Review on the evaluation of global forest carbon sink function
-
摘要: “森林是碳库”生动释意了森林在国家生态安全和人类经济社会可持续发展中的战略地位。森林作为陆地生态系统的主体,其固碳是实现我国“双碳”愿景的重要路径。我国经过多年生态文明建设,森林碳储量逐年增加、森林碳汇功能得到较大提升,对全球森林碳汇功能的总体升高起到了积极的作用。然而,我国国土面积大、生境类型复杂,且长久以来秉持传统的森林经营管理理念与实践,在碳排放导致的全球气候急剧变化背景下如何进一步高效提升我国森林碳汇功能,以助力实现2030年“碳达峰”和2060年“碳中和”目标,仍旧存在巨大挑战。本文以全球森林五大碳库的现状及其生物与非生物驱动因素为切入点,系统阐述森林野外调查和模型模拟等现代碳汇评估方法,着重梳理提升森林碳汇的潜在途径,以期为“双碳”目标下我国森林碳汇功能稳固持续提升提供理论参考。未来森林碳汇研究首先应着力于构建多尺度、全方位生态系统监测网络和综合评估体系;其次应构建森林全组分碳库综合分析框架,贯穿于森林碳汇的监测、评估和提升途径等各个环节,最大限度地消除全球森林碳汇强度和动态估算过程中的不确定性;最后建立可持续的林业碳金融市场,通过政策引导、建设复合型人才队伍和强化国际相关领域合作,为林业碳金融体系提质增效。Abstract: “Forest is a carbon sink” vividly explains the strategic position of forests in China’s national ecological security as well as sustainable development of human economy and society. As the primary contributor of carbon sequestration in terrestrial ecosystems, forest carbon fixation is an important path to realize China’s “carbon peaking and carbon neutrality” vision. With years of ecological civilization construction in China, both the storage and the function of forest carbon sink were steady improved, contributing to global forest carbon sink remarkably. However, in relation to the vast territory, complex habitat types, and the momentum of old-school forest management and silviculture, pressing needs emerge for alternative solutions as to sinking forest carbon in a way more effective for the purpose of achieving “carbon peaking” by 2030 and “carbon neutrality” by 2060, particularly in the exacerbation of climate change. Oriented to the five forest carbon pools and their biotic and abiotic driving factors, this paper systematically explores modern carbon sink assessment methods such as forest field surveys and model simulations, and then focuses on prospective means to improve forest carbon sinks. We envisage that trending researches should firstly focus on building a multi-scale, all-round ecosystem monitoring network and system; secondly, establish a comprehensive analysis framework that incorporates monitoring and assessment for reducing the uncertainty of carbon inventory; last but not the least, establish a sustainable financial market for forestry carbon, and facilitate with policy support, forming multi-disciplinary talent teams with strengthened international cooperation to improve the quality and efficiency for the financial system of forestry carbon.
-
