高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球森林碳汇功能评估研究进展

付玉杰 田地 侯正阳 王明刚 张乃莉

付玉杰, 田地, 侯正阳, 王明刚, 张乃莉. 全球森林碳汇功能评估研究进展[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220242
引用本文: 付玉杰, 田地, 侯正阳, 王明刚, 张乃莉. 全球森林碳汇功能评估研究进展[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220242
Fu Yujie, Tian Di, Hou Zhengyang, Wang Minggang, Zhang Naili. Review on evaluating global forest carbon sink[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220242
Citation: Fu Yujie, Tian Di, Hou Zhengyang, Wang Minggang, Zhang Naili. Review on evaluating global forest carbon sink[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220242

全球森林碳汇功能评估研究进展

doi: 10.12171/j.1000-1522.20220242
基金项目: 中央高校基本科研业务费专项资金资助(PTYX202252),国家自然科学基金委重点项目(31930076)
详细信息
    作者简介:

    付玉杰,教授,博士生导师。主要研究方向:森林植物资源利用基础与应用研究。Email:yujie_fu@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

Review on evaluating global forest carbon sink

  • 摘要: “森林是碳库”生动释意了森林在国家生态安全和人类经济社会可持续发展中的战略地位。森林作为陆地生态系统的主体,其固碳是实现我国“双碳”愿景的重要路径。我国经过多年生态文明建设,森林碳储量逐年增加、森林碳汇功能得到较大提升,对全球森林碳汇功能的总体升高起到了积极的作用。然而,我国国土面积大、生境类型复杂,且长久以来秉持传统的森林经营管理理念与实践,在碳排放导致的全球气候急剧变化背景下如何进一步高效提升我国森林碳汇功能,以助力实现2030年“碳达峰”和2060年“碳中和”目标,仍旧存在巨大挑战。本文以全球森林五大碳库的现状及其生物与非生物驱动因素为切入点,系统阐述森林野外调查和模型模拟等现代碳汇评估方法,着重梳理提升森林碳汇的潜在途径,以期为“双碳”目标下我国森林碳汇功能稳固持续提升提供理论参考。未来森林碳汇研究首先应着力于构建多尺度、全方位生态系统监测网络和综合评估体系;其次应构建森林全组分碳库综合分析框架,贯穿于森林碳汇的监测、评估和提升途径等各个环节,最大限度地消除全球森林碳汇强度和动态估算过程中的不确定性;最后建立可持续的林业碳金融市场,通过政策引导、建设复合型人才队伍和强化国际相关领域合作,为林业碳金融体系提质增效。

     

  • 图  1  评估与提升森林碳汇示意图

    Figure  1.  The diagram evaluating and promoting forest carbon sink

    表  1  全球森林生态系统碳汇分布格局

    Table  1.   The distribution of global forest carbon sink

    1990—20002000—20102010—2020
    欧洲 Europe 243.4 365.7 333.3
    东亚 East Asia 127.3 135.4 205.1
    北美洲 North America 106.1 61.6 78.8
    西亚和中亚
    Western and Central Asia
    17.2 29.3 17.2
    加勒比地区 Caribbean 6.1 4.0 3.0
    大洋洲 Oceania −7.1 −3.0 2.0
    北非 Northern Africa −4.0 −4.0 −6.1
    中美洲 Central America −16.2 −15.2 −9.1
    南亚和东南亚
    South and Southeast Asia
    −44.4 −58.6 −83.8
    东非和南非
    Eastern and Southern Africa
    −67.7 −80.8 −89.9
    南美洲 South America −411.1 −416.2 −188.9
    西非和中非
    Western and Central Africa
    −174.7 −171.7 −223.2
    注:此表引自文献[1]。Note: The table is cited from reference [1].
    下载: 导出CSV
  • [1] Food and Agriculture Organization of the United Nations, Forestry Department. Global forest resources assessment 2020: Main report[M]. Rome: Food and Agriculture Organization of the United Nations, 2020.
    [2] Cook-Patton S C, Leavitt S M, Gibbs D A, et al. Mapping carbon accumulation potential from global natural forest regrowth[J]. Nature, 2020, 585(7826): 545−550. doi: 10.1038/s41586-020-2686-x
    [3] Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China Life Sciences, 2022, 65: 861−895. doi: 10.1007/s11427-021-2045-5
    [4] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学D辑: 地球科学, 2007, 37(6): 804−812.

    Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981—2000[J]. Scientia Sinica (Series D), 2007, 37(6): 804−812.
    [5] Yao Y T, Piao S L, Wang T. Future biomass carbon sequestration capacity of Chinese forests[J]. Science Bulletin, 2018, 63(17): 1108−1117. doi: 10.1016/j.scib.2018.07.015
    [6] Hester A S, Hann D W, Larsen D R. ORGANON: southwest oregon growth and yield model user manual: version 2.0[R]. Corvallis: Forestry Publications Office, Oregon State University, Forest Research Laboratory, 1989.
    [7] Crookston N L, Dixon G E. The forest vegetation simulator: a review of its structure, content, and applications[J]. Computers and Electronics in Agriculture, 2005, 49(1): 60−80. doi: 10.1016/j.compag.2005.02.003
    [8] Wutzler T. Projecting the carbon sink of managed forests based on standard forestry data[D]. Jena: Friedrich-Schiller-University, 2007.
    [9] Kurz W A, Apps M J. Developing Canada’s national forest carbon monitoring, accounting and reporting system to meet the reporting requirements of the Kyoto Protocol[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(1): 33−43. doi: 10.1007/s11027-006-1006-6
    [10] Zhan L, Zhou G S, Ji Y H, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China[J]. Science China Earth Sciences, 2016, 59(10): 1946−1958. doi: 10.1007/s11430-015-5599-4
    [11] Molina J A E, Crocker G J, Grace P R, et al. Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models[J]. Geoderma, 1997, 81(1−2): 91−107. doi: 10.1016/S0016-7061(97)00083-9
    [12] Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113(1-4): 185−222. doi: 10.1016/S0168-1923(02)00108-9
    [13] Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161−185. doi: 10.1046/j.1365-2486.2003.00569.x
    [14] Kucharik C J, Foley J A, Delire C, et al. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure[J]. Global Biogeochemical Cycles, 2000, 14(3): 795−825. doi: 10.1029/1999GB001138
    [15] 李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展[J]. 中国地质调查, 2021, 8(4): 79−86. doi: 10.19388/j.zgdzdc.2021.04.08

    Li H K. Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutralvision[J]. Geological Survey of China, 2021, 8(4): 79−86. doi: 10.19388/j.zgdzdc.2021.04.08
    [16] Pan D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988−993. doi: 10.1126/science.1201609
    [17] 方运霆, 莫江明, Sandra Brown, 等. 鼎湖山自然保护区土壤有机碳贮量和分配特征[J]. 生态学报, 2004, 24(1): 135−142. doi: 10.3321/j.issn:1000-0933.2004.01.020

    Fang Y T, Mo J M, Sandra B, et al. Storage and distribution of soil organic carbon in Dinghushan Biosphere Reserve[J]. Acta Ecologica Sinica, 2004, 24(1): 135−142. doi: 10.3321/j.issn:1000-0933.2004.01.020
    [18] Xiong X, Liu J, Zhou G, et al. Reduced turnover rate of topsoil organic carbon in old-growth forests: a case study in subtropical China[J]. Forest Ecosystem, 2021, 8(1): 1−11. doi: 10.1186/s40663-020-00279-4
    [19] Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185−190. doi: 10.1126/science.263.5144.185
    [20] Piao S L, He Y, Wang X H, et al. Estimation of China’s terrestrial ecosystem carbon sink: methods, proress and prospects[J]. Science China Earth Science, 2022, 65(4): 641−651. doi: 10.1007/s11430-021-9892-6
    [21] Junior C, Arago L, Anderson L O, et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses[J]. Science Advances, 2020, 2020,6(40): 1−9.
    [22] Maia V A, Santos A B M, de Aguiar-Campos N, et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat[J]. Science Advances, 2020, 6(51): eabd4548. doi: 10.1126/sciadv.abd4548
    [23] Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4910−4915. doi: 10.1073/pnas.1317065111
    [24] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009−1082. doi: 10.1038/nature07944
    [25] Ali A, Yan E R. Relationships between biodiversity and carbon stocks in forest ecosystems: a systematic literature review[J]. Tropical Ecology, 2017, 58(1): 1−14.
    [26] 杜雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 2022, 35(1): 76−81. doi: 10.13348/j.cnki.sjlyyj.2021.0068.y

    Du X, Wang H Y. Active components of forest soil organic carbon and its influencing factors in China[J]. World Forestry Research, 2022, 35(1): 76−81. doi: 10.13348/j.cnki.sjlyyj.2021.0068.y
    [27] 周国逸, 陈文静, 李琳. 成熟森林生态系统土壤有机碳积累: 实现碳中和目标的一条重要途径[J]. 大气科学学报, 2022, 45(3): 345−356.

