).
    下载: 导出CSV

    表  2   不同植被类型覆盖下土壤粒径组成

    Table  2   Soil particle size composition under different vegetation types

    样地类型
    Sample plot type
    土层深度
    Depth of soil layer/cm
    土壤粒径组成
    Soil particle size composition/%
    黏粒
    Clay (< 2 μm)
    粉粒
    Silt (2 − 50 μm)
    砂粒
    Sand (50 ~ 2 000 μm)
    草地
    Grassland
    0 ~ 20 1.64 ± 0.29BCa 10.81 ± 0.70Dc 87.55 ± 0.84Aa
    20 ~ 40 2.28 ± 0.44Aa 15.61 ± 0.74Cb 82.11 ± 0.31Bb
    40 ~ 60 1.28 ± 0.08Ca 20.38 ± 0.56Bb 78.34 ± 0.56Cb
    60 ~ 80 1.76 ± 0.12BCa 23.70 ± 0.48Aa 74.54 ± 0.41Db
    80 ~ 100 1.81 ± 0.09Aba 24.08 ± 1.09Aa 74.12 ± 1.17Dc
    灌木林地
    Shrubland
    0 ~ 20 1.27 ± 0.08Aa 25.80 ± 1.01Aa 72.93 ± 0.95Cc
    20 ~ 40 1.16 ± 0.18ABb 23.33 ± 0.57Ba 75.51 ± 0.73Bc
    40 ~ 60 0.96 ± 0.11BCb 18.49 ± 0.80Cc 80.55 ± 0.82Aa
    60 ~ 80 1.21 ± 0.11Ab 23.18 ± 0.97Ba 75.61 ± 1.07Bb
    80 ~ 100 0.79 ± 0.07Cb 17.91 ± 0.57Cb 81.29 ± 0.63Ab
    乔木林地
    Arbor forest land
    0 ~ 20 1.42 ± 0.08Aa 20.22 ± 0.64Bb 78.36 ± 0.71Cb
    20 ~ 40 0.91 ± 0.11Bb 15.83 ± 0.63Cb 83.26 ± 0.52Ba
    40 ~ 60 1.38 ± 0.09Aa 22.71 ± 1.07Aa 75.90 ± 1.03Dc
    60 ~ 80 1.01 ± 0.07Bc 14.17 ± 0.45Cb 84.82 ± 0.39Ba
    80 ~ 100 0.58 ± 0.11Cc 11.57 ± 1.20Dc 87.86 ± 1.09Aa
    注:表中最后3列数据为平均值 ± 标准差;同列不同小写字母表示同一土层深度不同植被类型之间差异显著(P < 0.05),同列不同大写字母表示同一植被类型不同土层深度之间差异显著(P < 0.05)。同表4。Notes: data in the last three columns of the table are mean ± standard deviation. Different lowercase letters in the same column indicate significant differences between varied vegetation types in the same soil depth (P < 0.05), different capital letters in the same column indicate significant differences between varied soil depths of the same vegetation type (P < 0.05). Same as Tab. 4.
    下载: 导出CSV

    表  3   各类型降雨特征

    Table  3   Rainfall characteristics of various types

    降雨类型
    Rainfall type
    降雨次数
    Rainfall time
    占总降雨次数的比例
    Proportion of total rainfall frequency/%
    总降雨量
    Total rainfall/mm
    占总降雨量的比例
    Proportion to total rainfall/%
    平均降雨量
    Average rainfall/mm
    小雨 Light rain2668.4283.021.303.19 ± 2.81
    中雨 Moderate rain513.1683.221.3616.64 ± 3.03
    大雨 Heavy rain718.42223.457.3431.91 ± 5.15
    总计 Total38389.6
    下载: 导出CSV

    表  4   研究区不同植被类型覆盖下土壤水分特征

    Table  4   Characteristics of soil moisture covered by different vegetation types in the study area

