• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

阔叶红松林功能多样性与森林碳汇功能关系

郝珉辉, 代莹, 岳庆敏, 范春雨, 张春雨

郝珉辉, 代莹, 岳庆敏, 范春雨, 张春雨. 阔叶红松林功能多样性与森林碳汇功能关系[J]. 北京林业大学学报, 2022, 44(10): 68-76. DOI: 10.12171/j.1000-1522.20220237
引用本文: 郝珉辉, 代莹, 岳庆敏, 范春雨, 张春雨. 阔叶红松林功能多样性与森林碳汇功能关系[J]. 北京林业大学学报, 2022, 44(10): 68-76. DOI: 10.12171/j.1000-1522.20220237
Hao Minhui, Dai Ying, Yue Qingmin, Fan Chunyu, Zhang Chunyu. Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function[J]. Journal of Beijing Forestry University, 2022, 44(10): 68-76. DOI: 10.12171/j.1000-1522.20220237
Citation: Hao Minhui, Dai Ying, Yue Qingmin, Fan Chunyu, Zhang Chunyu. Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function[J]. Journal of Beijing Forestry University, 2022, 44(10): 68-76. DOI: 10.12171/j.1000-1522.20220237

阔叶红松林功能多样性与森林碳汇功能关系

基金项目: 国家自然科学基金项目(31971650)
详细信息
    作者简介:

    郝珉辉,博士,讲师。主要研究方向:森林生物多样性与生态系统功能关系、功能多样性。Email:haomh0515@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    张春雨,博士,教授。主要研究方向:森林可持续经营理论与技术、森林群落结构与功能。Email:zcy0520@163.com 地址:同上

  • 中图分类号: S791.247

Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function

  • 摘要:
      目的  阐明生物多样性与生态系统功能关系及其作用机制,不仅具有重要的生态理论价值,同时能够为以“生物多样性与生态系统功能同步提升”为目标的森林多功能经营提供科学理论支撑。然而阔叶红松林中生物多样性如何影响森林碳汇功能目前并不十分清楚,本研究旨在揭示功能多样性和功能组成对森林碳汇功能的影响机制,为促进阔叶红松林“固碳增汇”提供理论依据。
      方法  以吉林蛟河30 hm2阔叶红松林固定样地为研究对象,通过采集植物功能性状计算功能多样性和功能组成用于表征生物多样性,并通过结构方程模型检验了生态位互补效应、生物量比率效应以及植被数量效应对生物多样性−森林碳储量和碳增量的影响。
      结果  (1)生物多样性是森林碳汇功能的重要影响因素,提高功能多样性有助于提高森林碳增量,提高缓生−保守型性状的组成比例有助于提高森林碳储量,而保持一定的林分密度同样有利于充分地利用资源、提高森林固碳能力。(2)研究结果同时验证了生态位互补效应、生物量比率效应和植被数量效应假说,解释变量共同解释了13%的森林碳储量的变化以及36%的森林碳增量的变化。
      结论  碳储量和碳增量是森林生态系统碳汇功能的重要反映和直接体现,本研究在一定程度上揭示了生物多样性与森林碳汇功能关系的作用机制,表明阔叶红松林中生物多样性与碳汇功能的关系格局是多种生态学机制共同作用的结果。研究结果能够为实现阔叶红松林“固碳增汇”以及“生物多样性与生态系统功能同步提升”提供一定的理论依据。
    Abstract:
      Objective  Exploring the relationship between biodiversity and ecosystem functions (BEF) was proposed to be a central issue in ecology and a key prerequisite for multi-functional forest management. However, the specific mechanisms regulating biodiversity and forest carbon sink function relationship in broadleaved Korean pine forests were still not understood very well. Based on the observations from a 30 ha broadleaved Korean pine forest sample plot in Jiaohe, northeastern China, this study aimed to clarify how different facets of biodiversity (i.e., functional diversity and composition) influence forest carbon sink functions.
      Method  Functional diversity and composition were obtained from seven plant functional traits. A structural equation modeling (SEM) was performed to test three alternative hypothesized mechanisms, including niche complementary effect, biomass ratio effect and vegetation quantity effect, which had the potential to regulate the biodiversity and carbon sink relationship.
      Result  (1) Biodiversity is an important influencing factor of forest carbon sink function. Improving functional diversity will help to increase forest carbon increment, and increasing the proportion of slow growth conservative traits will help to increase forest carbon storage. Maintaining a certain stand density will also help to fully utilize resources and improve forest carbon fixation capacity. (2) The results also verified the hypothesis of niche complementary effect, biomass ratio effect and vegetation quantity effect. The explanatory variables together explained the change of 13% forest carbon stock and 36% forest carbon increment.
      Conclusion  Carbon storage and carbon increment are important reflection and direct embodiment of carbon sink function of forest ecosystem. This study has revealed the mechanism of the relationship between biodiversity and forest carbon sink function to a certain extent, indicating that the relationship pattern between biodiversity and carbon sink function in broadleaved Korean pine forest is the result of multiple ecological mechanisms. The research results can provide a theoretical basis for the realization of “carbon fixation and sink enhancement” and “simultaneous enhancement of biodiversity and ecosystem functions” of broadleaved Korean pine forests.
  • 图  1   阔叶红松林样地示意图

