高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同地理空间城市森林空气负离子浓度及其影响因素研究

朱舒欣 何茜 苏艳 崔国发 李吉跃

朱舒欣, 何茜, 苏艳, 崔国发, 李吉跃. 不同地理空间城市森林空气负离子浓度及其影响因素研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220246
引用本文: 朱舒欣, 何茜, 苏艳, 崔国发, 李吉跃. 不同地理空间城市森林空气负离子浓度及其影响因素研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220246
Zhu Shuxin, He Qian, Su Yan, Cui Guofa, Li Jiyue. Study on the negative air ion concentration and influencing factors of urban forest in different geographical spaces[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220246
Citation: Zhu Shuxin, He Qian, Su Yan, Cui Guofa, Li Jiyue. Study on the negative air ion concentration and influencing factors of urban forest in different geographical spaces[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220246

不同地理空间城市森林空气负离子浓度及其影响因素研究

doi: 10.12171/j.1000-1522.20220246
基金项目: 广东省林业科技创新项目(2018KJCX012)。
详细信息
    作者简介:

    朱舒欣,博士研究生。主要研究方向:森林康养。Email:2450315979@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学生态与自然保护学院

    责任作者:

    李吉跃,教授,博士生导师。主要研究方向:森林康养。Email:564857527@qq.com 地址:510642广东省广州市天河区五山街道483号华南农业大学林学与风景园林学院。

  • 中图分类号: S716.2

Study on the negative air ion concentration and influencing factors of urban forest in different geographical spaces

  • 摘要:   目的  开展不同地理空间城市森林的空气负离子浓度(NAIC)研究,为空气负离子的理论研究和森林康养基地的选址依据提供科学支撑。  方法  在2019年9月—2020年1月,2020年5月—8月,选取广东省广州市的3个不同地理位置、森林面积和周边环境梯度的森林环境:远郊、近郊和城区城市森林,同时设置1个城区对照组进行NAIC差异比较,并运用Pearson相关性分析和多元逐步回归分析探讨NAIC与空气含氧量、温度、相对湿度和风速的相关关系。  结果  (1)天然林的NAIC显著高于人工林;在人工林中,高郁闭度林的NAIC显著高于中郁闭度林。(2)不同地理空间城市森林NAIC差异显著,其中远郊城市森林 > 近郊城市森林 > 城区城市森林 > 城区对照组。(3)森林环境产生NAIC的能力显著优于城市环境(无林地区)。(4)远郊和近郊城市森林的NAIC季节变化为:夏季 > 春季 > 秋季 > 冬季,而城区城市森林和城区对照组为:秋季 > 冬季 > 春季 > 夏季。(5)远郊和近郊城市森林的NAIC与空气含氧量、温度和相对湿度均呈极显著正相关,而城区城市森林和城区对照组的NAIC与空气含氧量和温度均呈极显著负相关关系;近郊城市森林的NAIC与风速呈极显著负相关,而远郊城市森林呈极显著正相关。(6)远郊城市森林的NAIC主要与相对湿度和温度密切相关;近郊城市森林的NAIC主要受空气含氧量、风速和温度影响;城区城市森林和城市对照组的NAIC受温度的影响最大。  结论  地理空间对NAIC有显著影响,即距离城市中心较远、森林面积达到一定规模且集中连片对NAIC有正向影响,相关结果为森林康养基地的选址提供了理论依据。不同地理空间城市森林NAIC的环境影响因子各不相同,建议今后的研究综合考虑气象、林分、地形、周边环境等多个方面不同因素的协同影响,深入探讨NAIC与各环境因子的影响机制。

     

  • 图  1  不同林分条件NAIC的差异比较

    *. p < 0.05;**. p < 0.01;***. p < 0.001; ns. 没有显著性差异。ns, not significant。

    Figure  1.  Comparison of NAIC in different stand conditions

    图  2  不同地理空间城市森林NAIC的季节比较

    EF. 远郊城市森林;SF. 近郊城市森林;DF. 城区城市森林;UCG. 城区对照组。不同小写字母表示同一地理空间内不同季节间差异显著。下同。EF, exurban forest; SF, suburban forest; DF, downtown forestc UCG, urban control group. Different lowercase letters indicate significant differences between seasons in the same geographical space. The same below.

    Figure  2.  Comparison NAIC of urban forest in different geographical spaces

    图  3  不同季节城市森林NAIC的地理空间比较

    不同小写字母表示同一季节内不同地理空间差异显著。Different lowercase letters indicate significant differences between geographical spaces in the same season.

