高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究

刘红梅 郑永涛 郭盈添 张晶星 李伟

刘红梅, 郑永涛, 郭盈添, 张晶星, 李伟. 油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220250
引用本文: 刘红梅, 郑永涛, 郭盈添, 张晶星, 李伟. 油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220250
Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220250
Citation: Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220250

油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究

doi: 10.12171/j.1000-1522.20220250
基金项目: 国家重点研发计划(2022YFD2200304),国家自然科学基金项目(31860221)。
详细信息
    作者简介:

    刘红梅,博士。主要研究方向:针叶树遗传改良。Email:liuhongmei6717@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    李伟,博士,教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn 地址:同上。

  • 中图分类号: S791.254

Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development

  • 摘要:   目的  针叶树中NF-Y核因子调控球花发育的研究尚未见报导,对油松PtNF-YC1基因克隆、表达特性及功能分析,旨在为针叶树NF-Y基因家族在球花生殖发育中的功能研究提供依据。  方法  (1)利用系统进化树分析油松PtNF-YC1与拟南芥NF-YC亚家族蛋白的亲缘关系;(2)瞬时转化烟草检测PtNF-YC1的亚细胞定位;(3)根据转录组数据分析PtNF-YC1在油松不同组织中的表达特性;(4)PtNF-YC1异源转化拟南芥,分别比较长日照和短日照条件下转基因拟南芥不同株系的开花时间,并对长日照下各株系进行转录组测序,筛选响应PtNF-YC1调控开花的相关基因;(5)通过Y2H和BiFC验证PtNF-YC1与候选蛋白之间互作。  结果  PtNF-YC1基因的开放阅读框为897 bp,编码299个氨基酸,含有典型NF-YC保守结构域,与AtNF-YC3/4/9具有较高同源性。亚细胞定位结果显示,PtNF-YC1定位在细胞核和细胞质。PtNF-YC1在针叶、营养芽、雌雄花芽和根中都能表达,但在雄球花中表达丰度最高。PtNF-YC1异源转化拟南芥可推迟其短日照下开花时间。Y2H和BiFC证明PtNF-YC1与PtCOL5存在相互作用。  结论  PtNF-YC1可调控成花时间,是油松光周期途径诱导球花发育的候选基因。

     

  • 图  1  油松PtNF-YC1与拟南芥和小鼠NF-YC蛋白序列比对

    Figure  1.  Alignment of P. tabuliformis PtNF-YC1 with Arabidopsis and mouse NF-YC protein sequences

    图  2  油松PtNF-YC1与拟南芥AtNF-YCs蛋白系统发育分析

    Figure  2.  Phylogenetic analysis of PtNF-YC1 protein from P. tabuliformis and AtNF-YCs protein from A. thaliana

    图  3  PtNF-YC1蛋白三级结构预测(a)和亚细胞定位(b)

    Figure  3.  Protein tertiary structure prediction (a) and subcellular localization (b) of PtNF-YC1

    图  4  PtNF-YC1基因在不同组织中的表达

    Figure  4.  Expression of PtNF-YC1 gene in different tissues

    图  5  长日照(a)和短日照(b)条件下野生型Col-0和35S::PtNF-YC1过表达株系的表型

    Figure  5.  Phenotypes of wild-type Col-0, 35S::PtNF-YC1 overexpressing lines under long-day (a) and short-day conditions (b)

    图  6  油松PtNF-YC1与PtCOL5酵母双杂交互作(a)和双分子荧光互补(b)验证结果

    SD/-Leu-Trp和SD/-Leu-Trp-His-Ade培养基用于检测互作验证,AD-T/BD-p53(PC)和AD-T/BD-PtNF-YC1(NC)为阳性对照和阴性对照。SD/Leu Trp and SD/Leu Trp His-Ade media are used for detection of interaction validation, with AD-T/BD-p53 (PC) and AD-T/BD-PtNF-YC1 (NC) as positive and negative controls.