    Figure  1.   Schematic diagram of the broadleaved and Korean pine mixed forest sample plot

    图  2   生物多样性与森林碳汇功能关系理论模型

    Figure  2.   Theoretical model employed to explore the relationship of biodiversity and carbon sink function

    图  3   群落加权平均性状的主成分排序图

    蓝色圆点表示20 m × 20 m的样方,红色箭头表示功能性状的群落加权平均值。Blue dots represent the 20 m × 20 m forest quadrats, and red arrows depict the community weighted mean traits (CWMs).

    Figure  3.   Biplot of the principal component analysis for community weighted mean traits

    图  4   地形因子的主成分排序图

    蓝色圆点表示20 m × 20 m的森林样方,红色箭头表示地形因子。ELE.海拔;SLO.坡度;ASP.坡向;CON.凸凹度。Blue dots represent the 20 m × 20 m forest quadrats, and red arrows depict the topographical factors, ELE, elevation; SLO, slope; ASP, aspect; CON, convexity.

    Figure  4.   Biplot of the principal component analysis for topographical factors

    图  5   生物多样性与森林碳汇功能作用机制的结构方程模型分析

    标准化均方根残差 < 0.01。红色线条表示正关系,绿色线条表示负关系;实线表示关系显著(P < 0.05),虚线表示关系不显著(P > 0.05)。线条上的数字为标准化的路径系数,线条粗细反映路径系数的大小。R2为决定系数,反映被解释量的大小。缩写字母解释同图2 ~ 4,字母旁的‘↑’和‘↓’分别表示主成分值随变量上升或下降。Standardized root mean square residual (SRMR) < 0.01. Red arrows represent positive effects, and the green arrows represent negative effects. The solid lines represent significant relationships (P < 0.05), while dashed lines represent insignificant relationship (P > 0.05). The values next to the lines are the standardized path coefficients (SPC). The line thickness is proportional to the standardized path coefficient. R2 represents the percentage of the response variations explained by the observed variables. The abbreviations of variables are the same as shown in Fig. 2-4; the symbols ‘↑’ and ‘↓’ indicate a significant increase or decrease, respectively.