    样地类型
    Sample plot type
    土层深度
    Depth of soil layer/cm
    各层土壤水分含量
    Soil moisture content of each layer/%
    最大值
    Max. value/%
    最小值
    Min. value/%
    变异系数
    Variation coefficient
    草地
    Grassland
    0 ~ 20 10.59 ± 2.34Cc 16.22 6.08 22.14
    20 ~ 40 14.34 ± 2.50Aa 19.30 9.82 17.42
    40 ~ 60 7.45 ± 1.06Ec 11.07 5.73 14.27
    60 ~ 80 8.63 ± 0.66Dc 9.73 6.03 7.68
    80 ~ 100 12.32 ± 0.98Bc 13.99 9.21 7.95
    均值 Mean 10.67 ± 2.77 14.06 7.37 13.89
    灌木林地
    Shrubland
    0 ~ 20 12.03 ± 3.56Bb 28.10 4.01 29.60
    20 ~ 40 13.66 ± 3.06Ab 19.30 6.72 22.44
    40 ~ 60 11.97 ± 3.38Bb 17.88 5.98 28.26
    60 ~ 80 11.87 ± 3.21Cb 16.51 6.96 27.05
    80 ~ 100 13.63 ± 3.24Ab 18.36 9.03 23.76
    均值 Mean 12.63 ± 0.93 20.03 6.54 26.22
    乔木林地
    Arbor forest land
    0 ~ 20 13.11 ± 2.48Da 21.26 6.62 18.88
    20 ~ 40 12.41 ± 3.24Ec 20.44 6.72 26.13
    40 ~ 60 13.70 ± 3.40Ba 20.81 8.41 24.81
    60 ~ 80 13.17 ± 2.72Ca 18.40 7.98 20.67
    80 ~ 100 17.55 ± 2.11Aa 21.26 12.81 12.04
    均值 Mean 13.99 ± 2.04 20.43 8.51 20.51
    下载: 导出CSV

    表  5   典型降雨事件的特征参数

    Table  5   Characteristic parameters of typical rainfall events

    降雨类型
    Rainfall type
    日期
    Date
    降雨量
    Rainfall/mm
    降雨历时
    Rain duration/h
    小雨
    Light rain
    04−09 6.0 1.33
    04−19 7.2 2.33
    07−19 7.0 5.92
    08−09 9.0 6.50
    10−03—10−04 7.8 4.75
    中雨
    Moderate rain
    06−25—06−26 20.2 4.17
    06−27—06−28 13.8 13.66
    08−20 19.0 7.92
    07−09—07−10 16.8 5.75
    07−16—07−17 13.4 12.58
    大雨
    Heavy rain
    04−23—04−26 31.0 7.98
    05−18 29.0 6.33
    05−26 32.0 7.42
    07−04—07−06 30.8 22.58
    09−11—09−13 30.6 13.91
    下载: 导出CSV

    表  6   不同类型降雨对土壤水分含量补给效应的差异

    Table  6   Differences in the replenishment effect of different types of rainfall on soil moisture content