    Figure  6.  Yeast two-hybrid interaction (a) and bimolecular fluorescence complementation (b) of PtNF-YC1 and PtCOL5 of P. tabuliformis

    表  1  PtNF-YC1引物信息

    Table  1.   Primer information of PtNF-YC1

    引物名称 Primer name引物序列(5′—3′) Primer sequence (5′−3′)用途 Usage
    PtNF-YC1-F ATGGACCACCACAACCACCAC 基因克隆
    Gene clone
    PtNF-YC1-R GTTGGCAGAACGAGGGGGAG
    pSPYNE-PtNF-YC1-F TTAACCGGGCTCAGGCCTATGGACCACCACAACCACCAC 双分子荧光互补
    Bimolecular fluorescence complementation
    pSPYNE-PtNF-YC1-R GAGCGGTACCCTCGAGGTTGGCAGAACGAGGGGGAG
    pBI121-eGFP-PtNF-YC1-F CACGGGGGACTCTAGAATGGACCACCACAACCACCA 亚细胞定位
    Subcellular localization
    pBI121-eGFP-PtNF-YC1-R CCATGGTACCCCCGGGGTTGGCAGAACGAGGGGGA
    BD-PtNF-YC1-F GGAGGCCGAATTCCCGGGGATGGACCACCACAACCACC 酵母双杂交
    Yeast two hybrid system
    BD-PtNF-YC1-R GCCGCTGCAGGTCGACTCAGTTGGCAGAACGAGGGG
    AD-PtCOL5-F CAGTGAATTCCACCCGGGGATGGTGAAGGAAGAAGACAAG 酵母双杂交
    Yeast two hybrid system
    AD-PtCOL5-R TCATCTGCAGCTCGAGTCAATAAGATGGAACAACTCCAT
    pSPYCE-PtCOL5-F TTAACCGGGCTCAGGCCTATGGTGAAGGAAGAAGACAAGG 双分子荧光互补
    Bimolecular fluorescence complementation
    pSPYCE-PtCOL5-R GAGCGGTACCCTCGAGATAAGATGGAACAACTCCATATCCT
    下载: 导出CSV
  • [1] Maity S N, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription[J]. Trends in Biochemical Sciences, 1998, 23(5): 174−178. doi: 10.1016/S0968-0004(98)01201-8
    [2] Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y[J]. Gene, 1999, 239(1): 15−27. doi: 10.1016/S0378-1119(99)00368-6
    [3] Mcnabb D S, Tseng K A, Guarente L. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor[J]. Molecular and Cellular Biology, 1997, 17(12): 7008−7018. doi: 10.1128/MCB.17.12.7008
    [4] Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105−2110. doi: 10.1126/science.290.5499.2105
    [5] Potkar R, Recla J, Busov V. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees[J]. Biochemical and Biophysical Research Communications, 2013, 431(3): 512−518. doi: 10.1016/j.bbrc.2013.01.027
    [6] Zhang F, Han M, Lv Q, et al. Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens[J]. Frontiers in Plant Science, 2015, 6: 642.
    [7] Liu Z, Li Y, Zhu J, et al. Genome-wide identification and analysis of the NF-Y gene family in potato (Solanum tuberosum L.)[J]. Frontiers in Genetics, 2021, 12: 739989. doi: 10.3389/fgene.2021.739989
    [8] 黄俊文, 南建宗, 阳成伟. NF-Y转录因子调控植物生长发育及胁迫响应的研究进展[J]. 植物生理学报, 2020, 56(12): 2595−2605.

    Huang J W, Nan J Z, Yang C W. Research progress on NF-Y transcription factors regulating plant growth, development, and stress response[J]. Journal of Plant Physiology, 2020, 56(12): 2595−2605.
    [9] 李敏, 于太飞, 徐兆师, 等. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(8): 1161−1169.