    Figure  3.  Geospatial comparison of NAIC of urban forest in different seasons

    表  1  不同地理空间城市森林的研究样地概况

    Table  1.   Overview of study sites of urban forest in different geographical spaces

    城市森林类型
    Urban forest type
    研究地
    Study sites
    所选样地的林分类型
    The stand type of the sample plot
    海拔
    Altitude/m
    面积/hm2
    Area/ha
    郁闭度
    Canopy
    density
    林龄/a
    Stand
    age/year
    样点数量
    Sample
    quantity
    远郊城市森林
    Exurban forest
    石门国家森林公园
    Shimen National Forest Park
    阔叶混交林
    Broad-leaved mixed forest
    820650.9 ≥ 1004
    毛竹林
    Phyllostachys edulis forest
    81019.30.8 ≥ 304
    枫香林
    Liquidambar formosana forest
    45015.60.6 ≥ 203
    杉木林
    Cunninghamia lanceolata forest
    35017.90.7 ≥ 303
    枫香杉木混交林
    Liquidambar formosana and
    Cunninghamia lanceolata mixed forest
    29025.60.5 ≥ 203
    近郊城市森林
    Suburban forest
    广东省龙眼洞林场
    Guangdong Longyandong Forest Farm
    红锥林(a)
    Castanopsis hystrix forest (a)
    25935.60.8 ≥ 303
    红锥林(b)
    Castanopsis hystrix forest (b)
    28627.80.6 ≥ 203
    木荷林(a)
    Schima superba forest (a)
    32014.30.7 ≥ 203
    木荷林(b)
    Schima superba forest (b)
    41515.10.6 ≥ 203
    城区城市森林
    Downtown forest
    长岗山自然保护区
    Changgangshan Nature Reserve
    针阔混交林
    Coniferous and broad-leaved mixed forest
    40 ~ 5015.00.7 ≥ 253
    城区对照组
    Urban control group
    五山街道
    Wushan Street
    405 ~ 63
    下载: 导出CSV

    表  2  不同林分类型的划分

    Table  2.   Division of different stand types

    林分类型
    Stand types
    天然林
    Natural forests
    人工林 Planted forests
    混交林
    Mix
    forests
    纯林
    Pure
    forests
    成熟林
    Mature
    forests
    中龄林
    Middle-aged
    forests
    高郁闭度林
    High canopy
    density forest
    中郁闭度林
    Middle canopy
    density forest
    阔叶混交林 Broad-leaved mixed forest
    毛竹林 Phyllostachys edulis forest
    枫香林 Liquidambar formosana forest
    杉木林 Cunninghamia lanceolata forest
    枫香杉木混交林
    Liquidambar formosana and Cunninghamia lanceolata mixed forest
    红锥林(a) Castanopsis hystrix forest (a)
    红锥林(b) Castanopsis hystrix forest (b)
    木荷林(a) Schima superba forest (a)
    木荷林(b) Schima superba forest (b)
    针阔混交林 Coniferous and broad-leaved mixed forest
    下载: 导出CSV

    表  3  不同地理空间城市森林的环境因子

    Table  3.   Environmental factors of urban forest in different geographical spaces

    环境因子
    Environmental factors
    远郊城市森林
    Exurban forest
    近郊城市森林
    Suburban forest
    城区城市森林
    Downtown forest
    城区对照组
    Urban control group
    空气含氧量 Air oxygen content21.17 ± 0.38 a21.13 ± 0.30 ab21.10 ± 0.16 b20.98 ± 0.12 c
    温度 Temperature23.41 ± 4.41 c24.20 ± 5.12 c27.51 ± 6.21 b28.76 ± 6.54 a
    相对湿度 Relative humidity79.72 ± 12.03 a77.06 ± 11.26 b72.42 ± 11.99 c64.51 ± 12.82 d
    风速 Wind speed0.93 ± 0.77 c2.05 ± 1.64 a0.83 ± 0.72 c1.22 ± 0.66 b
    不同小写字母表示不同地理空间城市森林的环境因子差异显著。Different lowercase letters indicate significant differences between environmental factors of urban forest in different geographical spaces。
    下载: 导出CSV

    表  4  不同地理空间城市森林NAIC与环境因子的相关性分析

    Table  4.   Correlation analysis of NAIC and environmental factors of urban forest in different geographical spaces