植物的寿命是其生活史上一个重要的特征,准确判断植物的生长年龄对理解植物在特定环境中的发育和繁殖更新状况,评估其生长影响因子及环境适应能力,由此制定合理的栽培管理及开发利用措施意义重大[1-5]。植物生长年龄一般可以通过周年生长形态、物候及生长轮等进行分析。在木本植物中,多年生茎中的年轮解剖结构特征可以反映其实际生长年限及生长发育状况[1,6]。研究表明,多年生草本植物位于地下的宿存器官(根茎,块茎,块根和鳞茎)中存在类似树木年轮的“生长轮”可以作为其生长年限判别的依据[1]。根茎是根茎类植物营养物质的重要贮存场所[7-9],也是其自然更新和分株繁殖的主要器官,是芽与根生理整合的枢纽通道[10],对根茎的形态特征、次生结构及其生长年龄的研究是揭示其生长发育及环境适应机制的重要基础,因而受到广泛关注。目前,对根茎生长年龄的判断一方面是根据其世代繁殖更新的形态特征来确定[2-5],另一方面可以通过其生长轮来进行判断,在灰白千里光(Senecio incanus),草甸鼠尾草(Salvia pratensis )及奇异蜂斗菜(Petasites paradoxus)等植物的根茎中均发现有生长轮的存在[1]。
芍药(herbaceous peony)是典型的根茎类多年生草本植物,野生遗传资源丰富[11],栽培品种繁多,形成了3大品种类群[12-15],有重要的观赏和药用价值[16-17]。目前关于芍药根茎的研究报道较少,仅对中国芍药品种群的个别品种的根茎生长发育及初生组织结构特征进行了初步的研究[18],对芍药根茎中是否存在生长轮以及不同品种间的生长轮差异尚未有报道。因此,本研究通过比较观察分析不同芍药品种群品种的根茎形态生长发育特点,对芍药根茎进行解剖学研究,观察其生长轮特点,判别其生长年限,以期为芍药合理栽培措施的制定、无性繁殖技术的优化及资源的开发利用研究提供一定的基础理论指导。研究结果对其他多年生根茎类植物的生长年龄判断及相关研究的开展也具有一定的借鉴意义。
1. 材料与方法
1.1 材 料
芍药不同品种群品种(表1),种植于国家花卉工程中心芍药种质资源圃(北京昌平区小汤山镇),供试材料为3年生分株苗。
表 1 供试芍药品种信息Table 1. Variety information of experimental materials编号 No. 品种名称 Variety name 品种群分类 Classification of cultivar groups 倍性 Ploidy level 1 ‘种生粉’ ‘Zhongshengfen’ 中国芍药品种群 Lactiflora group 2n = 2x = 10 2 ‘粉玉奴’ ‘Fenyunu’ 中国芍药品种群 Lactiflora group 2n = 2x = 10 3 ‘珊瑚落日’ ‘Coral Sunset’ 杂种芍药品种群 Hybrid group 2n = 3x = 15 4 ‘乳霜之愉’ ‘Cream Delight’ 杂种芍药品种群 Hybrid group 2n = 4x = 20 5 ‘草原风情’ ‘Prairie Charm’ 伊藤杂种品种群 Itoh hybrid group 2n = 3x = 15 6 ‘抓狂的香蕉’ ‘Going Bananas’ 伊藤杂种品种群 Itoh hybrid group 2n = 3x = 15 1.2 方 法
1.2.1 芍药地下根茎发育更新特点观察
于2018年9月中旬至11月底,剪除芍药地上枯茎,将地下根茎整体起挖,去除泥土、杂物,沿根茎生长方向将其理顺并去除多余的肉质根以使根茎清晰可见,拍照观察并记录芍药根茎的生长更新特征。
1.2.2 芍药不同品种地下根茎解剖结构观察
选取不同品种当年生根茎芽基部1 cm以下的成熟根茎组织,沿其横轴切取约2 mm的薄片,FAA固定液(50%乙醇∶甲醛∶冰醋酸 = 90∶5∶5,体积比)真空固定处理24 h以上,随后加入约1/5 FAA体积甘油软化处理10 d以上,随后经脱水,透明,浸蜡,包埋后切片,切片厚度16 ~ 25 μm,经固绿−番红染色后中性树胶封片,Leica EZ4HD体式显微镜观察和拍照。
1.2.3 芍药根茎生长轮观察
体式显微观察:按照根茎的着生规律,切取发育正常的不同生长年限的根茎,冰盒保存带至实验室,用自来水冲洗3遍,去除根茎表面的泥土及其他杂质,置于吸水纸上室温晾1 ~ 2 h左右,观察时不锈钢刀片沿其横轴方向截平,将切口晾3 ~ 5 min后Leica EZ4HD体式显微镜拍照观察。
石蜡切片制备:按照根茎的着生规律,选取发育正常的芍药不同生长年限的根茎按1.2.2所述方法进行切片观察。
2. 结果与分析
2.1 芍药地下根茎结构发育特点
不同芍药品种群品种植株地下的组织架构基本一致,即由根茎、着生于根茎上的根茎芽和根3部分组成,根茎与肉质根在颜色上基本一致,除顶部根茎上着生的根茎芽外,下部根茎上也宿存大量处于休眠状态的根茎芽。正常发育的芍药地下根茎发育形态具有较明显的年龄分级特征,我们把当年根茎芽萌发后形成的根茎作为1龄生根茎,则1龄生根茎所着生的上一年形成的母代根茎则为2龄生根茎,2龄生根茎所着生的上一年形成的母代根茎为3龄生根茎,以此类推,各生长年限的根茎之间以根茎上宿存的茎或者残留的茎痕为界,偶见有当年生根茎着生于2龄以上的母代根茎(图1)。
图 1 芍药根茎结构发育示意1YR:1龄生根茎;2YR:2龄生根茎;3YR:3龄生根茎;4YR:4龄生根茎;5YR:5龄生根茎;RB:根茎芽;St:茎;AR:不定根。1YR, 1 year old rhizome; 2YR, 2 years old rhizome; 3YR, 3 years old rhizome; 4YR, 4 years old rhizome; 5YR, 5 years old rhizome; RB, rhizome bud; St, stem; AR, adventitious root.Figure 1. Structural characteristic of rhizome of herbaceous peony‘种生粉’‘粉玉奴’‘Coral Sunset’‘Prairie Charm’和‘Going Bananas’5个品种地下根茎结构形态类似:每年的纵向(长度)生长量适中且横向(直径)膨大变异较小,不同龄级的根茎组织结构易于区分,且根茎背地向上更新(图2a、b)。四倍体品种‘Cream Delight’每年纵向生长量小而横向生长量较大,膨大明显,不同龄级的根茎组织结构紧凑而不易区分,且往往与地表水平方向横向更新(图2c、d)。
6个芍药品种根茎截面解剖构造均符合双子叶植物茎的次生构造,由周皮、皮层、次生韧皮部、形成层、次生木质部和中央髓组成(图3)。