    Zhou G Y, Chen W J, Li L. Soil organic carbon accumulation in mature forest ecosystems: an important way to achieve the carbon neutrality goal[J]. Transactions of Atmospheric Sciences, 2022, 45(3): 345−356.
    [28] Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils[J]. Science, 2006, 314(5804): 1417. doi: 10.1126/science.1130168
    [29] Tang J W, Bolstad P V, Martin J G. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence[J]. Global Change Biology, 2009, 15(1): 145−155. doi: 10.1111/j.1365-2486.2008.01741.x
    [30] McGarvey J C, Thompson J R, Epstein H E, et al. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink[J]. Ecology, 2015, 96(2): 311−317. doi: 10.1890/14-1154.1
    [31] Houlton B Z, Wang Y P, Vitousek P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454(7202): 327−330. doi: 10.1038/nature07028
    [32] Du E Z, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature GeoScience, 2020, 13(3): 221−226. doi: 10.1038/s41561-019-0530-4
    [33] Trumbore S, Brando P, Hartmann H. Forest health and global change[J]. Science, 2015, 349(6250): 814−818. doi: 10.1126/science.aac6759
    [34] 刘世荣, 代力民, 温远光, 等. 面向生态系统服务的森林生态系统经营: 现状、挑战与展望[J]. 生态学报, 2015, 35(1): 1−9. doi: 10.1016/j.chnaes.2014.12.001

    Liu S R, Dai L M, Wen Y G, et al. A review on forest ecosystem management towards ecosystem services: status, challenges, and future perspectives[J]. Acta Ecologica Sinica, 2015, 35(1): 1−9. doi: 10.1016/j.chnaes.2014.12.001
    [35] Huang Y, Chen Y, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment[J]. Science, 2018, 362(6410): 80−83. doi: 10.1126/science.aat6405
    [36] Liu X, Trogisch S, He J S, et al. Tree species richness increases ecosystem carbon storage in subtropical forests[J]. Proceeding of the Royal Society B, 2018, 285(1885): 20181240.
    [37] 陆元昌, 栾慎强, 张守攻, 等. 从法正林转向近自然林: 德国多功能森林经营在国家、区域和经营单位层面的实践[J]. 世界林业研究, 2010, 23(1): 1−11.

    Lu Y C, Luan S Q, Zhang S G, et al. From normal forest to close-to-nature forest: multi-functional forestry and its practice at national, regional and forest management unit levels in Germany[J]. World Forestry Research, 2010, 23(1): 1−11.
    [38] 曾伟生. 近自然森林经营是提高我国森林质量的可行途径[J]. 林业资源管理, 2009(2): 6−11. doi: 10.3969/j.issn.1002-6622.2009.02.002

    Zeng W S. Close-to-nature forest management: a practical approach to improve the forest quality of China[J]. Forest Resources Management, 2009(2): 6−11. doi: 10.3969/j.issn.1002-6622.2009.02.002
    [39] 曾祥谓. 我国多功能森林经营中的珍贵树种问题研究[D]. 北京: 中国林业科学研究院, 2010.

    Zeng X W. Study on the development of valuable timber trees in the management of multifunctional forest in China[D]. Beijing: Chinese Academy of Forestry, 2010.
    [40] 王新丽, 李小娟, 王红波. 加强森林培育技术实现林业可持续发展[J]. 新农业, 2021(12): 56.