    相关关系 Correlation 分析 Analysis 远郊城市森林
    Exurban
    forest
    近郊城市森林
    Suburban
    forest
    城区城市森林
    Downtown
    forest
    城区对照组
    Urban control
    group
    NAIC与空气含氧量 NAIC and air oxygen content Pearson相关性 Pearson correlation 0.147** 0.687** −0.333** −0.466**
    显著性 Significance 0.000 0.000 0.000 0.000
    样本量 Sample capacity 567 378 198 198
    NAIC与温度 NAIC and temperature Pearson相关性 Pearson correlation 0.155** 0.633** −0.413** −0.671**
    显著性 Significance 0.000 0.000 0.000 0.000
    样本量 Sample capacity 567 378 198 198
    NAIC与相对湿度 NAIC and relative humidity Pearson相关性 Pearson correlation 0.352** 0.314** 0.089 0.075
    显著性 Significance 0.000 0.000 0.214 0.295
    样本量 Sample capacity 567 378 198 198
    NAIC与风速 NAIC and wind speed Pearson相关性 Pearson correlation 0.130** −0.247** 0.000 0.081
    显著性 Significance 0.002 0.000 0.998 0.256
    样本量Sample capacity 567 378 198 198
    下载: 导出CSV

    表  5  不同地理空间城市森林NAIC与环境因子的多元逐步回归分析

    Table  5.   Multiple stepwise regression analysis of NAIC and environmental factors of urban forest in different geographical spaces

    城市森林类型
    Urban forest type
    模型 ModelBSEβtSig.R2
    远郊城市森林
    Exurban forest
    1常量 Constant−952.071415.033−2.2940.0220.124
    相对湿度 Relative humidity45.9735.1480.3528.9300.000
    2常量 Constant−2275.262524.169−4.3410.0000.148
    相对湿度 Relative humidity46.1195.0800.3539.0790.000
    温度 Temperature56.03813.8570.1574.0440.000
    近郊城市森林
    Suburban forest
    1常量 Constant−42884.5442455.112−17.4670.0000.472
    空气含氧量 Air oxygen content2131.428116.1940.68718.3440.000
    2常量 Constant−41317.1852428.410−17.0140.0000.497
    空气含氧量 Air oxygen content2065.834114.6450.66618.0190.000
    风速 Wind speed−88.69820.747−0.158−4.2750.000
    3常量 Constant−31785.8413790.366−8.3860.0000.511
    空气含氧量 Air oxygen content1572.754189.4090.5078.3030.000
    风速 Wind speed−81.14820.619−0.145−3.9360.000
    温度 Temperature35.98111.0810.2003.2470.001
    城区城市森林
    Downtown forest
    1常量 Constant1597.02475.31521.2050.0000.171
    温度 Temperature−16.9782.671−0.413−6.3570.000
    城区对照组
    Urban control group
    1常量 Constant1009.27338.70526.0760.0000.450
    温度 Temperature−16.6201.313−0.671−12.6620.000
    下载: 导出CSV
  • [1] 邵海荣, 贺庆棠. 森林与空气负离子[J]. 世界林业研究, 2000, 13(5): 19−23.

    Shao H R, He Q T. Forest and air anion[J]. World Forestry Research, 2000, 13(5): 19−23.
    [2] 吴楚材, 郑群明, 钟林生. 森林游憩区空气负离子水平的研究[J]. 林业科学, 2001, 37(5): 75−81.

    Wu C C, Zheng Q M, Zhong L S. A Study of aero-anion concentration in forest recreation area[J]. Scientia Silvae Sinicae, 2001, 37(5): 75−81.
    [3] 冯鹏飞, 于新文, 张旭. 北京地区不同植被类型空气负离子浓度及其影响因素分析[J]. 生态环境学报, 2015, 24(5): 818−824.

    Feng P F, Yu X W, Zhang X. Variations in negative air ion concentrations associated with different vegetation types and influencing factors in Beijing[J]. Ecology and Environmental Sciences, 2015, 24(5): 818−824.
    [4] 古琳. 无锡惠山三种游憩林生态保健功能研究[D]. 北京: 中国林业科学研究院, 2013.

    Gu L. Ecological health effects of three recreational forests in Hui Mountain of Wuxi City, Jiangsu Province, Southern China[D]. Beijing: Chinese Academy of Forestry, 2013.
    [5] 文野. 赣北山地森林康养要素时空动态与康养功能研究[D]. 南昌: 江西农业大学, 2020.

