Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis
-
摘要:目的 制备一种新型纳米SiO2-IPBC微胶囊防霉剂并探究其性能,旨在提高3-碘-2-丙炔基氨基甲酸丁酯(IPBC)在木材中的固着性能和耐老化性能,使其具有长效缓释性能,拓宽其在木材防霉领域的应用范围。方法 通过溶胶–凝胶法合成的纳米SiO2粉末为囊壁,以IPBC为囊芯,采用真空共混法制备纳米SiO2-IPBC微胶囊木材防霉剂。采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、热重分析(TGA)、耐光老化和缓释性能分析等方法对微胶囊进行表征;以橡胶木为研究对象,可可球二孢、黑曲霉、绿色木霉、桔青霉为被试菌种,对不同质量分数纳米SiO2-IPBC微胶囊防霉剂处理的橡胶木抑菌效力进行综合评价,获得微胶囊防霉剂的综合性能指标。结果 纳米SiO2-IPBC微胶囊呈规则球状,粒径分布在20 ~ 100 nm之间,包覆率达46.33%。微胶囊发生热失重温度为120 ~ 280 ℃;经紫外灯照射60 min仅产生轻微黄变。微胶囊在质量分数20%的乙醇水溶液中,前60 min释放速率较快,后180 min释放缓慢,240 min时释放率达50%。FTIR分析表明微胶囊有Si−OH键生成。SEM表明微胶囊除了分布于木材导管中,还大量沉积在木材纹孔内。橡胶木防霉实验结果表明:随着微胶囊防霉剂质量分数的增加,其对4种霉菌的防治效力逐渐提高,当微胶囊防霉剂的质量分数为1.25%时,其对可可球二孢、桔青霉、绿色木霉、黑曲霉的防治效力均达到最高值,分别为78.125%、75.000%、68.750%和62.750%,防治效力由强到弱的顺序为可可球二孢 > 桔青霉 > 绿色木霉 > 黑曲霉。结论 本研究制备的纳米SiO2-IPBC微胶囊新型防霉剂,改善了IPBC的耐光老化性能,并具有缓释效果。微胶囊防霉剂对于4种橡胶木常见的霉菌均有较好的抑制作用,其中对蓝变菌可可球二孢的防治效果最佳。Abstract:Objective This paper aims to prepare a new nano SiO2-IPBC microcapsule fungicide and study its characteristics, as well as improve the fixation and aging resistance of 3-iodo-2-propynyl-butyl-carbamate (IPBC) in wood, and expand its application in the field of wood mildew proof.Method Nano SiO2-IPBC microcapsules were prepared by blending IPBC and nano SiO2 particles in a vacuum, nano SiO2 prepared by sol-gel method was the capsule wall, and IPBC was the capsule core. The microcapsules were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV-aging resistance, and slow-release performance. Taking Hevea brasiliensis as the research object, Botryodiplodia theobromae, Aspergillus niger, Trichoderma viride, and Penicillium citrinum as the tested strains. The comprehensive indicators were obtained from different mass fraction microcapsule-ethanol impregnated rubber wood treatments.Result Nano SiO2-IPBC microcapsules were regular spherical, with particle size distribution between 20–100 nm and coating rate of 46.33%. The temperature of the weight loss of microcapsules was 120–280 ℃. Only slight yellowing occurred after 60-min UV aging; in 20% ethanol aqueous solution, the release rate of microcapsules was fast in the first 60 min, gradually slowed down in the next 180 min, and its release rate reached 50% in 240 min. FTIR analysis showed that there were Si−OH bonds in the microcapsules. SEM showed that microcapsules were not only distributed in wood vessels, but also deposited in wood pits. The results of mildew proof experiment showed that with the increase of the mass fraction of the microcapsule fungicide, the control effect against 4 fungi had gradually improved. When the mass fraction of microcapsule fungicide increased to 1.25%, the control effect against Botryodiplodia theobromae, Aspergillus niger, Trichoderma viride and Penicillium citrinum reached the highest level, which were 78.125%, 75.000%, 68.750% and 62.750%, respectively. The order of control effect (from strong to weak) was as follows: Botryodiplodia theobromae > Penicillium citrinum > Trichoderma viride > Aspergillus niger.Conclusion The nano SiO2-IPBC microcapsules prepared in this study improve the UV aging resistance of IPBC, as well as has a slow-release effect. The microcapsule fungicide has an excellent inhibitory effect on the 4 common mildews of rubber wood and has the best control effect on Botryodiplodia theobromae.