    Wang X L, Li X J, Wang H B. Strengthening forest cultivation technology to achieve sustainable development of forestry[J]. Xin Nongye, 2021(12): 56.
    [41] 张新俊, 张信拴. 浅谈碳汇林业在气候变化应对中的作用[J]. 现代农业, 2015(2): 103−104. doi: 10.3969/j.issn.1008-0708.2015.02.068

    Zhang X J, Zhang X S. Discussion on the role of carbon sequestration forestry in dealing with climate change[J]. Modern Agriculture, 2015(2): 103−104. doi: 10.3969/j.issn.1008-0708.2015.02.068
    [42] 吴桂保. 森林培育技术现状分析及管理措施探讨[J]. 河南农业, 2022(5): 36−37. doi: 10.15904/j.cnki.hnny.2022.05.012

    Wu G B. Analysis on present situation of forest culture technology and discussion on management measures[J]. Agriculture of Henan, 2022(5): 36−37. doi: 10.15904/j.cnki.hnny.2022.05.012
    [43] 汤传德, 王彬. 对加强森林培育技术实现林业可持续发展的思考[J]. 现代农业科技, 2020(16): 118−120. doi: 10.3969/j.issn.1007-5739.2020.16.074

    Tang C D, Wang B. Thoughts on strengthening forest cultivation technology to realize forestry sustainable development[J]. Xiandai Nongye Keji, 2020(16): 118−120. doi: 10.3969/j.issn.1007-5739.2020.16.074
    [44] 朱小俊. 浅谈森林培育技术的精准化[J]. 河南农业, 2022(5): 38−39. doi: 10.15904/j.cnki.hnny.2022.05.016

    Zhu X J. Discussion on the precision of forest cultivation technology[J]. Agriculture of Henan, 2022(5): 38−39. doi: 10.15904/j.cnki.hnny.2022.05.016
    [45] 曹建军. 加强森林培育技术实现林业可持续发展的措施[J]. 种子科技, 2021, 39(11): 125−126. doi: 10.19904/j.cnki.cn14-1160/s.2021.11.059

    Cao J J. Measures to strengthen forest cultivation technology to achieve sustainable development of forestry[J]. Seed Science & Technology, 2021, 39(11): 125−126. doi: 10.19904/j.cnki.cn14-1160/s.2021.11.059
    [46] 殷万利, 闫双虎. 香荚蒾硬枝扦插育苗试验[J]. 青海农林科技, 2012(1): 48−50. doi: 10.3969/j.issn.1004-9967.2012.01.018

    Yin W L, Yan S H. Test on hardwood cutting of Viburnum farreri[J]. Science and Technology of Qinghai Agriculture and Forestry, 2012(1): 48−50. doi: 10.3969/j.issn.1004-9967.2012.01.018
    [47] 张银霞, 李晓蓉, 吴晓丽. 香荚蒾扦插育苗影响因素分析[J]. 农业科技通讯, 2022(2): 115−118. doi: 10.3969/j.issn.1000-6400.2022.02.036

    Zhang Y X, Li X R, Wu X L. Analysis on the influencing factors of cutting seedling in Viburnum farreri[J]. Bulletin of Agricultural Science and Technology, 2022(2): 115−118. doi: 10.3969/j.issn.1000-6400.2022.02.036
    [48] 彭勇. 浅析森林种苗培育技术的要点[J]. 科技资讯, 2015, 13(9): 69. doi: 10.3969/j.issn.1672-3791.2015.09.052

    Peng Y. Brief analysis on the key points of forest seedling cultivation technology[J]. Science & Technology Information, 2015, 13(9): 69. doi: 10.3969/j.issn.1672-3791.2015.09.052
    [49] 曾小燕. 森林培育技术的发展趋势及管理措施[J]. 现代园艺, 2016(7): 75−76. doi: 10.3969/j.issn.1006-4958.2016.07.049

    Zeng X Y. Development trend and management measures of forest culture technology[J]. Contemporary Horticulture, 2016(7): 75−76. doi: 10.3969/j.issn.1006-4958.2016.07.049
    [50] 阮启华. 森林种苗培育建设中的问题和对策[J]. 农家参谋, 2017(10): 184.

    Ruan Q H. Problems and countermeasures in the cultivation and construction of forest seedlings[J]. The Farmers Consultant, 2017(10): 184.
    [51] 何英. 大兴安岭天然林保护工程碳汇潜力研究[D]. 北京: 中国林业科学研究院. 2006.