    样地类型
    Sample plot type
    降雨类型
    Rainfall type
    响应时长
    Response time/h
    达峰时长
    Peak reaching time/h
    补给量
    Supplement amount/%
    补给速率
    Supplement speed/(%∙h−1)
    草地 Grassland 小雨 Light rain 4.75 ± 2.97Ab 10.30 ± 4.23Bb 0.74 ± 0.52Bb 0.08 ± 0.07Bb
    中雨 Moderate rain 2.10 ± 1.13Ab 17.55 ± 3.33Aa 3.89 ± 2.08Ab 0.24 ± 0.17Bb
    大雨 Heavy rain 2.10 ± 1.51Aa 8.70 ± 3.06Ba 5.03 ± 2.12Aa 0.64 ± 0.39Ab
    灌木林地 Shrubland 小雨 Light rain 1.10 ± 0.68Ab 6.10 ± 3.23Ab 3.75 ± 2.96Ba 0.70 ± 0.43Ba
    中雨 Moderate rain 0.90 ± 0.65Ab 4.30 ± 3.90Ab 8.62 ± 2.31Aa 4.11 ± 3.50Aa
    大雨 Heavy rain 0.70 ± 0.62Aa 4.90 ± 2.10Ab 7.20 ± 3.56ABa 1.87 ± 1.39ABa
    乔木林地 Arbor forest land 小雨 Light rain 10.20 ± 4.67Aa 18.90 ± 7.05Aa 0.96 ± 1.44Bb 0.04 ± 0.05Bb
    中雨 Moderate rain 3.95 ± 1.83Ba 17.65 ± 4.68Aa 3.20 ± 2.71Bb 0.20 ± 0.19Bb
    大雨 Heavy rain 2.15 ± 1.39Ba 9.45 ± 2.87Ba 6.05 ± 1.66Aa 0.69 ± 0.31Ab
    注:表中数据为平均值 ± 标准差;同列不同小写字母表示同种降雨不同植被类型之间差异显著(P < 0.05),同列不同大写字母表示同种植被类型不同雨强之间差异显著(P < 0.05)。Notes: data in the table are mean ± standard deviation. Different lowercase letters in the same column indicate significant differences between varied vegetation types of the same rainfall types (P < 0.05), different capital letters in the same column indicate significant differences between varied rainfall types in the same vegetation types (P < 0.05).
    下载: 导出CSV
  • [1]

    Fu X, Lyu H, Yu Z, et al. Effects of soil hydraulic properties on soil moisture estimation[J]. Journal of Meteorological Research, 2023, 37(1): 58−74. doi: 10.1007/s13351-023-2049-2

    [2]

    Wang C, Fu B, Zhang L, et al. Soil moisture-plant interactions: an ecohydrological review[J]. Journal of Soils and Sediments, 2019, 19(1): 1−9. doi: 10.1007/s11368-018-2167-0

    [3] 王正宁, 王新平, 刘博. 荒漠灌丛内降雨和土壤水分再分配[J]. 应用生态学报, 2016, 27(3): 755−760.

    Wang Z N, Wang X P, Liu B. Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 755−760.

    [4] 陈伟, 李亚新, 王红阳, 等. 黄土丘陵区坡耕地与撂荒地土壤水分对不同强度降雨的动态响应特征[J]. 生态学报, 2022, 42(1): 1−8. doi: 10.1016/j.chnaes.2020.10.010

    Chen W, Li Y X, Wang H Y, et al. Dynamic response characteristics of soil moisture on slope cultivated land and abandoned land to different rainfall intensities in loess hilly region[J]. Acta Ecologica Sinica, 2022, 42(1): 1−8. doi: 10.1016/j.chnaes.2020.10.010

    [5] 石春茂, 罗娅, 杨胜天, 等. 干热河谷区不同坡位土壤水分对降雨的响应特征[J]. 应用生态学报, 2022, 33(5): 1352−1362.

    Shi C M, Luo Y, Yang S T, et al. Response characteristics of soil moisture at different slope positions to rainfall in dry-hot valley[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1352−1362.

    [6]

    Yinglan A, Wang G Q, Sun W C, et al. Stratification response of soil water content during rainfall events under different rainfall patterns[J]. Hydrological Processes, 2018, 32(20): 3128−3139. doi: 10.1002/hyp.13250

    [7] 李新乐, 吴波, 张建平, 等. 白刺沙包浅层土壤水分动态及其对不同降雨量的响应[J]. 生态学报, 2019, 39(15): 5701−5708.

    Li X L, Wu B, Zhang J P, et al. Dynamics of shallow soil water content in Nitraria tangutorum nebkha and response to rainfall[J]. Acta Ecologica Sinica, 2019, 39(15): 5701−5708.

    [8]

    Ren Z, Pan J, Li Z, et al. The interaction of aeolian sand and slope on runoff and soil loss on a loess slope via simulated rainfall under laboratory conditions[J]. Water, 2023, 15(5): 888. doi: 10.3390/w15050888

    [9] 杨磊, 张涵丹, 陈利顶. 黄土宽梁缓坡丘陵区次降雨对土壤水分补给效率与阈值研究[J]. 中国科学: 地球科学, 2018, 48(4): 457−466.