    Figure  5.   Results of the structural equation model for the relationship of biodiversity and carbon sink function

    表  1   功能性状的生物学和生态学意义

    Table  1   Biological and ecological significance of functional traits

    功能性状 Functional trait单位 Unit生态学意义 Ecological significance
    叶面积
    Leaf area (LA)
    mm2 反映植物获取光照的能力
    Reflecting the ability of plants to obtain light
    比叶面积
    Specific leaf area (SLA)
    mm2/g 叶经济谱之一,反映植物获取单位面积光照所进行的投资以及植物的耐荫性
    One of the leaf economic spectra, which reflects the investment made by plants to obtain light per unit area and the shade tolerance of plants
    叶干物质含量
    Leaf dry matter content (LDMC)
    mg/g 叶经济谱之一,反映叶片能量−水分平衡,同时体现植物生长−存活权衡策略
    One of the leaf economic spectra, which reflects the energy water balance of leaves and the trade-off strategy of plant growth survival
    叶碳含量
    Leaf carbon concentration (LC)
    mg/g 反映植物的碳累积速率
    Reflecting the carbon accumulation rate of plants
    叶氮含量
    Leaf nitrogen concentration (LN)
    mg/g 叶经济谱之一,反映植物获取氮元素的能力以及最大光合速率
    One of the leaf economic spectra, reflecting the ability of plants to obtain nitrogen and the maximum photosynthetic rate
    叶碳氮比
    Leaf carbon nitrogen ratio (C/N)
    % 反映植物碳氮代谢状况以及营养利用效率
    Reflecting plant carbon and nitrogen metabolism and nutrient utilization efficiency
    木质密度
    Wood density (WD)
    g/mm3 茎经济谱之一,反映植物的生长−存活权衡策略
    One of the stem economic spectrum, reflecting the plant growth survival trade-off strategy
    下载: 导出CSV
  • [1] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980.

    Wu Z Y. Vegetation of China[M]. Beijing: Science Press, 1980.

    [2]

    Peng C, Zhou X, Zhao S, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction[J]. Global and Planetary Change, 2009, 66(3): 179−194.

    [3] 王晓峰, 勒斯木初, 张明明. “两屏三带”生态系统格局变化及其影响因素[J]. 生态学杂志, 2019, 38(7): 2138−2148. doi: 10.13292/j.1000-4890.201907.024

    Wang X F, Lesimuchu, Zhang M M. Ecosystem pattern change and its influencing factors of “two barriers and three belts”[J]. Chinese Journal of Ecology, 2019, 38(7): 2138−2148. doi: 10.13292/j.1000-4890.201907.024

    [4] 张斯屿. 东北天然林保护工程森林态系统服务功能变化评估(1992—2015)[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.

    Zhang S Y. Evaluation of forest ecosystem service change in NFPP area in northeast China from 1992 to 2015 [D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2019.

    [5]

    Luo W, Kim H S, Zhao X, et al. New forest biomass carbon stock estimates in Northeast Asia based on multisource data[J]. Global Change Biology, 2020, 26(12): 7045−7066. doi: 10.1111/gcb.15376

    [6] 郝珉辉, 李晓宇, 夏梦洁, 等. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响[J]. 林业科学, 2018, 54(5): 1−9. doi: 10.11707/j.1001-7488.20180501

    Hao M H, Li X Y, Xia M J, et al. Effects of tending felling on functional and phylogenetic structures in a multi-species temperate secondary forest at Jiaohe in Jilin Province[J]. Scientia Silvae Sinicae, 2018, 54(5): 1−9. doi: 10.11707/j.1001-7488.20180501

    [7] 郝占庆, 王庆礼, 代力民. 天然林保护工程在东北林区生物多样性保护中的意义[C]// 中国科学院生物多样性委员会. 面向 21 世纪的中国生物多样性保护: 第三届全国生物多样性保护与持续利用研讨会论文集. 北京: 中国林业出版社, 1998: 30−35.

    Hao Z Q, Wang Q L, Dai L M. The importance of the national programme for natural forests conservation on biodiversity conservation in northeast state owned forest areas of China[C]//Biodiversity Committee, the Chinese Academy of Sciences. China’s biodiversity conservation torward the 21st century: proceedings of the third national symposium on the conservation and sustainable use of biological diversity. Beijing: China Forestry Publishing House, 1998: 30−35.