图 3 不同品种根茎解剖结构a、b. ‘大富贵’根茎解剖结构;c、d. ‘粉玉奴’根茎解剖结构;e、f. ‘珊瑚落日’根茎解剖结构;g、h. ‘乳霜之愉’根茎解剖结构;i、j. ‘草原风情’根茎解剖结构;k、l. ‘抓狂的香蕉’根茎解剖结构;Pe:周皮;Sp:次生韧皮部;Vc:维管形成层;Sx:次生木质部;Pi:髓。标尺 = 1 000 μm。a, b, rhizome anatomy of ‘Dafugui’; c, d, rhizome anatomy of ‘Fenyunu’; e, f, rhizome anatomy of ‘Coral Sunset’; g, h, rhizome anatomy of ‘Cream Delight’; i, j, rhizome anatomy of ‘Prairie Charm’; k, l, rhizome anatomy of ‘Going Bananas’; Pe, periderm; Sp, secondary phloem; Vc, vascular cambium; Sx, secondary xylem; Pi, pith. Scale bar = 1 000 μm.Figure 3. Anatomical structure of rhizomes of different cultivars of herbaceous peony‘种生粉’‘粉玉奴’‘Coral Sunset’和‘Cream Delight’4个品种根茎次生木质部显微结构类似:大小导管有规律地依次排列,口径较大的导管和周围的小导管聚集形成群团状,导管群分布较稀疏,两导管群之间的间隔明显。与‘Cream Delight’相比,‘Coral Sunset’的导管群分布较紧凑。‘Prairie Charm’和‘Going Bananas’根茎的次生木质部大小导管分布较均匀,形成较连续的环带,并不聚集形成团块状(图3)。
2.2 芍药不同生长年限根茎横切面特征
芍药根茎截面在脱水后维管组织凸起,呈白色或淡黄色,间断环状分布,中央髓部组织下凹,位于不同环的维管组织从髓部向皮层呈放射状排列(图4)。
次生木质部显微观察结果显示,口径较大的导管及其周围的小导管聚集呈团块状,导管群切向断续排列成与形成层平行的环,形成清晰的生长轮(图5)。
对生长发育正常的芍药不同生长年限根茎进行组织切片观察发现,一年生根茎生长轮数目为1(图6a),2年生根茎生长轮的数目为2(图6b),3年生根茎的生长轮数目为3(图6c),依此类推。生长轮的数目与其实际生长年限一致。
图 6 芍药根茎不同生长年限生长轮观察a. 1龄生根茎;b. 2龄生根茎;c. 3龄生根茎;d. 4龄生根茎;e. 5龄生根茎;f、g. 6龄生根茎;h、i. 7龄生根茎;①. 第1个生长轮;②. 第2个生长轮;③. 第3个生长轮;④. 第4个生长轮;⑤. 第5个生长轮;⑥. 第6个生长轮;⑦. 第7个生长轮。标尺 = 1 000 μm。a, 1 year old rhizome; b, 2 years old rhizome; c, 3 years old rhizome; d, 4 years old rhizome; e, 5 years old rhizome; f, g, 6 years old rhizome; h, i, 7 years old rhizome; ①, the first growth ring; ②, the second growth ring; ③, the third growth ring; ④, the fourth growth ring; ⑤, the fifth growth ring; ⑥, the sixth growth ring; ⑦, the seventh growth ring. Scale bar = 1 000 μm.Figure 6. Observation on the growth rings of the rhizome of herbaceous peony under a stereomicroscope3. 讨 论
根茎的形态及生长年限反映了植物在特定气候环境条件下的生长发育状况。准确判断根茎的年龄结构对预知植物个体乃至种群繁殖发育现状及未来更新的动态发展,由此制定合理的栽培及开发利用措施意义重大[1]。目前,对根茎类植物年龄结构的判断尚无统一标准和方法,一般是根据其实际栽培年限[8, 19-21]、营养繁殖世代特征结合颜色及直径大小等进行判断[2-3]。本研究中,芍药每年夏秋形成的当年生根茎由位于上一年形成的母代根茎芽发育而来,由此逐年进行世代更替,通过这种繁殖世代特征可以初步判断芍药根茎的年龄结构。芍药根茎芽的更新严格受控于顶端优势的调控[22],因而在发育正常的情况下,芍药的根茎一般按照实际生长年限逐级生长[18],但是,在本研究中,我们观察到在一些植株中当年生根茎由2龄或更高级年龄的母代根茎发育而来,若非经全株整体观察及长时间的持续追踪,完全按照根茎由上至下的分级次序来判别每一级根茎的生长年限往往存在一定的困难,对母代根茎的实际生长年限易造成误判。近年来兴起的草本植物生长轮研究为草本植物生长年限的研究提供了新的思路[1, 17, 21]。本研究中,芍药根茎的初生结构与茎的结构基本类似,由表皮、皮层、维管束和中央髓组成[18, 23]。与地上茎不同的是,芍药根茎的次生结构外围形成了具有保护作用的周皮组织,因而其能多年宿存生长。芍药不同龄级根茎中存在明显的生长轮,且生长轮的数目与其对应根茎的实际生长年限一致,可以作为判别芍药根茎实际生长年限的稳定依据。
芍药根茎生长轮的组织形态和根茎的发育状况受植物本身遗传差异和栽培环境的影响。本研究中,考虑到供试样本栽培环境基本一致,不同品种根茎形态及生长轮的差异可能主要与其亲本来源不同有关。中国芍药品种群和杂种芍药品种群各品种亲本来源于芍药属(Paeonia)的多年生草本植物类群,品种群内各品种根茎生长轮的组织结构类似,木质部导管群断续排列成环,而伊藤杂种品种群内两个品种根茎次生木质部呈现连续的环带分布,主要是由于其亲本融合了芍药属亚灌木的牡丹类群的遗传信息,因而生长轮结构与牡丹茎的次生结构类似[23],据此,可以将其与其他两个品种群的品种进行区分。至于这种次生结构差异对其存活年限的影响有待进一步研究。