    Yang L, Zhang H D, Chen L D. Identification on threshold and efficiency of rainfall replenishment to soil water in semi-arid loess hilly areas[J]. Science China Earth Sciences, 2018, 48(4): 457−466.

    [10] 高露, 张圣微, 朱仲元, 等. 干旱半干旱区退化草地土壤水分变化及其对降雨时间格局的响应[J]. 水土保持学报, 2020, 34(1): 195−201.

    Gao L, Zhang S W, Zhu Z Y, et al. Soil moisture changes in degraded grassland and its response to rainfall temporal pattern in arid and semi-arid areas[J]. Journal of Soil and Water Conservation, 2020, 34(1): 195−201.

    [11]

    Mei X, Zhu Q, Ma L, et al. The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes[J]. Catena, 2018, 162: 333−344. doi: 10.1016/j.catena.2017.10.029

    [12]

    Ge F, Xu M, Gong C, et al. Land cover changes the soil moisture response to rainfall on the Loess Plateau[J/OL]. Hydrological Processes, 2022, 36(11): e14714[2023−02−20]. https://doi.org/10.1002/hyp.14714.

    [13] 刘粲. 黄土高原植被恢复对土壤水分的影响研究[D]. 石家庄: 河北地质大学, 2022.

    Liu C. Study on the effect of vegetation restoration on soil moisture on the Loess Plateau[D]. Shijiazhuang: Hebei GEO University, 2022.

    [14]

    Liu Y F, Fang H, Leite P A M, et al. Mattic epipedon fragmentation strengthened the soil infiltration capacity of a hillside alpine meadow on the Qinghai-Tibetan Plateau[J/OL]. Ecohydrology, 2023: e2552[2023−04−30]. https://doi.org/10.1002/eco.2552.

    [15]

    Gao X, Li H, Zhao X, et al. Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: considering both deep soil moisture deficit and soil organic carbon sequestration[J]. Geoderma, 2018, 319: 61−69. doi: 10.1016/j.geoderma.2018.01.003

    [16]

    Wang Y, Zhu Q, Zhao W, et al. The dynamic trend of soil water content in artificial forests on the Loess Plateau, China[J/OL]. Forests, 2016, 7(12): 236[2022−10−21]. https://doi.org/10.3390/f7100236.

    [17] 王贺年, 余新晓, 李轶涛. 北京山区林地土壤水分动态变化[J]. 山地学报, 2011, 29(6): 701−706. doi: 10.3969/j.issn.1008-2786.2011.06.009

    Wang H N, Yu X X, Li Y T. Soil water dynamics of four advantage forest in Beijing mountain area[J]. Journal of Mountain Science, 2011, 29(6): 701−706. doi: 10.3969/j.issn.1008-2786.2011.06.009

    [18] 崔艳红, 毕华兴, 侯贵荣, 等. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 2021, 43(1): 77−87.

    Cui Y H, Bi H X, Hou R G, et al. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77−87.

    [19]

    Koukoula M, Schwartz C S, Nikolopoulos E I, et al. Understanding the impact of soil moisture on precipitation under different climate and meteorological conditions: a numerical sensitivity study over the CONUS[J/OL]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD035096[2023−04−25]. https://doi.org/10.1029/2021JD035096.

    [20]

    Petrie M D, Collins S L, Litvak M E. The ecological role of small rainfall events in a desert grassland[J]. Ecohydrology, 2015, 8(8): 1614−1622. doi: 10.1002/eco.1614

    [21] 赵娜, 李少宁, 徐晓天, 等. 北京地区典型绿化树种水分利用效率及其影响因素[J]. 北京林业大学学报, 2021, 43(3): 44−54.

    Zhao N, Li S N, Xu X T, et al. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44−54.

    [22] 吕娇, Mustaq Shah, 崔义, 等. 土壤紧实度和凋落物覆盖对城市森林土壤持水、渗水能力的影响[J]. 北京林业大学学报, 2020, 42(8): 102−111.

    Lü J, Mustaq S, Cui Y, et al. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102−111.