    [8] 于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434. doi: 10.13287/j.1001-9332.201905.004

    Yu D P, Zhou W M, Zhou L, et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434. doi: 10.13287/j.1001-9332.201905.004

    [9] 张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1−18.

    Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement[J]. Journal of Beijing Forestry University, 2019, 41(5): 1−18.

    [10]

    Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x

    [11]

    Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2022−02−19]. https://www.science.org/doi/10.1126/science.aaf8957.

    [12]

    Forrester D I, Bauhus J. A review of processes behind diversity-productivity relationships in forests[J]. Current Forestry Reports, 2016, 2(1): 45−61. doi: 10.1007/s40725-016-0031-2

    [13]

    van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews, 2019, 94(4): 1220−1245.

    [14]

    Loreau M. Does functional redundancy exist?[J]. Oikos, 2004, 104(3): 606−611. doi: 10.1111/j.0030-1299.2004.12685.x

    [15]

    Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277: 1300−1302. doi: 10.1126/science.277.5330.1300

    [16]

    Díaz S, Cabido M, Zak M, et al. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina[J]. Journal of Vegetation Science, 1999, 10(5): 651−660. doi: 10.2307/3237080

    [17]

    Petchey O L, Gaston K J. Functional diversity (FD), species richness and community composition[J]. Ecology Letters, 2002, 5(3): 402−411. doi: 10.1046/j.1461-0248.2002.00339.x

    [18]

    Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(S3): S143−S164.

    [19]

    Cornelissen J H C, Lavorel S, Garnier E, et al. Handbook of protocols for standardised and easy measurements of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124

    [20]

    Pérez-Harguindeguy N, Diaz S, Gamier E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2013, 61(3): 167−234. doi: 10.1071/BT12225

    [21] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325−339.

    Liu X J, Ma K P. Plant functional traits: concepts, applications and future directions[J]. Scientia Sinica (Vitae), 2015, 45(4): 325−339.

    [22] 夏梦洁, 王晓霞, 郝珉辉, 等. 吉林蛟河针阔混交林功能性状分布格局及其对地形因素的响应[J]. 生态学报, 2021, 41(7): 2794−2802.

    Xia M J, Wang X X, Hao M H, et al. Distribution pattern of functional traits and its response to topographic factors in a conifer and broad-leaved mixed forest in Jiaohe, Jilin Province[J]. Acta Ecologica Sinica, 2021, 41(7): 2794−2802.

    [23]

    Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882−892. doi: 10.1111/j.0030-1299.2007.15559.x

    [24]

    Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8): 2290−2301. doi: 10.1890/07-1206.1

    [25]

    Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits[J]. Ecology, 2010, 91(1): 299−305. doi: 10.1890/08-2244.1

    [26]

    Tobner C M, Paquette A, Gravel D, et al. Functional identity is the main driver of diversity effects in young tree communities[J]. Ecology Letters, 2016, 19(6): 638−647. doi: 10.1111/ele.12600

    [27]

    Hao M, Messier C, Gen Y, et al. Functional traits drive biomass and productivity through multiple mechanisms in a temperate secondary forest[J]. European Journal of Forest Research, 2020, 139(6): 1−10.

    [28]

    Grime J P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 1998, 86(6): 902−910. doi: 10.1046/j.1365-2745.1998.00306.x

    [29]

    Lohbeck M, Poorter L, Paz H, et al. Functional diversity changes during tropical forest succession[J]. Perspectives in Plant Ecology Evolution & Systematics, 2012, 14(2): 89−96.

    [30]

    Lamlom S H, Savidge R A. A reassessment of carbon content in wood: variation within and between 41 North American species[J]. Biomass and Bioenergy, 2003, 25(4): 381−388. doi: 10.1016/S0961-9534(03)00033-3

    [31] 郝珉辉, 张忠辉, 赵珊珊, 等. 吉林蛟河针阔混交林树木生长的空间关联格局[J]. 生态学报, 2017, 37(6): 1922−1930.

    Hao M H, Zhang Z H, Zhao S S, et al. Spatial autocorrelation patterns of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe of Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(6): 1922−1930.