植物多倍体往往具有营养器官大、抗逆性强、生长迅速等特点[24-27]。与二倍体品种相比,芍药多倍体品种往往也表现出茎秆粗壮、直立性强等生长优势[15,28-29]。本研究中,从根茎生长表现来看,四倍体品种‘Cream Delight’相同龄级的根茎体量明显大于二倍体及三倍体品种,由于根茎每年生长量大,加之向地伸展空间有限,因而多呈水平状横向更新。而三倍体品种根茎形态并未表现出与二倍体品种明显的生长差异,可能原因及调控机制有待进一步研究。从根茎生长轮的组织结构特征来看,同一品种群内相同倍性的品种间根茎生长轮特征基本类似,而不同倍性的品种间差异较大;而品种群间不同品种染色体倍性与其根茎形态无明显关联,‘Coral Sunset’‘Prairie Charm’和‘Going Bananas’3个品种均为三倍体,但是根茎次生结构差异明显。因而,仅根据遗传倍性不能区分各品种的根茎生长轮特征。当然,由于生长轮的形成和发育受环境条件影响较大,加之芍药品种遗传背景复杂,关于生长轮的发育特性在芍药中的更普遍规律需要结合更多样本开展更进一步的研究。
根茎由于随着生长年限的增大,受限于材料的大小以及软硬程度的差异,采用组织切片的方法不能一一鉴别且花费时间较长,因而徒手切片结合体式显微观察可以作为多年生根茎年龄判别的快速方法。在生产实践中,我们可以通过上述徒手切片的一般操作方式快速地区分根茎与根,鉴定根茎的年龄结构。
4. 结 论
芍药不同品种地下根茎组织架构特征基本一致,且存在明显的龄级特征。二倍体及三倍体品种根茎形态发育特征相似,而与四倍体品种不同。不同芍药品种根茎次生结构均由周皮、皮层、次生韧皮部、形成层、次生木质部和中央髓组成,中国芍药及杂种芍药品种群品种根茎生长轮结构相似而与伊藤杂种差异明显,杂种芍药品种群内三倍体及四倍体品种根茎生长轮结构差异较大,根茎生长轮结构特征与其品种倍性无关。芍药根茎中存在生长轮,且其数目能够反映芍药的实际生长年限。
-
表 1 全球森林生态系统碳汇分布格局 106 t/a
Table 1 Carbon sink distribution pattern of global forest ecosystem
106 t/year 区域 Region 1990—2000 2000—2010 2010—2020 欧洲 Europe 243.4 365.7 333.3 东亚 East Asia 127.3 135.4 205.1 北美洲 North America 106.1 61.6 78.8 西亚和中亚
Western Asia and Central Asia17.2 29.3 17.2 加勒比地区 Caribbean Region 6.1 4.0 3.0 大洋洲 Oceania −7.1 −3.0 2.0 北非 North Africa −4.0 −4.0 −6.1 中美洲 Central America −16.2 −15.2 −9.1 南亚和东南亚
South Asia and Southeast Asia−44.4 −58.6 −83.8 东非和南非
East Africa and South Africa−67.7 −80.8 −89.9 南美洲 South America −411.1 −416.2 −188.9 西非和中非
West Africa and Central Africa−174.7 −171.7 −223.2 注:此表引自文献[1]。Note: the table is cited from reference [1]. -
[1] Food and Agriculture Organization of the United Nations, Forestry Department. Global forest resources assessment 2020: main report [M]. Rome: Food and Agriculture Organization of the United Nations, 2020.
[2] Cook-Patton S C, Leavitt S M, Gibbs D A, et al. Mapping carbon accumulation potential from global natural forest regrowth[J]. Nature, 2020, 585: 545−550. doi: 10.1038/s41586-020-2686-x
[3] Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China Life Sciences, 2022, 65: 861−895. doi: 10.1007/s11427-021-2045-5
[4] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 37(6): 804−812. Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981−2000[J]. Scientia Sinica (Series D: Earth Science), 2007, 37(6): 804−812.
[5] Yao Y T, Piao S L, Wang T. Future biomass carbon sequestration capacity of Chinese forests[J]. Science Bulletin, 2018, 63(17): 1108−1117. doi: 10.1016/j.scib.2018.07.015
[6] Hester A S, Hann D W, Larsen D R. ORGANON: southwest oregon growth and yield model user manual: version 2.0[R]. Corvallis: Forestry Publications Office, Oregon State University, Forest Research Laboratory, 1989.