    Wen Y. Research on spatio-temporal dynamics of forest convalescence factors and convalescent functions in Northern Jiangxi Province[D]. Nanchang: Jiangxi Agricultural University, 2020.
    [6] Jun N, Qiong X, Dengrong S, et al. Research on relation between air anions and environment in Shanghai City[J]. Chinese Forestry Science and Technology, 2004, 3(3): 84−89.
    [7] Li Y, Guo X, Wang T, et al. Characteristics of atmospheric small ions and their application to assessment of air quality in a typical Semi-Arid City of Northwest China[J]. Aerosol and Air Quality Research, 2015, 15(3): 865−874. doi: 10.4209/aaqr.2014.06.0123
    [8] 谭东, 张样盛, 杨娟. 茶山竹海负氧离子浓度分布状况及变化规律初探[J]. 三峡环境与生态, 2010, 32(3): 26−28.

    Tan D, Zhang Y S, Yang J. A Primary exploration on distribution and the variation of negative oxygen ion concentration in ChaShanZhuHai[J]. Environment and Ecology in the Three Gorges, 2010, 32(3): 26−28.
    [9] Luo L, Sun W, Han Y, et al. Importance evaluation based on random forest algorithms: Insights into the relationship between negative air ions variability and environmental factors in urban green spaces[J]. Atmosphere, 2020, 11(7): 706. doi: 10.3390/atmos11070706
    [10] Miao S, Zhang X, Han Y, et al. Random forest algorithm for the relationship between negative air ions and environmental factors in an urban park[J]. Atmosphere, 2018, 9(12): 463. doi: 10.3390/atmos9120463
    [11] 韦朝领, 王敬涛, 蒋跃林, 等. 合肥市不同生态功能区空气负离子浓度分布特征及其与气象因子的关系[J]. 应用生态学报, 2006, 17(11): 2158−2162.

    Wei C L, Wang J T, Jiang Y L, et al. Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City[J]. Chinese Journal Applied Ecology, 2006, 17(11): 2158−2162.
    [12] 李江荣, 高郯, 陈康, 等. 藏东南急尖长苞冷杉林空气负离子浓度特征及其与气象因子的关系[J]. 东北林业大学学报, 2021, 49(10): 77−82.

    Li J R, Gao T, Chen K, et al. Characteristics of negative air ion concentration and its relationships with meteorological factors in Abies georgei var. smithii forest of Southeast Tibet[J]. Journal of Northeast Forestry University, 2021, 49(10): 77−82.
    [13] Retalis A, Nastos P, Retalis D. Study of small ions concentration in the air above Athens, Greece[J]. Atmospheric Research, 2009, 91(2-4): 219−228. doi: 10.1016/j.atmosres.2008.05.011
    [14] 李哲. 对不同林分中空气负氧离子含量变化规律的研究[D]. 长沙: 中南林业科技大学, 2017.

    Li Z. The study on the variation of air negative oxygen ion content in different forest parts[D]. Changsha: Central South University of Forestry & Technology, 2017.
    [15] 朱舒欣, 何双玉, 胡菲菲, 等. 石门国家森林公园夏季不同林分保健功能综合评价[J]. 北京林业大学学报, 2021, 43(6): 60−74. doi: 10.12171/j.1000-1522.20200343

    Zhu S X, He S Y, Hu F F, et al. Comprehensive evaluation of healthcare functions among different stands in Shimen National Forest Park of southern China in summer[J]. Journal of Beijing Forestry University, 2021, 43(6): 60−74. doi: 10.12171/j.1000-1522.20200343
    [16] 王锋, 陈倩倩, 余斐, 等. 不同海拔和造林密度对红锥人工林生长的影响[J]. 广东林业科技, 2015, 31(3): 57−61.

    Wang F, Chen Q Q, Yu F, et al. Effects of different altitude and density on growth of effects of different altitude and density on growth of Castanopsis hystrix plantation[J]. Guangdong forestry science and technology, 2015, 31(3): 57−61.
    [17] 佟富春, 肖以华. 广州长岗山森林土壤线虫的群落结构特征[J]. 林业科学, 2014, 50(2): 111−120.

    Tong F C, Xiao Y H. Community structure of soil nematodes in Changgangshan Natural Reserve of Guangzhou[J]. Scientia Silvae Sinicae, 2014, 50(2): 111−120.
    [18] 刘世荣, 马姜明, 缪宁. 中国天然林保护、生态恢复与可持续经营的理论与技术[J]. 生态学报, 2015, 35(1): 212−218.

