Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development
-
摘要:
目的 针叶树中NF-Y核因子调控球花发育的研究尚未见报导,对油松PtNF-YC1基因克隆、表达特性及功能分析,旨在为针叶树NF-Y基因家族在球花生殖发育中的功能研究提供依据。 方法 (1)利用系统进化树分析油松PtNF-YC1与拟南芥NF-YC亚家族蛋白的亲缘关系;(2)瞬时转化烟草检测PtNF-YC1的亚细胞定位;(3)根据转录组数据分析PtNF-YC1在油松不同组织中的表达特性;(4)PtNF-YC1异源转化拟南芥,分别比较长日照和短日照条件下转基因拟南芥不同株系的开花时间,并对长日照下各株系进行转录组测序,筛选响应PtNF-YC1调控开花的相关基因;(5)通过Y2H和BiFC验证PtNF-YC1与候选蛋白之间互作。 结果 PtNF-YC1基因的开放阅读框为897 bp,编码299个氨基酸,含有典型NF-YC保守结构域,与AtNF-YC3/4/9具有较高同源性。亚细胞定位结果显示,PtNF-YC1定位在细胞核和细胞质。PtNF-YC1在针叶、营养芽、雌雄花芽和根中都能表达,但在雄球花中表达丰度最高。PtNF-YC1异源转化拟南芥可推迟其短日照下开花时间。Y2H和BiFC证明PtNF-YC1与PtCOL5存在相互作用。 结论 PtNF-YC1可调控成花时间,是油松光周期途径诱导球花发育的候选基因。 Abstract:Objective The research on the regulation of NF-Y nuclear factor on cone development in conifers has not been reported yet. Through the cloning, expression characteristics and functional analysis of PtNF-YC1 gene of P. tabuliformis, it provides a basis for the functional study of conifer NF-Y gene family in the reproductive development of conifers. Method (1) The relationship between PtNF-YC1 and Arabidopsis thaliana NF-YC subfamily proteins was analyzed by phylogenetic tree. (2) Tobacco was transiently transformed to detect the subcellular localization of PtNF-YC1. (3) The expression characteristics of PtNF-YC1 in different tissues of P. tabuliformis were analyzed based on transcriptome data. (4) PtNF-YC1 was heterologously transformed into Arabidopsis, and the flowering time of different transgenic Arabidopsis lines under long-day and short-day was compared. The transcriptome sequencing of each transgenic line under long-day was performed to screen the genes related to PtNF-YC1 regulating flowering. (5) The protein interaction between PtNF-YC1 and candidate proteins was verified by Y2H and BiFC. Result The open reading frame of PtNF-YC1 was 897 bp, which encoded 299 amino acids, had a typical NF-YC conserved domain, and a close relationship with the homologous genes of AtNF-YC3/4/9. The subcellular localization showed that PtNF-YC1 was localized in the nucleus and cytoplasm. The analysis of expression patterns in different tissues showed that PtNF-YC1 could be expressed in needles, vegetative buds, male and female cones and roots, but the expression abundance was the highest in male cones and stems. PtNF-YC1 heterologous transformation of Arabidopsis delayed flowering under short day. It is proved that PtNF-YC1 interacts with PtCOL5 through Y2H and BiFC. Conclusion PtNF-YC1 has the function of regulating flowering time and is a candidate gene for inducing cone development through photoperiodic pathway of P. tabuliformis. -
Key words:
- Pinus tabuliformis /
- PtNF-YC1 /
- photoperiod regulation /
- cone development
-
图 6 油松PtNF-YC1与PtCOL5酵母双杂交互作(a)和双分子荧光互补(b)验证结果
SD/-Leu-Trp和SD/-Leu-Trp-His-Ade培养基用于检测互作验证,AD-T/BD-p53(PC)和AD-T/BD-PtNF-YC1(NC)为阳性对照和阴性对照。SD/Leu Trp and SD/Leu Trp His-Ade media are used for detection of interaction validation, with AD-T/BD-p53 (PC) and AD-T/BD-PtNF-YC1 (NC) as positive and negative controls.