[7] Crookston N L, Dixon G E. The forest vegetation simulator: a review of its structure, content, and applications[J]. Computers and Electronics in Agriculture, 2005, 49(1): 60−80. doi: 10.1016/j.compag.2005.02.003
[8] Wutzler T. Projecting the carbon sink of managed forests based on standard forestry data[D]. Jena: Friedrich-Schiller-University, 2007.
[9] Kurz W A, Apps M J. Developing Canada’s national forest carbon monitoring, accounting and reporting system to meet the reporting requirements of the Kyoto Protocol[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(1): 33−43. doi: 10.1007/s11027-006-1006-6
[10] Zhan L, Zhou G S, Ji Y H, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China[J]. Science China Earth Sciences, 2016, 59(10): 1946−1958. doi: 10.1007/s11430-015-5599-4
[11] Molina J A E, Crocker G J, Grace P R, et al. Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models[J]. Geoderma, 1997, 81(1−2): 91−107. doi: 10.1016/S0016-7061(97)00083-9
[12] Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113(1−4): 185−222. doi: 10.1016/S0168-1923(02)00108-9
[13] Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161−185. doi: 10.1046/j.1365-2486.2003.00569.x
[14] Kucharik C J, Foley J A, Delire C, et al. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure[J]. Global Biogeochemical Cycles, 2000, 14(3): 795−825. doi: 10.1029/1999GB001138
[15] 李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展[J]. 中国地质调查, 2021, 8(4): 79−86. doi: 10.19388/j.zgdzdc.2021.04.08 Li H K. Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutralvision[J]. Geological Survey of China, 2021, 8(4): 79−86. doi: 10.19388/j.zgdzdc.2021.04.08
[16] Pan D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
[17] 方运霆, 莫江明, Sandra Brown, 等. 鼎湖山自然保护区土壤有机碳贮量和分配特征[J]. 生态学报, 2004, 24(1): 135−142. doi: 10.3321/j.issn:1000-0933.2004.01.020 Fang Y T, Mo J M, Brown S, et al. Storage and distribution of soil organic carbon in Dinghushan Biosphere Reserve[J]. Acta Ecologica Sinica, 2004, 24(1): 135−142. doi: 10.3321/j.issn:1000-0933.2004.01.020
[18] Xiong X, Liu J, Zhou G, et al. Reduced turnover rate of topsoil organic carbon in old-growth forests: a case study in subtropical China[J]. Forest Ecosystem, 2021, 8(1): 1−11. doi: 10.1186/s40663-020-00279-4
[19] Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
[20] Piao S L, He Y, Wang X H, et al. Estimation of China’s terrestrial ecosystem carbon sink: methods, proress and prospects[J]. Science China Earth Science, 2022, 65(4): 641−651. doi: 10.1007/s11430-021-9892-6
[21] Junior C, Arago L, Anderson L O, et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses[J]. Science Advances, 2020, 6(40): 1−9.
[22] Maia V A, Santos A B M, de Aguiar-Campos N, et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat[J]. Science Advances, 2020, 6(51): eabd4548. doi: 10.1126/sciadv.abd4548
[23] Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4910−4915. doi: 10.1073/pnas.1317065111
[24] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009−1082. doi: 10.1038/nature07944
[25] Ali A, Yan E R. Relationships between biodiversity and carbon stocks in forest ecosystems: a systematic literature review[J]. Tropical Ecology, 2017, 58(1): 1−14.
[26] 杜雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 2022, 35(1): 76−81. doi: 10.13348/j.cnki.sjlyyj.2021.0068.y Du X, Wang H Y. Active components of forest soil organic carbon and its influencing factors in China[J]. World Forestry Research, 2022, 35(1): 76−81. doi: 10.13348/j.cnki.sjlyyj.2021.0068.y
[27] 周国逸, 陈文静, 李琳. 成熟森林生态系统土壤有机碳积累: 实现碳中和目标的一条重要途径[J]. 大气科学学报, 2022, 45(3): 345−356. Zhou G Y, Chen W J, Li L. Soil organic carbon accumulation in mature forest ecosystems: an important way to achieve the carbon neutrality goal[J]. Transactions of Atmospheric Sciences, 2022, 45(3): 345−356.
[28] Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils[J]. Science, 2006, 314: 1417. doi: 10.1126/science.1130168
[29] Tang J W, Bolstad P V, Martin J G. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence[J]. Global Change Biology, 2009, 15(1): 145−155. doi: 10.1111/j.1365-2486.2008.01741.x
[30] McGarvey J C, Thompson J R, Epstein H E, et al. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink[J]. Ecology, 2015, 96(2): 311−317. doi: 10.1890/14-1154.1
[31] Houlton B Z, Wang Y P, Vitousek P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454: 327−330. doi: 10.1038/nature07028
[32] Du E Z, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature GeoScience, 2020, 13(3): 221−226. doi: 10.1038/s41561-019-0530-4
[33] Trumbore S, Brando P, Hartmann H. Forest health and global change[J]. Science, 2015, 349: 814−818. doi: 10.1126/science.aac6759
[34] 刘世荣, 代力民, 温远光, 等. 面向生态系统服务的森林生态系统经营: 现状、挑战与展望[J]. 生态学报, 2015, 35(1): 1−9. doi: 10.1016/j.chnaes.2014.12.001 Liu S R, Dai L M, Wen Y G, et al. A review on forest ecosystem management towards ecosystem services: status, challenges, and future perspectives[J]. Acta Ecologica Sinica, 2015, 35(1): 1−9. doi: 10.1016/j.chnaes.2014.12.001
[35] Huang Y, Chen Y, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment[J]. Science, 2018, 362: 80−83. doi: 10.1126/science.aat6405
[36] Liu X, Trogisch S, He J S, et al. Tree species richness increases ecosystem carbon storage in subtropical forests[J]. Proceeding of the Royal Society B, 2018, 285: 20181240.