    He Y. The carbon sequestration potential of Daxing’anling National Natural Forest Conservation Program[D]. Beijing: Chinese Academy of Forestry. 2006.
    [52] 史军, 刘纪远, 高志强, 等. 造林对陆地碳汇影响的研究进展[J]. 地理科学进展, 2004, 23(2): 58−67. doi: 10.3969/j.issn.1007-6301.2004.02.008

    Shi J, Liu J Y, Gao Z Q, et al. Research advances of the influence of afforestation on terrestrial carbon sink[J]. Progress in Geography, 2004, 23(2): 58−67. doi: 10.3969/j.issn.1007-6301.2004.02.008
    [53] Sacco D A, Hardwick K A, Blakesley D, et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits[J]. Global Change Biology, 2021, 27(7): 1328−1348. doi: 10.1111/gcb.15498
    [54] Silver W L, Ostertag L A E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands[J]. Restoration Ecology, 2000, 8(4): 394−407. doi: 10.1046/j.1526-100x.2000.80054.x
    [55] 李家永, 袁小华. 红壤丘陵区不同土地利用方式下有机碳储量的比较研究[J]. 资源科学, 2001, 23(5): 73−76. doi: 10.3321/j.issn:1007-7588.2001.05.014

    Li J Y, Yuan X H. A comparative study on organic carbon storage in difference land-use systems in red earth hilly area[J]. Resources Science, 2001, 23(5): 73−76. doi: 10.3321/j.issn:1007-7588.2001.05.014
    [56] Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia[J]. Forest Ecology and Management, 2003, 180(1-3): 317−333. doi: 10.1016/S0378-1127(02)00580-7
    [57] 方晰, 田大伦, 胥灿辉. 马尾松人工林生产与碳素动态[J]. 中南林业科技大学学报, 2003, 23(2): 11−15. doi: 10.3969/j.issn.1673-923X.2003.02.003

    Fang X, Tian D L, Xu C H. Productivity and carbon dynamics of masson pine plantation[J]. Journal of Central South Forestry University, 2003, 23(2): 11−15. doi: 10.3969/j.issn.1673-923X.2003.02.003
    [58] Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution[J]. Water Air and Soil Pollution, 1995, 82(1): 271−282.
    [59] 魏鹏. 优化森林抚育工作的策略思考[J]. 南方农业, 2022, 16(6): 69−71. doi: 10.19415/j.cnki.1673-890x.2022.06.023

    Wei P. Strategies on optimizing forest tending work[J]. South China Agriculture, 2022, 16(6): 69−71. doi: 10.19415/j.cnki.1673-890x.2022.06.023
    [60] 于长忠. 森林培育技术的研究[J]. 科学技术创新, 2019(22): 135−136. doi: 10.3969/j.issn.1673-1328.2019.22.085

    Yu C Z. Research on forest culture technology[J]. Scientific and Technologican Innovation, 2019(22): 135−136. doi: 10.3969/j.issn.1673-1328.2019.22.085
    [61] 吴飞林. 森林培育技术的发展现状与有效管理策略探索[J]. 新农业, 2020(3): 44−45.

    Wu F L. Development of forest culture technology and exploration of effective management strategy[J]. Xin Nongye, 2020(3): 44−45.
    [62] 赵彬. 低碳经济背景下的森林抚育经营问题探讨[J]. 温带林业研究, 2022, 5(1): 62−64. doi: 10.3969/j.issn.2096-4900.2022.01.012

    Zhao B. Discussion on forest tending and management problems under the background of low-carbon economy[J]. Journal of Temperate Forestry Research, 2022, 5(1): 62−64. doi: 10.3969/j.issn.2096-4900.2022.01.012
    [63] 赵应红. 分析森林抚育工作存在的问题及建议[J]. 新农业, 2022(8): 74−76.

    Zhao Y H. Analysis on problems and suggestions of forest tending work[J]. Xin Nongye, 2022(8): 74−76.
    [64] 罗建芳. 森林抚育间伐的意义、问题及优化措施[J]. 新农业, 2022(8): 71−72.