    Liu S R, Ma J M, Miao N. Achievements in natural forest protection, ecological restoration, and sustainable management in China[J]. Acta Ecologica Sinica, 2015, 35(1): 212−218.
    [19] 王一荃, 周璋, 李意德, 等. 不同热带森林空气负离子浓度评价研究[J]. 生态环境学报, 2021, 30(5): 898−906.

    WANG Y Q, ZHOU Z, LI Y D, et al. The spatial-temporal pattern and influencing factors of negative air ions in tropical forests, Hainan, China[J]. Ecology and Environmental Sciences, 2021, 30(5): 898−906.
    [20] 刘新, 吴林豪, 张浩, 等. 城市绿地植物群落空气负离子浓度及影响要素研究[J]. 复旦学报(自然科学版), 2011: 50 (2): 206−212.

    Liu X, Wu L H, Zhang H, et al. Study on the concentration of negative air ions and the influential factors in different urban plant communities[J]. Journal of Fudan University (Natural Science), 2011: 50 (2): 206−212.
    [21] 佘思玥, 魏家星, 王楠琪, 等. 南京市不同纯林群落结构参数与夏季降温增湿效应关系研究[J]. 广西植物, 2018, 38(3): 361−369. doi: 10.11931/guihaia.gxzw201707024

    She S Y, Wei J X, Wang N Q, et al. Correlation between community structure parameters of pure forests and temperature reduction and humidity increase in summer[J]. Guihaia, 2018, 38(3): 361−369. doi: 10.11931/guihaia.gxzw201707024
    [22] 杜万光, 王成, 王茜, 等. 北京香山公园主要植被类型的夏季环境效应评价[J]. 林业科学, 2018, 54(4): 155−164.

    Du W G, Wang C, Wang Q, et al. Evaluation of summer environmental effects of the main vegetation types in Beijing Fragrant Hills Park[J]. Scientia Silvae Sinicae, 2018, 54(4): 155−164.
    [23] 郑诗禹, 张绿水, 郭晓敏, 等. 不同森林郁闭度环境内空气负氧离子的时空变化及环境影响要素研究——以广州帽峰山为例[J]. 生态环境学报, 2021, 30(11): 2204−2212.

    Zheng S Y, Zhang L S, Guo X M, et al. Spatial and temporal variations of negative oxygen ions in the air and environmental influencing factors in forest environment with different canopy densities: a case study of Maofeng Mountain in Guangzhou[J]. Ecology and Environmental Sciences, 2021, 30(11): 2204−2212.
    [24] 刘双芳, 张维康, 韩静波, 等. 不同植被结构对空气质量的调控功能[J]. 生态环境学报, 2020: 29 (8): 1602−1609.

    Liu S F, Zhang W K, Han J B, et al. Regulation of air quality by different vegetation structures in a green space[J]. Ecology and Environmental Sciences, 2020, 29(8): 1602−1609.
    [25] 毛成忠, 于乃莲, 杜佳乐, 等. 典型城市区与森林区空气负氧离子特征比较分析[J]. 气象科技, 2014, 42(6): 1083−1089.

    Mao C Z, Yu N L, Du J L, et al. Characteristics comparison of negative oxygen ions between typical urban and forest areas[J]. Meteorological Science and Technology, 2014, 42(6): 1083−1089.
    [26] 邵海荣, 贺庆棠, 阎海平, 等. 北京地区空气负离子浓度时空变化特征的研究[J]. 北京林业大学学报, 2005, 27(3): 35−39.

    Shao H R, He Q T, Yan H P, et al. Spatio-temporal changes of negative air ion concentrations in Beijing[J]. Journal of Beijing Forestry University, 2005, 27(3): 35−39.
    [27] 赵怡宁, 史常青, 许荡飞, 等. 崇礼区典型林分空气负离子浓度及影响因素[J]. 林业科学研究, 2018, 31(3): 127−135.

    Zhao Y N, Shi C C, Xu D F, et al. Variations in negative air ion concentrations associated with different vegetation types and influencing factors in Chongli District[J]. Forest Research, 2018, 31(3): 127−135.
    [28] 张万超, 郑俊鸣, 丁旭玲, 等. 3种仙人掌科植物负离子释放量与释放通道的相关性研究[J]. 热带作物学报, 2016, 37(7): 1298−1305.