-
Keywords:
- 3-iodo-2-propynyl-butyl-carbamate (IPBC) /
- nano SiO2 /
- microcapsule /
- rubber wood /
- anti-photoaging /
- anti-mildew
-
-
表 1 试件受霉菌表面感染值分级
Table 1 Grade of surface infection of specimen affected by mold
感染值
Infection value试件表面感染面积比例
Proportion of infection area of specimen surface0 无菌丝、无霉点 No mycelium growth and mould 1 ≤ 1/4 2 (1/4 ~ 1/2] 3 (1/2 ~ 3/4] 4 > 3/4 表 2 不同质量分数微胶囊防霉剂的霉菌抑菌圈平均直径
Table 2 Average diameter of inhibition zone of microcapsule anti-mould agent against different mass fractions
mm 供试菌 Tested mold 对照组
Control0.25%样品
0.25% sample0.50%样品
0.50% sample0.75%样品
0.75% sample1.00%样品
1.00% sample1.25%样品
1.25% sample可可球二孢
Botryodiplodia theobromae7.22 ± 0.13 10.97 ± 0.56 12.56 ± 0.18 29.06 ± 0.59 38.06 ± 1.26 55.38 ± 1.22 黑曲霉
Aspergillus niger7.51 ± 0.26 9.64 ± 0.48 12.22 ± 0.09 25.71 ± 1.12 28.06 ± 0.83 48.85 ± 1.17 绿色木霉
Trichoderma viride7.43 ± 0.12 10.42 ± 0.39 13.28 ± 0.73 23.42 ± 0.98 34.12 ± 1.24 50.42 ± 0.96 桔青霉
Penicillium citrinum7.94 ± 0.22 9.85 ± 0.42 15.72 ± 0.13 27.09 ± 0.67 36.81 ± 0.95 52.86 ± 1.67 -
[1] 李玉栋. 预防橡胶木蓝变和霉变的研究[J]. 林业科学, 2003, 39(4): 98−103. doi: 10.3321/j.issn:1001-7488.2003.04.016 Li Y D. Study on prevention of rubber wood against sapstain and mold infection[J]. Scientia Silvae Sinicae, 2003, 39(4): 98−103. doi: 10.3321/j.issn:1001-7488.2003.04.016
[2] Nair S, Pandey K K, Giridhar B N, et al. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol[J]. International Biodeterioration & Biodegradation, 2017, 122(1): 100−106.
[3] 常璐璐, 孙墨珑, 徐国祺, 等. 樟树叶提取物对木材霉菌的防治效果及防霉机理研究[J]. 北京林业大学学报, 2017, 39(1): 99−106. Chang L L, Sun M L, Xu G Q, et al. Control efficiency and action mechanisms of camphor leaf extractives on mold resistance of wood[J]. Journal of Beijing Forestry University, 2017, 39(1): 99−106.
[4] 梁哨, 潘昌仁, 岑晓倩, 等. 涂饰处理对毛竹和炭化毛竹表面视觉性质及防腐性能的影响[J]. 森林工程, 2022, 38(1): 52−57. doi: 10.3969/j.issn.1006-8023.2022.01.007 Liang S, Pan C R, Cen X Q, et al. Assessment of the color difference and decay resistance performance of moso bamboo and carbonized moso bambootreatments with different painting[J]. Forest Engineering, 2022, 38(1): 52−57. doi: 10.3969/j.issn.1006-8023.2022.01.007
[5] 翟炜, 何深远, 崔爱玲, 等. 碘代丙炔基氨基甲酸酯的防腐性能评价[J]. 木材工业, 2014, 28(2): 22−25. doi: 10.19455/j.mcgy.2014.02.006 Zhai W, He S Y, Cui A L, et al. Decay resistance of iodopropargyl carbamate derivative[J]. China Wood Industry, 2014, 28(2): 22−25. doi: 10.19455/j.mcgy.2014.02.006
[6] 李晓文, 李家宁, 李民, 等. 碘代丙炔基丁基氨基甲酸酯复配制剂用于橡胶木防霉防蓝变效果检测[J]. 木材工业, 2015, 29(2): 42−45. Li X W, Li J N, Li M, et al. Effects of iodopropargyl carbamate (IPBC) on blue stain and mould in rubber wood[J]. China Wood Industry, 2015, 29(2): 42−45.
[7] 肖忠平, 卢晓宁, 陆继圣. IPBC对木质材料的防腐处理工艺研究[J]. 西北林学院学报, 2009, 24(5): 140−143, 151. Xiao Z P, Lu X N, Lu J S. Preservative treatment of wood and wood-based composites with IPBC[J]. Journal of Northwest Forestry University, 2009, 24(5): 140−143, 151.