    [23] 陈文媛, 张少妮, 华瑞, 等. 黄土丘陵区林草恢复进程中土壤入渗特征研究[J]. 北京林业大学学报, 2017, 39(1): 62−69.

    Chen W Y, Zhang S N, Hua R, et al. Effects of forestland and grassland restoration process on soil infiltration characteristics in loess hilly region[J]. Journal of Beijing Forestry University, 2017, 39(1): 62−69.

    [24]

    Muluneh A, Biazin B, Stroosnijder L, et al. Impact of predicted changes in rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia[J]. Regional Environmental Change, 2015, 15(6): 1105−1119. doi: 10.1007/s10113-014-0685-x

    [25]

    Sun S, He C, Qiu L, et al. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in northern China[J]. Agricultural and Forest Meteorology, 2018, 252: 39−48. doi: 10.1016/j.agrformet.2017.12.264

    [26]

    Zheng X, Zhu J. A new climatic classification of afforestation in Three-North Regions of China with multi-source remote sensing data[J]. Theoretical and Applied Climatology, 2017, 127(1−2): 465−480. doi: 10.1007/s00704-015-1646-0

    [27]

    Liu Z, Jia G, Yu X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain[J/OL]. Agriculture, Ecosystems & Environment, 2020, 287: 106697[2022−05−21]. https://doi.org/10.1016/j.agee.2019.106697.

    [28] 徐冉, 张圣微, 朱仲元, 等. 典型草原禁牧条件下土壤水分对降雨模式的响应[J]. 干旱区研究, 2019, 36(6): 1359−1367.

    Xu R, Zhang S W, Zhu Z Y, et al. Response of soil moisture content to rainfall patterns in typical steppe under grazing prohibition[J]. Arid Zone Research, 2019, 36(6): 1359−1367.

    [29] 白盛元. 黄土土柱降雨特征与土壤水分入渗过程研究[D]. 杨凌: 西北农林科技大学, 2015.

    Bai S Y. Study on progress of soil moisture changing in loess soil column[D]. Yangling: Northwest A&F University, 2015.

    [30] 韩姣姣, 段旭, 赵洋毅. 金沙江干热河谷不同植被坡面土壤水分时空分布特征[J]. 干旱区地理, 2019, 42(1): 121−129.

    Han J J, Duan X, Zhao Y Y. Spatial and temporal variability of soil moisture on slope land of different vegetation of dry-hot valley in Jinsha River[J]. Arid Land Geography, 2019, 42(1): 121−129.

    [31]

    Xia Z, Daojing Z, Jingyun F. Satellite-based studies on large-scale vegetation changes in China[J]. Journal of Integrative Plant Biology, 2012, 54(10): 713−728. doi: 10.1111/j.1744-7909.2012.01167.x

    [32] 陈璟, 杨宁. 衡阳紫色土丘陵坡地不同植被恢复过程中土壤水文效应[J]. 中国生态农业学报, 2013, 21(5): 590−597. doi: 10.3724/SP.J.1011.2013.00590

    Chen J, Yang N. Soil hydrological function at different vegetation restoration stages in purple soil slopelands in Hengyang[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 590−597. doi: 10.3724/SP.J.1011.2013.00590

    [33] 原黎明. 黑河上游天老池流域土壤水分时空变异的试验研究[D]. 兰州: 兰州大学, 2016.

    Yuan L M. Spatial and temporal distribution pattern of soil moisture about a typical small watershed in the upstream of Heihe River[D]. Lanzhou: Lanzhou University, 2016.

    [34]

    Griesbauer H, de Long S C, Rogers B, et al. Growth sensitivity to climate varies with soil moisture regime in spruce-fir forests in central British Columbia[J]. Trees, 2021, 35(2): 649−669. doi: 10.1007/s00468-020-02066-8

    [35] 冯博. 黄土高原北部两种典型草地土壤水分时空分异及对降雨的响应[D]. 沈阳: 沈阳农业大学, 2020.