    [32] 郝珉辉, 张忠辉, 赵珊珊, 等. 吉林蛟河针阔混交林树木生长与生境的关联性[J]. 生态学报, 2017, 37(10): 3437−3444.

    Hao M H, Zhang Z H, Zhao S S, et al. Habitat associations of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(10): 3437−3444.

    [33]

    Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. Journal of Ecology, 2001, 89(6): 947−959. doi: 10.1111/j.1365-2745.2001.00615.x

    [34]

    Hao M, Ganeshaiah K N, Zhang C, et al. Discriminating among forest communities based on taxonomic, phylogenetic and trait distances[J]. Forest Ecology and Management, 2019, 440: 40−47. doi: 10.1016/j.foreco.2019.03.006

    [35] 何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53−62. doi: 10.13332/j.1000-1522.20150430

    He H J, Yeerjiang·Baiketuerhan, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53−62. doi: 10.13332/j.1000-1522.20150430

    [36]

    He H, Zhang C, Zhao X, et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China[J]. Plos One, 2018, 13(1): e0186226. doi: 10.1371/journal.pone.0186226

    [37]

    van der Sande M T, Arets E J M M, Pena-Claros M, et al. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest[J]. Functional Ecology, 2018, 32(2): 461−474. doi: 10.1111/1365-2435.12968

    [38]

    van der Sande M T, Pena-Claros M, Ascarrunz N, et al. Abiotic and biotic drivers of biomass change in a Neotropical forest[J]. Journal of Ecology, 2017, 105(5): 1223−1234. doi: 10.1111/1365-2745.12756

    [39]

    Ruiz-Benito P, Gomez-Aparicio L, Paquette A, et al. Diversity increases carbon storage and tree productivity in Spanish forests[J]. Global Ecology and Biogeography, 2014, 23(3): 311−322. doi: 10.1111/geb.12126

    [40]

    Garcia-Palacios P, Shaw E A, Wall D H, et al. Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient[J]. Journal of Ecology, 2017, 105(4): 968−978. doi: 10.1111/1365-2745.12730

    [41]

    Liu X, Swenson N G, Zhang J, et al. The environment and space, not phylogeny, determine trait dispersion in a subtropical forest[J]. Functional Ecology, 2013, 27(1): 264−272. doi: 10.1111/1365-2435.12018

    [42]

    Ratcliffe S, Wirth C, Jucker T, et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context[J]. Ecology Letters, 2017, 20(11): 1414−1426. doi: 10.1111/ele.12849

    [43]

    Finegan B, Pena-Claros M, Oliveira A D, et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses[J]. Journal of Ecology, 2015, 103(1): 191−201. doi: 10.1111/1365-2745.12346

    [44]

    Borcard D, Gillet F, Legendre P. Numerical ecology with R[M]. Berlin: Springer, 2018.

    [45]

    Tan L, Fan C, Zhang C, et al. Understanding and protecting forest biodiversity in relation to species and local contributions to beta diversity[J]. European Journal of Forest Research, 2019, 138(6): 1005−1013. doi: 10.1007/s10342-019-01220-3

    [46]

    Hoyle R H. Handbook of structural equation modeling[M]. New York: Guilford Press, 2012.

    [47]

    Rosseel Y. lavaan: an R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1−36.

    [48]

    Stephenson N L, van Mantgem P J. Forest turnover rates follow global and regional patterns of productivity[J]. Ecology Letters, 2005, 8(5): 524−531. doi: 10.1111/j.1461-0248.2005.00746.x

    [49]

    Keeling H C, Phillips O L. The global relationship between forest productivity and biomass[J]. Global Ecology and Biogeography, 2007, 16(5): 618−631. doi: 10.1111/j.1466-8238.2007.00314.x

    [50]

    Díaz S, Hector A, Wardle D A. Biodiversity in forest carbon sequestration initiatives: not just a side benefit[J]. Current Opinion in Environmental Sustainability, 2009, 1(1): 55−60. doi: 10.1016/j.cosust.2009.08.001

    [51]

    Searle E B, Chen H Y, Paquette A. Higher tree diversity is linked to higher tree mortality[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2013171119 [2022−08−20]. https://doi.org/10.1073/pnas.2013171119.