[8] Zhang R, Li Y, He Y, et al. Preparation of iodopropynyl butycarbamate loaded halloysite and its anti-mildew activity[J]. Journal of Materials Research and Technology, 2020, 9(5): 10148−10156. doi: 10.1016/j.jmrt.2020.07.019
[9] 张明刚, 瞿欣, Winkowski Karen. 一种新型水分散型IPBC杀菌剂及其性能[J]. 精细与专用化学品, 2008, 16(9): 15−17, 2. doi: 10.3969/j.issn.1008-1100.2008.09.012 Zhang M G, Qu X, Karen W. A new water dispersed IPBC bactericide and its properties[J]. Fine and Specialty Chemicals, 2008, 16(9): 15−17, 2. doi: 10.3969/j.issn.1008-1100.2008.09.012
[10] 肖忠平, 张苏俊, 陆继圣. 戊唑醇和IPBC防腐处理材的FTIR分析[J]. 木材加工机械, 2009, 20(2): 15−16, 30. doi: 10.3969/j.issn.1001-036X.2009.02.004 Xiao Z P, Zhang S J, Lu J S. FTIR analysis of wood treated with tebuconazole or IPBC preservation FTIR analysis of wood treated with tebuconazole or IPBC preservation[J]. Wood Processing Machinery, 2009, 20(2): 15−16, 30. doi: 10.3969/j.issn.1001-036X.2009.02.004
[11] Duan H, Qiu T, Guo L, et al. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives[J]. Journal of Hazardous Materials, 2015, 293(15): 46−53.
[12] Liu Y, Yan L, Heiden P, et al. Use of nanoparticles for controlled release of biocides in solid wood[J]. Journal of Applied Polymer Science, 2001, 79(3): 458−465. doi: 10.1002/1097-4628(20010118)79:3<458::AID-APP80>3.0.CO;2-H
[13] Chang L L, Xu G Q, Wang L H. Preparation and antifungal activities of microcapsules of neem extract used in Populus tomentosa deteriorated by three mold fungi[J]. BioResources, 2018, 13(4): 8373−8384.
[14] Wanyika H, Gatebe E, Kioni P, et al. Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems[J]. Journal of Nanoscience and Nanotechnolgy, 2012, 12(3): 2221−2228. doi: 10.1166/jnn.2012.5801
[15] Zhao P, Cao L, Ma D, et al. Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants[J]. Molecules, 2017, 22(5): 817−830. doi: 10.3390/molecules22050817
[16] Ambrogio M W, Thomas C R, Zhao Y L, et al. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 903−913. doi: 10.1021/ar200018x
[17] Fan L, Wen L X, Li Z Z, et al. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide[J]. Materials Research Bulletin, 2006, 41(12): 2268−2275. doi: 10.1016/j.materresbull.2006.04.014
[18] Li Z Z, Xu S A, Wen L X, et al. Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Journal of Controlled Release, 2006, 111(1−2): 81−88.
[19] Vallet-Regi M, A Rámila, Real R, et al. A new property of MCM-41: drug delivery system[J]. Chemistry of Materials, 2000, 13(2): 308−311.
[20] 中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 防霉剂对木材霉菌及变色菌防治效力的试验方法: GB/T 18261—2013[S]. 北京: 中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantin of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test method for anti-mildew agents in controlling wood mould and stain fungi: GB/T 18261−2013[S]. Beijing: Standards Press of China, 2013.
[21] Sun J H, Shan Z, Maschmeyer T, et al. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes[J]. Langmuir, 2003, 19(20): 8395−8402. doi: 10.1021/la0351156
[22] 刘冬梅, 李理, 杨晓泉, 等. 用牛津杯法测定益生菌的抑菌活力[J]. 食品研究与开发, 2006, 27(3): 110−111. doi: 10.3969/j.issn.1005-6521.2006.03.044 Liu D M, Li L, Yang X Q, et al. Determination of the antimicrobial activity of probiotic by Oxford plate assay system[J]. Food Research and Development, 2006, 27(3): 110−111. doi: 10.3969/j.issn.1005-6521.2006.03.044
[23] 蔡佳文, 李跃, 吴春春, 等. 缓蚀剂负载中空SiO2微球的制备及性能[J]. 硅酸盐学报, 2020, 48(4): 584−591. Cai J W, Li Y, Wu C C, et al. Preparation and properties of corrosion inhibitor-loaded hollow silica microspheres[J]. Journal of the Chinese Ceramic Society, 2020, 48(4): 584−591.
[24] Huang Y, Gram A, Fang P. UV-degradation of IPBC in natural water sample[M]. Roskilde: Roskilde University, 2008: 11−16.
[25] Jin X, Zhang R, Su M, et al. Functionalization of halloysite nanotubes by enlargement and layer-by-layer assembly for controlled release of the fungicide iodopropynyl butylcarbamate[J]. RSC Advances, 2019, 9: 42062−42070. doi: 10.1039/C9RA07593C
[26] 靳肖贝. 纳米埃洛石负载IPBC竹材防霉剂的制备与性能研究[D]. 北京: 中国林业科学研究院, 2018. Jin X B. Preparation and performance of IPBC bamboo preservatives supported on nano-sized halloysite[D]. Beijing: Chinese Academy of Forestry, 2018.