[37] 陆元昌, 栾慎强, 张守攻, 等. 从法正林转向近自然林: 德国多功能森林经营在国家、区域和经营单位层面的实践[J]. 世界林业研究, 2010, 23(1): 1−11. Lu Y C, Luan S Q, Zhang S G, et al. From normal forest to close-to-nature forest: multi-functional forestry and its practice at national, regional and forest management unit levels in Germany[J]. World Forestry Research, 2010, 23(1): 1−11.
[38] 曾伟生. 近自然森林经营是提高我国森林质量的可行途径[J]. 林业资源管理, 2009(2): 6−11. doi: 10.3969/j.issn.1002-6622.2009.02.002 Zeng W S. Close-to-nature forest management: a practical approach to improve the forest quality of China[J]. Forest Resources Management, 2009(2): 6−11. doi: 10.3969/j.issn.1002-6622.2009.02.002
[39] 曾祥谓. 我国多功能森林经营中的珍贵树种问题研究[D]. 北京: 中国林业科学研究院, 2010. Zeng X W. Study on the development of valuable timber trees in the management of multifunctional forest in China[D]. Beijing: Chinese Academy of Forestry, 2010.
[40] 王新丽, 李小娟, 王红波. 加强森林培育技术实现林业可持续发展[J]. 新农业, 2021(12): 56. Wang X L, Li X J, Wang H B. Strengthening forest cultivation technology to achieve sustainable development of forestry[J]. Xin Nongye, 2021(12): 56.
[41] 张新俊, 张信拴. 浅谈碳汇林业在气候变化应对中的作用[J]. 现代农业, 2015(2): 103−104. doi: 10.3969/j.issn.1008-0708.2015.02.068 Zhang X J, Zhang X S. Discussion on the role of carbon sequestration forestry in dealing with climate change[J]. Modern Agriculture, 2015(2): 103−104. doi: 10.3969/j.issn.1008-0708.2015.02.068
[42] 吴桂保. 森林培育技术现状分析及管理措施探讨[J]. 河南农业, 2022(5): 36−37. doi: 10.15904/j.cnki.hnny.2022.05.012 Wu G B. Analysis on present situation of forest culture technology and discussion on management measures[J]. Agriculture of Henan, 2022(5): 36−37. doi: 10.15904/j.cnki.hnny.2022.05.012
[43] 汤传德, 王彬. 对加强森林培育技术实现林业可持续发展的思考[J]. 现代农业科技, 2020(16): 118−120. doi: 10.3969/j.issn.1007-5739.2020.16.074 Tang C D, Wang B. Thoughts on strengthening forest cultivation technology to realize forestry sustainable development[J]. Xiandai Nongye Keji, 2020(16): 118−120. doi: 10.3969/j.issn.1007-5739.2020.16.074
[44] 朱小俊. 浅谈森林培育技术的精准化[J]. 河南农业, 2022(5): 38−39. doi: 10.15904/j.cnki.hnny.2022.05.016 Zhu X J. Discussion on the precision of forest cultivation technology[J]. Agriculture of Henan, 2022(5): 38−39. doi: 10.15904/j.cnki.hnny.2022.05.016
[45] 曹建军. 加强森林培育技术实现林业可持续发展的措施[J]. 种子科技, 2021, 39(11): 125−126. doi: 10.19904/j.cnki.cn14-1160/s.2021.11.059 Cao J J. Measures to strengthen forest cultivation technology to achieve sustainable development of forestry[J]. Seed Science & Technology, 2021, 39(11): 125−126. doi: 10.19904/j.cnki.cn14-1160/s.2021.11.059
[46] 殷万利, 闫双虎. 香荚蒾硬枝扦插育苗试验[J]. 青海农林科技, 2012(1): 48−50. doi: 10.3969/j.issn.1004-9967.2012.01.018 Yin W L, Yan S H. Test on hardwood cutting of Viburnum farreri[J]. Science and Technology of Qinghai Agriculture and Forestry, 2012(1): 48−50. doi: 10.3969/j.issn.1004-9967.2012.01.018
[47] 张银霞, 李晓蓉, 吴晓丽. 香荚蒾扦插育苗影响因素分析[J]. 农业科技通讯, 2022(2): 115−118. doi: 10.3969/j.issn.1000-6400.2022.02.036 Zhang Y X, Li X R, Wu X L. Analysis on the influencing factors of cutting seedling in Viburnum farreri[J]. Bulletin of Agricultural Science and Technology, 2022(2): 115−118. doi: 10.3969/j.issn.1000-6400.2022.02.036
[48] 彭勇. 浅析森林种苗培育技术的要点[J]. 科技资讯, 2015, 13(9): 69. doi: 10.3969/j.issn.1672-3791.2015.09.052 Peng Y. Brief analysis on the key points of forest seedling cultivation technology[J]. Science & Technology Information, 2015, 13(9): 69. doi: 10.3969/j.issn.1672-3791.2015.09.052
[49] 曾小燕. 森林培育技术的发展趋势及管理措施[J]. 现代园艺, 2016(7): 75−76. doi: 10.3969/j.issn.1006-4958.2016.07.049 Zeng X Y. Development trend and management measures of forest culture technology[J]. Contemporary Horticulture, 2016(7): 75−76. doi: 10.3969/j.issn.1006-4958.2016.07.049
[50] 阮启华. 森林种苗培育建设中的问题和对策[J]. 农家参谋, 2017(10): 184. Ruan Q H. Problems and countermeasures in the cultivation and construction of forest seedlings[J]. The Farmers Consultant, 2017(10): 184.