    [52]

    Lasky J R, Uriarte M, Boukili V K, et al. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5616−5621. doi: 10.1073/pnas.1319342111

    [53]

    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403

    [54]

    Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2009, 12(4): 351−366. doi: 10.1111/j.1461-0248.2009.01285.x

    [55]

    Prado-Junior J A, Schiavini I, Vale V S, et al. Conservative species drive biomass productivity in tropical dry forests[J]. Journal of Ecology, 2016, 104(3): 817−827. doi: 10.1111/1365-2745.12543

    [56]

    Ali A, Mattsson E. Wood density is a sustainability indicator for the management of dry zone homegarden agroforests: evidences from biodiversity-ecosystem function relationships[J]. Ecological Indicators, 2019, 105: 474−482. doi: 10.1016/j.ecolind.2018.04.024

    [57]

    Roscher C, Schumacher J, Gubsch M, et al. Using plant functional traits to explain diversity-productivity relationships[J]. Plos One, 2012, 7(5): e36760. doi: 10.1371/journal.pone.0036760

    [58]

    Aleixo I, Norris D, Hemerik L, et al. Amazonian rainforest tree mortality driven by climate and functional traits[J]. Nature Climate Change, 2019, 9(5): 384−388. doi: 10.1038/s41558-019-0458-0

    [59]

    Morin X. Species richness promotes canopy packing: a promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning[J]. Functional Ecology, 2015, 29(8): 993−994. doi: 10.1111/1365-2435.12473

    [60]

    Jucker T, Bouriaud O, Coomes D A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests[J]. Functional Ecology, 2015, 29(8): 1078−1086. doi: 10.1111/1365-2435.12428

    [61]

    Ouyang S, Xiang W, Wang X, et al. Effects of stand age, richness and density on productivity in subtropical forests in China[J]. Journal of Ecology, 2019, 107(5): 2266−2277. doi: 10.1111/1365-2745.13194

  • 期刊类型引用(12)

    1. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
    2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 . 百度学术
    3. 冯健,张金博,杨圆圆,杜超群,徐柏松,曹颖,姚飞. 基于生长性状和SSR遗传多样性分析的红松第二代优树选择研究. 西南林业大学学报(自然科学). 2024(04): 1-7 . 百度学术
    4. 胡勐鸿,吕寻,戴小芬,李宗德,李万峰. 日本落叶松无性系种子园和优树半同胞家系苗期比较. 东北林业大学学报. 2024(12): 10-17 . 百度学术
    5. 向华,向文明,向明. 我国用材林优树选择技术研究进展. 湖南林业科技. 2021(02): 89-96 . 百度学术
    6. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 . 百度学术
    7. 邓乐平,黄婷,王哲,吴惠姗,李晓华,廖仿炎,李义良,郭文冰,赵奋成. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择. 林业与环境科学. 2020(04): 1-7 . 百度学术
    8. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 . 百度学术
    9. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 . 百度学术
    10. 金星,于忠峰,苗海伟,于国斌,朱瑞,张丽杰. 辽宁地区油松花粉形态及生活力的测定. 分子植物育种. 2019(15): 5115-5119 . 百度学术
    11. 康向阳. 关于林木育种策略的思考. 北京林业大学学报. 2019(12): 15-22 . 本站查看
    12. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看

    其他类型引用(4)

图(5)  /  表(1)
计量
  • 文章访问数:  879
  • HTML全文浏览量:  239
  • PDF下载量:  223
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-06-12
  • 修回日期:  2022-08-06
  • 网络出版日期:  2022-09-12
  • 发布日期:  2022-10-24

目录

    /

    返回文章
    返回