    Feng B. Spatiotemporal variation of soil moisture and its response to rainfall in two typical grasslands in the northern Loess Plateau[D]. Shenyang: Shenyang Agricultural University, 2020.

    [36] 王云强, 邵明安, 刘志鹏. 黄土高原区域尺度土壤水分空间变异性[J]. 水科学进展, 2012, 23(3): 310−316.

    Wang Y Q, Shao M A, Liu Z P. Spatial variability of soil moisture at a regional scale in the Loess Plateau[J]. Advances in Water Science, 2012, 23(3): 310−316.

    [37]

    Yu B, Liu G, Liu Q, et al. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau, China[J]. Catena, 2018, 165: 125−132. doi: 10.1016/j.catena.2018.01.020

    [38] 赵磊磊, 朱清科, 聂立水, 等. 陕北黄土区陡坡土壤水分变异规律研究[J]. 生态环境学报, 2012, 21(2): 253−259. doi: 10.3969/j.issn.1674-5906.2012.02.010

    Zhao L L, Zhu Q K, Nie L S, et al. Soil moisture variation patterns of steep slope in the loess region in northern Shaanxi Province[J]. Ecology and Environmental Sciences, 2012, 21(2): 253−259. doi: 10.3969/j.issn.1674-5906.2012.02.010

    [39]

    Li X, Shao M, Xu X. Prediction of soil water storage using temporal stability in different landscape positions on the northern Loess Plateau, China[J/OL]. Hydrological Processes, 2022, 36(9): e14671[2023−04−25]. https://doi.org/10.1002/hyp.14671.

    [40] 吴远菲, 肖培青, 郝仕龙, 等. 黄丘区典型灌木和荒草地土壤含水量变化对降雨的响应[J]. 水土保持研究, 2022, 29(4): 1−6. doi: 10.3969/j.issn.1005-3409.2022.4.stbcyj202204002

    Wu Y F, Xiao P Q, Hao S L, et al. Response of soil moisture of typical shrubland and waste grassland to precipitation in the loess hilly-gully region[J]. Research of Soil and Water Conservation, 2022, 29(4): 1−6. doi: 10.3969/j.issn.1005-3409.2022.4.stbcyj202204002

    [41]

    Li F, Zhao W, Liu H. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China[J/OL]. PLoS One, 2013, 8(9): e73003[2021−10−21]. https://pubmed.ncbi.nlm.nih.gov/24019888/.

    [42]

    Liu Y, Cui Z, Huang Z, et al. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China[J/OL]. Catena, 2019, 182: 104147[2022−01−23]. https://doi.org/10.1016/j.catena.2019.104147.

    [43]

    Yu G, Zhuang J, Nakayama K, et al. Root water uptake and profile soil water as affected by vertical root distribution[J]. Plant Ecology, 2007, 189(1): 15−30. doi: 10.1007/s11258-006-9163-y

    [44]

    Lee E, Kumar P, Barron G G A, et al. Impact of hydraulic redistribution on multispecies vegetation water use in a semiarid savanna ecosystem: an experimental and modeling synthesis[J]. Water Resources Research, 2018, 54(6): 4009−4027. doi: 10.1029/2017WR021006

    [45]

    Jin Z, Guo L, Lin H, et al. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation[J]. Hydrological Processes, 2018, 32(12): 1738−1754. doi: 10.1002/hyp.13143

    [46]

    Sehler R, Li J, Reager J T, et al. Investigating relationship between soil moisture and precipitation globally using remote sensing observations[J]. Journal of Contemporary Water Research & Education, 2019, 168(1): 106−118.

  • 期刊类型引用(1)

    1. 杨周,张建军,赵炯昌,胡亚伟,李阳,王勃. 晋西黄土区油松林土壤碳氮磷计量特征对林龄和密度的响应. 北京林业大学学报. 2024(12): 30-40 . 本站查看

    其他类型引用(0)

图(3)  /  表(6)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  140
  • PDF下载量:  84
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-07-27
  • 网络出版日期:  2023-04-19
  • 发布日期:  2023-05-24

目录

/

返回文章
返回