    Luo J F. The significance, problems and optimization measures of forest care and thinning[J]. Xin Nongye, 2022(8): 71−72.
    [65] 张钰明, 张玉珍. 新时期森林抚育经营技术与措施[J]. 世界热带农业信息, 2022(3): 54−55. doi: 10.3969/j.issn.1009-1726.2022.03.028

    Zhang Y M, Zhang Y Z. Technology and measures of forest tending and management in the new period[J]. World Tropical Agriculture Information, 2022(3): 54−55. doi: 10.3969/j.issn.1009-1726.2022.03.028
    [66] 安连任. 加强森林培育技术 实现林业可持续发展[J]. 现代园艺, 2022, 45(3): 201−202. doi: 10.3969/j.issn.1006-4958.2022.03.081

    An L R. Strengthening forest cultivation technology to achieve sustainable development of forestry[J]. Contemporary Horticulture, 2022, 45(3): 201−202. doi: 10.3969/j.issn.1006-4958.2022.03.081
    [67] 郝宝龙. 生态环境保护中的森林培育问题研究[J]. 农业灾害研究, 2021, 11(12): 178−179,183.

    Hao B L. Study on forest cultivation in ecological environment protection[J]. Journal of Agricultural Catastrophology, 2021, 11(12): 178−179,183.
    [68] 王睿照, 毛沂新, 张慧东, 等. 辽东山区蒙古栎次生林结构及生态因子分析[J]. 辽宁林业科技, 2021, 4: 1−4,56. doi: 10.3969/j.issn.1001-1714.2021.01.001

    Wang R Z, Mao Y X, Zhang H D, et. al. Analysis on structure and ecological factors of secondary forests for Quercus mongolica of mountainous area in eastern Liaoning[J]. Liaoning Forestry Science and Technology, 2021, 4: 1−4,56. doi: 10.3969/j.issn.1001-1714.2021.01.001
    [69] 李树巧. 基于森林资源保护的森林培育工作[J]. 特种经济动植物, 2022, 25(1): 107−108. doi: 10.3969/j.issn.1001-4713.2022.01.041

    Li S Q. Forest cultivation based on forest resource conservation[J]. Special Economic Animal and Plant, 2022, 25(1): 107−108. doi: 10.3969/j.issn.1001-4713.2022.01.041
    [70] 牛运芳. 森林培育技术对实现林业可持续发展的作用[J]. 世界热带农业信息, 2021(12): 45. doi: 10.3969/j.issn.1009-1726.2021.12.030

    Niu Y F. The effect of forest cultivation technology on sustainable development of forestry[J]. World Tropical Agriculture Information, 2021(12): 45. doi: 10.3969/j.issn.1009-1726.2021.12.030
    [71] 谭鹏鹏. 加强森林培育技术对实现林业可持续发展的作用[J]. 现代农业研究, 2021, 27(12): 95−96. doi: 10.3969/j.issn.1674-0653.2021.12.035

    Tan P P. Strengthen the role of forest cultivation technology in realizing the sustainable development of forestry[J]. Modern Agriculture Research, 2021, 27(12): 95−96. doi: 10.3969/j.issn.1674-0653.2021.12.035
    [72] 陆岷峰. “双碳”目标下碳金融现状评估、目标定位与发展对策[J]. 福建金融, 2021(6): 27−35.

    Lu M F. Assessment of the current situation of carbon finance, target and development strategy under the “double carbon” goal[J]. Fujian Finance, 2021(6): 27−35.
    [73] 邹亚生. 低碳经济背景下我国的碳金融发展之路[J]. 中国金融, 2010(4): 45−46.

    Zou Y S. The development of carbon finance in China at the background of low-carbon economy[J]. China Finance, 2010(4): 45−46.
    [74] Torres B A, Macmillan D C, Skutsch M, et al. ‘Yes-in-my-backyard’: spatial differences in the valuation of forest services and local co-benefits for carbon markets in México[J]. Ecological Economics, 2015, 117: 283−294. doi: 10.1016/j.ecolecon.2015.03.021
    [75] 王行健, 贾翔夫. “双碳”背景下的金融可持续发展−基于CiteSpace的知识图谱分析[J]. 理论述评, 2022, 42(2): 155−161.

    Wang X J, Jia X F. Financial sustainability in the context of “Dual Carbon”−CiteSpace-based knowledge graph analysis[J]. Modernization of Management, 2022, 42(2): 155−161.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  17
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回