[51] 何英. 大兴安岭天然林保护工程碳汇潜力研究[D]. 北京: 中国林业科学研究院, 2006. He Y. The carbon sequestration potential of Daxing’anling National Natural Forest Conservation Program[D]. Beijing: Chinese Academy of Forestry, 2006.
[52] 史军, 刘纪远, 高志强, 等. 造林对陆地碳汇影响的研究进展[J]. 地理科学进展, 2004, 23(2): 58−67. doi: 10.3969/j.issn.1007-6301.2004.02.008 Shi J, Liu J Y, Gao Z Q, et al. Research advances of the influence of afforestation on terrestrial carbon sink[J]. Progress in Geography, 2004, 23(2): 58−67. doi: 10.3969/j.issn.1007-6301.2004.02.008
[53] Sacco D A, Hardwick K A, Blakesley D, et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits[J]. Global Change Biology, 2021, 27(7): 1328−1348. doi: 10.1111/gcb.15498
[54] Silver W L, Ostertag L A E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands[J]. Restoration Ecology, 2000, 8(4): 394−407. doi: 10.1046/j.1526-100x.2000.80054.x
[55] 李家永, 袁小华. 红壤丘陵区不同土地利用方式下有机碳储量的比较研究[J]. 资源科学, 2001, 23(5): 73−76. doi: 10.3321/j.issn:1007-7588.2001.05.014 Li J Y, Yuan X H. A comparative study on organic carbon storage in difference land-use systems in red earth hilly area[J]. Resources Science, 2001, 23(5): 73−76. doi: 10.3321/j.issn:1007-7588.2001.05.014
[56] Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia[J]. Forest Ecology and Management, 2003, 180(1−3): 317−333. doi: 10.1016/S0378-1127(02)00580-7
[57] 方晰, 田大伦, 胥灿辉. 马尾松人工林生产与碳素动态[J]. 中南林业科技大学学报, 2003, 23(2): 11−15. doi: 10.3969/j.issn.1673-923X.2003.02.003 Fang X, Tian D L, Xu C H. Productivity and carbon dynamics of Masson pine plantation[J]. Journal of Central South Forestry University, 2003, 23(2): 11−15. doi: 10.3969/j.issn.1673-923X.2003.02.003
[58] Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution[J]. Water Air and Soil Pollution, 1995, 82(1): 271−282.
[59] 魏鹏. 优化森林抚育工作的策略思考[J]. 南方农业, 2022, 16(6): 69−71. doi: 10.19415/j.cnki.1673-890x.2022.06.023 Wei P. Strategies on optimizing forest tending work[J]. South China Agriculture, 2022, 16(6): 69−71. doi: 10.19415/j.cnki.1673-890x.2022.06.023
[60] 于长忠. 森林培育技术的研究[J]. 科学技术创新, 2019(22): 135−136. doi: 10.3969/j.issn.1673-1328.2019.22.085 Yu C Z. Research on forest culture technology[J]. Scientific and Technologican Innovation, 2019(22): 135−136. doi: 10.3969/j.issn.1673-1328.2019.22.085
[61] 吴飞林. 森林培育技术的发展现状与有效管理策略探索[J]. 新农业, 2020(3): 44−45. Wu F L. Development of forest culture technology and exploration of effective management strategy[J]. Xin Nongye, 2020(3): 44−45.
[62] 赵彬. 低碳经济背景下的森林抚育经营问题探讨[J]. 温带林业研究, 2022, 5(1): 62−64. doi: 10.3969/j.issn.2096-4900.2022.01.012 Zhao B. Discussion on forest tending and management problems under the background of low-carbon economy[J]. Journal of Temperate Forestry Research, 2022, 5(1): 62−64. doi: 10.3969/j.issn.2096-4900.2022.01.012
[63] 赵应红. 分析森林抚育工作存在的问题及建议[J]. 新农业, 2022(8): 74−76. Zhao Y H. Analysis on problems and suggestions of forest tending work[J]. Xin Nongye, 2022(8): 74−76.
[64] 罗建芳. 森林抚育间伐的意义、问题及优化措施[J]. 新农业, 2022(8): 71−72. Luo J F. The significance, problems and optimization measures of forest care and thinning[J]. Xin Nongye, 2022(8): 71−72.