    Li M, Yu T F, Xu Z S, et al. Soybean transcription factor gene GmNF-YCa enhances osmotic stress tolerance of transgenic Arabidopsis[J]. Journal of Crops, 2017, 43(8): 1161−1169.
    [10] Warpeha K M, Upadhyay S, Yeh J, et al. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis[J]. Plant Physiology, 2007, 143(4): 1590−1600. doi: 10.1104/pp.106.089904
    [11] Kumimoto R W, Siriwardana C L, Gayler K K, et al. NUCLEAR FACTOR Y transcription factors have both opposing and additive roles in ABA-mediated seed germination[J]. PLoS ONE, 2013, 8(3): e59481. doi: 10.1371/journal.pone.0059481
    [12] Myers Z A, Kumimoto R W, Siriwardana C L, et al. NUCLEAR FACTOR Y, subunit C (NF-YC) transcription factors are positive regulators of photomorphogenesis in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(9): e1006333. doi: 10.1371/journal.pgen.1006333
    [13] Tang Y, Liu X, Liu X, et al. Arabidopsis NF-YCs mediate the light-controlled hypocotyl elongation via modulating histone acetylation[J]. Molecular Plant, 2017, 10(2): 260−273. doi: 10.1016/j.molp.2016.11.007
    [14] Shi H, Ye T, Zhong B, et al. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21[J]. New Phytologist, 2014, 203(2): 554−567. doi: 10.1111/nph.12812
    [15] Wei Q, Ma C, Xu Y, et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nature Communications, 2017, 8(1): 829. doi: 10.1038/s41467-017-00812-0
    [16] Cao S, Kumimoto R W, Gnesutta N, et al. A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis[J]. The Plant Cell, 2014, 26(3): 1009−1017. doi: 10.1105/tpc.113.120352
    [17] Hou X, Zhou J, Liu C, et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis[J]. Nature Communications, 2014, 5(1): 4601. doi: 10.1038/ncomms5601
    [18] Xu F, Li T, Xu P B, et al. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis[J]. FEBS Journal, 2016, 590(4): 541−549. doi: 10.1002/1873-3468.12076
    [19] Hwang K, Susila H, Nasim Z, et al. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering[J]. Molecular Plant, 2019, 12(4): 489−505. doi: 10.1016/j.molp.2019.01.002
    [20] Kumimoto R W, Zhang Y, Siefers N, et al. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana[J]. The Plant Journal, 2010, 63(3): 379−391. doi: 10.1111/j.1365-313X.2010.04247.x
    [21] Palmeros-Suárez P A, Massange-Sánchez J A, Martínez-Gallardo N A, et al. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis[J]. Plant Science, 2015, 240: 25−40. doi: 10.1016/j.plantsci.2015.08.010
    [22] Yu Y, Li Y, Huang G, et al. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii[J]. Journal of Experimental Botany, 2011, 62(14): 4805−4817. doi: 10.1093/jxb/err120
    [23] 苗雅慧, 鞠丹, 梁珂豪, 等. 青杄转录因子基因PwNF-YB8的克隆与功能分析[J]. 林业科学, 2021, 57(5): 77−92.

    Miao Y H, Ju D, Liang K H, et al. Cloning and functional analysis of transcription factor gene PwNF-YB8 from Picea wilsonii[J]. Forestry Science, 2021, 57(5): 77−92.
    [24] 张晶星, 马彦广, 王辉丽, 等. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报, 2022, 44(12): 12−22.

    Zhang J X, Ma Y G, Wang H L, et al. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12−22.
    [25] Guo Y, Niu S, El-Kassaby Y A, et al. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis[J]. Physiologia Plantarum, 2021, 171(1): 34−47. doi: 10.1111/ppl.13183
    [26] Niu S, Li J, Bo W, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1): 204−217. doi: 10.1016/j.cell.2021.12.006
    [27] Siefers N, Dang K K, Kumimoto R W, et al. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity[J]. Plant Physiology, 2009, 149(2): 625−641. doi: 10.1104/pp.108.130591
    [28] Li J, Gao K, Yang X, et al. Comprehensive analyses of four PtoNF-YC genes from Populus tomentosa and impacts on flowering timing[J]. International Journal of Molecular Sciences, 2022, 23(6): 3116. doi: 10.3390/ijms23063116
    [29] Kim S, Park H, Jang Y H, et al. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice[J]. Planta, 2016, 243(3): 563−576. doi: 10.1007/s00425-015-2426-x
    [30] Stephenson T J, Mcintyre C L, Collet C, et al. TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes[J]. Functional & Integrative Genomics, 2010, 10(2): 265−276.
    [31] Klintenaes M, Pin P A, Benlloch R, et al. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage[J]. New Phytologist, 2012, 196(4): 1260−1273. doi: 10.1111/j.1469-8137.2012.04332.x
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  49
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-08-16
  • 网络出版日期:  2023-06-30

目录

    /

    返回文章
    返回