    Zhang W C, Zheng J M, Ding X L, et al. Correlation between the negative air ions released by 3 species in Cactaceae and the releasing passage[J]. Chinese Journal of Tropical Crops, 2016, 37(7): 1298−1305.
    [29] Zhang J, Rong Y, Yin Q, et al. Spatiotemporal variation and influencing factors of TSP and anions in coastal atmosphere of Zhanjiang City, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(4): 2030. doi: 10.3390/ijerph19042030
    [30] Wang Y, Ni Z, Wu D, et al. Factors influencing the concentration of negative air ions during the year in forests and urban green spaces of the Dapeng Peninsula in Shenzhen, China[J]. Journal of Forestry Research, 2020, 31(6): 2537−2547. doi: 10.1007/s11676-019-01047-z
    [31] 齐冰, 杜荣光, 邵碧嘉. 杭州市空气负离子变化特征分析[J]. 气象与减灾研究, 2011, 34(4): 68−71. doi: 10.3969/j.issn.1007-9033.2011.04.011

    Qi B, Du R G, Shao B J. Characteristics of anion variation in Hangzhou[J]. Meteorology and Disaster Reduction Research, 2011, 34(4): 68−71. doi: 10.3969/j.issn.1007-9033.2011.04.011
    [32] 黎勋, 魏建军, 王玮. 广西负氧离子浓度的变化特征分析[J]. 气象研究与应用, 2019, 40(3): 98−101.

    Li X, Wei J J, Wang W. Preliminary study on the variation characteristics of negative oxygen ion concentration in Guangxi[J]. Journal of Meteorological Research and Application, 2019, 40(3): 98−101.
    [33] 徐猛, 陈步峰, 粟娟, 等. 广州帽峰山林区空气负离子动态及与环境因子的关系[J]. 生态环境, 2008, 17(5): 1891−1897.

    Xu M, Chen B F, Su J, et al. Dynamic of negative air ions and its relationship to environmental factors in Maofeng Mountain, Guangzhou[J]. Ecology and Environment, 2008, 17(5): 1891−1897.
    [34] 王艳英, 王成, 董建文, 等. 福州旗山常绿阔叶混交林空气含氧量日变化特征[J]. 中国城市林业, 2014, 12(4): 6−9.

    Wang Y Y, Wang C, Dong J W, et al. Diurnal oxygen concentration changes in mixed evergreen broad-leaved forest at Qishan, Fuzhou[J]. Journal of Chinese Urban Forestry, 2014, 12(4): 6−9.
    [35] 马荣, 王志高, 黄玉洁, 等. 午潮山国家森林公园秋季空气负离子浓度及影响因素[J]. 森林与环境学报, 2021, 41(1): 26−34.

    Ma R, Wang Z G, Huang Y J, et al. Spatio-temporal pattern of air anion concentrations and their influencing factors in autumn of Wuchaoshan National Forest Park[J]. Journal of Forest and Environment, 2021, 41(1): 26−34.
    [36] Yue C, Yuxin Z, Nan Z, et al. An inversion model for estimating the negative air ion concentration using MODIS images of the Daxing’anling region[J]. Plos One, 2020, 15(11): e242554.
    [37] 王波, 闫晓云, 侯秀娟, 等. 夏季干旱半干旱城市公园不同植被配置环境效应评价研究[J]. 西北林学院学报, 2022, 37(2): 248−255.

    Wang B, Yan X Y, Hou X J, et al. Evaluation of the environmental effects of different vegetation configurations in arid and semi-arid urban parks in summer[J]. Journal of Northwest Forestry University, 2022, 37(2): 248−255.
    [38] Shi G, Zhou Y, Sang Y, et al. Modeling the response of negative air ions to environmental factors using multiple linear regression and random forest[J]. Ecological informatics, 2021, 66: 101464. doi: 10.1016/j.ecoinf.2021.101464
    [39] 侯秀娟, 闫晓云, 王波, 等. 夏季干旱半干旱城市公园绿地空气负离子与空气颗粒物变化特征[J]. 南京林业大学学报(自然科学版), 2022: 1−11.

    Hou X J, Yan X Y, Wang B, et al. Variation characteristics of air anion and air particulate matter in arid and semi-arid urban park green space in summer[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022: 1−11.
    [40] 杨畅, 王月容, 汤志颖, 等. 不同群落结构风景游憩林生态保健效应研究——以北京西山国家森林公园为例[J]. 生态学报, 2022(16): 1−15.

    Yang C, Wang Y R, Tang Z Y, et al. Ecological health care effects of scenic recreational forests with different community structures: A case study of Beijing Xishan National Forest Park[J]. Acta Ecologica Sinica, 2022(16): 1−15.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-09-13
  • 录用日期:  2023-09-10
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回