[65] 张钰明, 张玉珍. 新时期森林抚育经营技术与措施[J]. 世界热带农业信息, 2022(3): 54−55. doi: 10.3969/j.issn.1009-1726.2022.03.028 Zhang Y M, Zhang Y Z. Technology and measures of forest tending and management in the new period[J]. World Tropical Agriculture Information, 2022(3): 54−55. doi: 10.3969/j.issn.1009-1726.2022.03.028
[66] 安连任. 加强森林培育技术 实现林业可持续发展[J]. 现代园艺, 2022, 45(3): 201−202. doi: 10.3969/j.issn.1006-4958.2022.03.081 An L R. Strengthening forest cultivation technology to achieve sustainable development of forestry[J]. Contemporary Horticulture, 2022, 45(3): 201−202. doi: 10.3969/j.issn.1006-4958.2022.03.081
[67] 郝宝龙. 生态环境保护中的森林培育问题研究[J]. 农业灾害研究, 2021, 11(12): 178−179, 183. Hao B L. Study on forest cultivation in ecological environment protection[J]. Journal of Agricultural Catastrophology, 2021, 11(12): 178−179, 183.
[68] 王睿照, 毛沂新, 张慧东, 等. 辽东山区蒙古栎次生林结构及生态因子分析[J]. 辽宁林业科技, 2021, 4: 1−4, 56. doi: 10.3969/j.issn.1001-1714.2021.01.001 Wang R Z, Mao Y X, Zhang H D, et al. Analysis on structure and ecological factors of secondary forests for Quercus mongolica of mountainous area in eastern Liaoning[J]. Liaoning Forestry Science and Technology, 2021, 4: 1−4, 56. doi: 10.3969/j.issn.1001-1714.2021.01.001
[69] 李树巧. 基于森林资源保护的森林培育工作[J]. 特种经济动植物, 2022, 25(1): 107−108. doi: 10.3969/j.issn.1001-4713.2022.01.041 Li S Q. Forest cultivation based on forest resource conservation[J]. Special Economic Animal and Plant, 2022, 25(1): 107−108. doi: 10.3969/j.issn.1001-4713.2022.01.041
[70] 牛运芳. 森林培育技术对实现林业可持续发展的作用[J]. 世界热带农业信息, 2021(12): 45. doi: 10.3969/j.issn.1009-1726.2021.12.030 Niu Y F. The effect of forest cultivation technology on sustainable development of forestry[J]. World Tropical Agriculture Information, 2021(12): 45. doi: 10.3969/j.issn.1009-1726.2021.12.030
[71] 谭鹏鹏. 加强森林培育技术对实现林业可持续发展的作用[J]. 现代农业研究, 2021, 27(12): 95−96. doi: 10.3969/j.issn.1674-0653.2021.12.035 Tan P P. Strengthen the role of forest cultivation technology in realizing the sustainable development of forestry[J]. Modern Agriculture Research, 2021, 27(12): 95−96. doi: 10.3969/j.issn.1674-0653.2021.12.035
[72] 陆岷峰. “双碳”目标下碳金融现状评估、目标定位与发展对策[J]. 福建金融, 2021(6): 27−35. Lu M F. Assessment of the current situation of carbon finance, target and development strategy under the “double carbon” goal[J]. Fujian Finance, 2021(6): 27−35.
[73] 邹亚生. 低碳经济背景下我国的碳金融发展之路[J]. 中国金融, 2010(4): 45−46. Zou Y S. The development of carbon finance in China at the background of low-carbon economy[J]. China Finance, 2010(4): 45−46.
[74] Torres B A, Macmillan D C, Skutsch M, et al. ‘Yes-in-my-backyard’: spatial differences in the valuation of forest services and local co-benefits for carbon markets in México[J]. Ecological Economics, 2015, 117: 283−294. doi: 10.1016/j.ecolecon.2015.03.021
[75] 王行健, 贾翔夫. “双碳”背景下的金融可持续发展: 基于CiteSpace的知识图谱分析[J]. 理论述评, 2022, 42(2): 155−161. Wang X J, Jia X F. Financial sustainability in the context of “Dual Carbon”: CiteSpace-based knowledge graph analysis[J]. Modernization of Management, 2022, 42(2): 155−161.
-
期刊类型引用(4)
1. 王慧娟,王二强,符真珠,李艳敏,王晓晖,袁欣,高杰,王利民,张和臣. 芍药根茎形成发育过程中内源激素和碳水化合物的变化. 河南农业科学. 2024(03): 118-124 . 百度学术
2. 魏瑶,王娟,张岗,彭亮,颜永刚,陈莹. 不同年限黄芩根结构及黄酮类物质变化特征研究. 中南药学. 2023(01): 116-122 . 百度学术
3. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 . 本站查看
4. 李艳敏,蒋卉,符真珠,张晶,袁欣,王慧娟,高杰,董晓宇,王利民,张和臣. 芍药花药愈伤组织诱导及体细胞胚发生. 植物学报. 2021(04): 443-450 . 百度学术
其他类型引用(3)