Figure 6. Yeast two-hybrid interaction (a) and bimolecular fluorescence complementation (b) of PtNF-YC1 and PtCOL5 of P. tabuliformis
表 1 PtNF-YC1引物信息
Table 1. Primer information of PtNF-YC1
引物名称 Primer name 引物序列(5′—3′) Primer sequence (5′−3′) 用途 Usage PtNF-YC1-F ATGGACCACCACAACCACCAC 基因克隆
Gene clonePtNF-YC1-R GTTGGCAGAACGAGGGGGAG pSPYNE-PtNF-YC1-F TTAACCGGGCTCAGGCCTATGGACCACCACAACCACCAC 双分子荧光互补
Bimolecular fluorescence complementationpSPYNE-PtNF-YC1-R GAGCGGTACCCTCGAGGTTGGCAGAACGAGGGGGAG pBI121-eGFP-PtNF-YC1-F CACGGGGGACTCTAGAATGGACCACCACAACCACCA 亚细胞定位
Subcellular localizationpBI121-eGFP-PtNF-YC1-R CCATGGTACCCCCGGGGTTGGCAGAACGAGGGGGA BD-PtNF-YC1-F GGAGGCCGAATTCCCGGGGATGGACCACCACAACCACC 酵母双杂交
Yeast two hybrid systemBD-PtNF-YC1-R GCCGCTGCAGGTCGACTCAGTTGGCAGAACGAGGGG AD-PtCOL5-F CAGTGAATTCCACCCGGGGATGGTGAAGGAAGAAGACAAG 酵母双杂交
Yeast two hybrid systemAD-PtCOL5-R TCATCTGCAGCTCGAGTCAATAAGATGGAACAACTCCAT pSPYCE-PtCOL5-F TTAACCGGGCTCAGGCCTATGGTGAAGGAAGAAGACAAGG 双分子荧光互补
Bimolecular fluorescence complementationpSPYCE-PtCOL5-R GAGCGGTACCCTCGAGATAAGATGGAACAACTCCATATCCT -
[1] Maity S N, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription[J]. Trends in Biochemical Sciences, 1998, 23(5): 174−178. doi: 10.1016/S0968-0004(98)01201-8 [2] Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y[J]. Gene, 1999, 239(1): 15−27. doi: 10.1016/S0378-1119(99)00368-6 [3] Mcnabb D S, Tseng K A, Guarente L. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor[J]. Molecular and Cellular Biology, 1997, 17(12): 7008−7018. doi: 10.1128/MCB.17.12.7008 [4] Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105−2110. doi: 10.1126/science.290.5499.2105 [5] Potkar R, Recla J, Busov V. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees[J]. Biochemical and Biophysical Research Communications, 2013, 431(3): 512−518. doi: 10.1016/j.bbrc.2013.01.027 [6] Zhang F, Han M, Lv Q, et al. Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens[J]. Frontiers in Plant Science, 2015, 6: 642. [7] Liu Z, Li Y, Zhu J, et al. Genome-wide identification and analysis of the NF-Y gene family in potato (Solanum tuberosum L.)[J]. Frontiers in Genetics, 2021, 12: 739989. doi: 10.3389/fgene.2021.739989 [8] 黄俊文, 南建宗, 阳成伟. NF-Y转录因子调控植物生长发育及胁迫响应的研究进展[J]. 植物生理学报, 2020, 56(12): 2595−2605.Huang J W, Nan J Z, Yang C W. Research progress on NF-Y transcription factors regulating plant growth, development, and stress response[J]. Journal of Plant Physiology, 2020, 56(12): 2595−2605. [9] 李敏, 于太飞, 徐兆师, 等. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(8): 1161−1169.Li M, Yu T F, Xu Z S, et al. Soybean transcription factor gene GmNF-YCa enhances osmotic stress tolerance of transgenic Arabidopsis[J]. Journal of Crops, 2017, 43(8): 1161−1169. [10] Warpeha K M, Upadhyay S, Yeh J, et al. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis[J]. Plant Physiology, 2007, 143(4): 1590−1600. doi: 10.1104/pp.106.089904 [11] Kumimoto R W, Siriwardana C L, Gayler K K, et al. NUCLEAR FACTOR Y transcription factors have both opposing and additive roles in ABA-mediated seed germination[J]. PLoS ONE, 2013, 8(3): e59481. doi: 10.1371/journal.pone.0059481 [12] Myers Z A, Kumimoto R W, Siriwardana C L, et al. NUCLEAR FACTOR Y, subunit C (NF-YC) transcription factors are positive regulators of photomorphogenesis in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(9): e1006333. doi: 10.1371/journal.pgen.1006333 [13] Tang Y, Liu X, Liu X, et al. Arabidopsis NF-YCs mediate the light-controlled hypocotyl elongation via modulating histone acetylation[J]. Molecular Plant, 2017, 10(2): 260−273. doi: 10.1016/j.molp.2016.11.007 [14] Shi H, Ye T, Zhong B, et al. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21[J]. New Phytologist, 2014, 203(2): 554−567. doi: 10.1111/nph.12812 [15] Wei Q, Ma C, Xu Y, et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nature Communications, 2017, 8(1): 829. doi: 10.1038/s41467-017-00812-0 [16] Cao S, Kumimoto R W, Gnesutta N, et al. A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis[J]. The Plant Cell, 2014, 26(3): 1009−1017. doi: 10.1105/tpc.113.120352 [17] Hou X, Zhou J, Liu C, et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis[J]. Nature Communications, 2014, 5(1): 4601. doi: 10.1038/ncomms5601 [18] Xu F, Li T, Xu P B, et al. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis[J]. FEBS Journal, 2016, 590(4): 541−549. doi: 10.1002/1873-3468.12076 [19] Hwang K, Susila H, Nasim Z, et al. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering[J]. Molecular Plant, 2019, 12(4): 489−505. doi: 10.1016/j.molp.2019.01.002 [20] Kumimoto R W, Zhang Y, Siefers N, et al. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana[J]. The Plant Journal, 2010, 63(3): 379−391. doi: 10.1111/j.1365-313X.2010.04247.x [21] Palmeros-Suárez P A, Massange-Sánchez J A, Martínez-Gallardo N A, et al. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis[J]. Plant Science, 2015, 240: 25−40. doi: 10.1016/j.plantsci.2015.08.010 [22] Yu Y, Li Y, Huang G, et al. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii[J]. Journal of Experimental Botany, 2011, 62(14): 4805−4817. doi: 10.1093/jxb/err120 [23] 苗雅慧, 鞠丹, 梁珂豪, 等. 青杄转录因子基因PwNF-YB8的克隆与功能分析[J]. 林业科学, 2021, 57(5): 77−92.Miao Y H, Ju D, Liang K H, et al. Cloning and functional analysis of transcription factor gene PwNF-YB8 from Picea wilsonii[J]. Forestry Science, 2021, 57(5): 77−92. [24] 张晶星, 马彦广, 王辉丽, 等. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报, 2022, 44(12): 12−22.Zhang J X, Ma Y G, Wang H L, et al. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12−22. [25] Guo Y, Niu S, El-Kassaby Y A, et al. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis[J]. Physiologia Plantarum, 2021, 171(1): 34−47. doi: 10.1111/ppl.13183 [26] Niu S, Li J, Bo W, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1): 204−217. doi: 10.1016/j.cell.2021.12.006 [27] Siefers N, Dang K K, Kumimoto R W, et al. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity[J]. Plant Physiology, 2009, 149(2): 625−641. doi: 10.1104/pp.108.130591 [28] Li J, Gao K, Yang X, et al. Comprehensive analyses of four PtoNF-YC genes from Populus tomentosa and impacts on flowering timing[J]. International Journal of Molecular Sciences, 2022, 23(6): 3116. doi: 10.3390/ijms23063116 [29] Kim S, Park H, Jang Y H, et al. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice[J]. Planta, 2016, 243(3): 563−576. doi: 10.1007/s00425-015-2426-x [30] Stephenson T J, Mcintyre C L, Collet C, et al. TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes[J]. Functional & Integrative Genomics, 2010, 10(2): 265−276. [31] Klintenaes M, Pin P A, Benlloch R, et al. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage[J]. New Phytologist, 2012, 196(4): 1260−1273. doi: 10.1111/j.1469-8137.2012.04332.x -