[27] Popat A, Liu J, Lu G Q M, et al. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles[J]. Journal of Materials Chemistry, 2012, 22(22): 11173−11178. doi: 10.1039/c2jm30501a
[28] Wanyika H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres[M]//Nanotechnology for sustainable development. Cham: Springer, 2013: 321−329.
[29] 黄晓琳, 倪佳馨, 韩有奇, 等. 中空介孔二氧化硅微球的制备及表征分析[J]. 林产化学与工业, 2022, 42(1): 64−70. doi: 10.3969/j.issn.0253-2417.2022.01.009 Huang X L, Ni J X, Han Y Q, et al. Preparation and characterization of hollow mesoporous silica microspheres[J]. Chemistry and Industry of Forest Products, 2022, 42(1): 64−70. doi: 10.3969/j.issn.0253-2417.2022.01.009
[30] Kositchaiyong A, Rosarpitak V, Hamada H, et al. Anti-fungal performance and mechanical-morphological properties of PVC and wood/PVC composites under UV-weathering aging and soil-burial exposure[J]. International Biodeterioration & Biodegradation, 2014, 91: 128−137.
[31] 赵鹏炜, 徐国祺, 杨鸿. 纳米CuO/硅溶胶制剂处理杨木性能的研究[J]. 北京林业大学学报, 2021, 43(11): 109−117. doi: 10.12171/j.1000-1522.20210299 Zhao P W, Xu G Q, Yang H. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109−117. doi: 10.12171/j.1000-1522.20210299
[32] 石江涛, 李坚. 东北常见树种木材形成早期组织波谱特征差异分析[J]. 林业科学, 2016, 52(6): 115−121. Shi J T, Li J. Comparative analysis of spectroscopy features of early-stage wood forming tissue in common tree species in Northeast, China[J]. Scientia Silvae Sinicae, 2016, 52(6): 115−121.
[33] 平丽娟, 柴宇博, 刘君良, 等. 硅溶胶与GU/GMU树脂复合改性橡胶木的性能[J]. 林业科学, 2021, 57(10): 111−119. doi: 10.11707/j.1001-7488.20211011 Ping L J, Chai Y B, Liu J L, et al. Performance of modified Rubber wood by silica sol in combination with GU/GMU resin[J]. Scientia Silvae Sinicae, 2021, 57(10): 111−119. doi: 10.11707/j.1001-7488.20211011
[34] 李坚. 木材波谱学[M]. 北京: 科学出版社, 2003: 105−110. Li J. Wood spectroscopy[M]. Beijing: Science Press, 2003: 105−110.
[35] 刘明光, 刘宇, 赵茹. 异噻唑啉酮微胶囊的制备表征及释放行为[J]. 高分子材料科学与工程, 2021, 37(2): 49−53, 60. doi: 10.16865/j.cnki.1000-7555.2021.0068 Liu M G, Liu Y, Zhao R. Preparation, characterization and release behavior of isothiazolinone microcapsules[J]. Polymer Materials Science & Engineering, 2021, 37(2): 49−53, 60. doi: 10.16865/j.cnki.1000-7555.2021.0068
-
期刊类型引用(6)
1. 崔恒久,曾教科,李雯,黄海杰,彭世清,郭冬,蒲金基,周永凯,李辉亮. 腰果CBF基因家族的鉴定及响应冷胁迫的表达模式. 热带作物学报. 2024(03): 473-480 . 百度学术
2. 韩立群,张捷,赵钰,梅闯,马凯. 新疆野生核桃JfDREB1A基因的克隆与原核表达分析. 西北农业学报. 2023(07): 1050-1057 . 百度学术
3. 赵淑玲,王永斌,蹇小勇,郭兴贵,朱福民,杨静静,霍发喜. 平欧杂交榛研究进展. 现代化农业. 2023(09): 46-49 . 百度学术
4. 夏蕴,巢建国,谷巍,盛业龙,王玉卓,惠西珂,王凯,王圆圆. 倒春寒胁迫与恢复对茅苍术生长、生理及关键酶基因的影响. 中成药. 2020(08): 2187-2191 . 百度学术
5. 宋静武,彭磊. 核桃CBF基因在低温胁迫中表达. 湖北林业科技. 2019(02): 7-13 . 百度学术
6. 刘晓丹,王霞,杨祥波. 非生物胁迫下山腊梅CpCBF基因的表达模式分析. 黑龙江农业科学. 2017(12): 18-21 . 百度学术
其他类型引用(3)