Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones
-
摘要:目的
本研究以10个黑杨派无性系为试验材料,研究其在干旱胁迫下的生长、生理生化特性的变化规律,分析不同无性系的抗旱能力,筛选出抗旱性强的优良无性系,旨在为干旱立地杨树品种选择提供依据。
方法利用盆栽试验的方法模拟干旱胁迫,共设置4个水分梯度,测定10个无性系在不同缺水程度下的9个指标变化,探究不同程度的干旱胁迫对各无性系生长及生理指标的影响。
结果持续干旱胁迫下,10个无性系之间的苗高增量、地径增量和生物量增量差别明显,其中无性系1733和1627与对照2025差异显著。除无性系1716外,其余各无性系的叶绿素含量呈先上升后下降的趋势,在轻度干旱时小幅度增加,在中度干旱和重度干旱时下降。各供试无性系叶片的细胞膜透性随干旱时间的延续呈升高趋势,在重度干旱胁迫下,细胞膜通透性增至最大,增幅最大是无性系1716、1722,增幅最小的是无性系1733、1641。丙二醛含量表现出先升高后下降的变化规律,在中度干旱时含量最高;超氧化物歧化酶(SOD)、过氧化物酶(POD)活性先升后降,在中度干旱下活性最大,与正常供水相比,无性系1627和1733的SOD活性升高幅度最大,无性系1733和1641的POD活性升高幅度最大。渗透调节物质积累随干旱程度的加重逐渐升高,在重度干旱下,游离脯氨酸(Pro)含量和增大幅度最高的均是无性系1627和1733,与对照2025差异显著。主成分分析表明,在重度干旱胁迫条件下,10个无性系的抗旱能力强弱依次为1733、1627、I-107、1641、1640、1725、1723、2025、1716、1722。
结论干旱胁迫下10个无性系的各项指标变化不同,根据主成分分析结果,初步认为无性系1733和1627具有较强的抗旱性,可作为干旱立地的试验材料进行进一步研究。
Abstract:ObjectiveIn this study, 10 Sect. Aigeiros clones of Populus were used as experimental materials to study the changes of growth, physiological and biochemical characteristics under drought stress, analyze the drought resistance ability of different clones, and screen out excellent clones with strong drought resistance, with the aim of providing basis for the selection of poplar varieties on dry sites.
MethodThe drought stress was simulated by pot experiment, and four water gradients were set up to measure the changes of nine indexes of ten clones under different degrees of water deficiency, to investigate the effects of different degrees of drought stress on the growth and physiological indexes of each clone.
ResultUnder continuous drought stress, the differences in seedling height increment, ground diameter increment and biomass increment among the 10 clones were significant, among which the clones 1733 and 1627 were significantly different from the control 2025. The chlorophyll content of clones, except for clone 1716, showed a trend of increasing and then decreasing, with a small increase in mild drought and a decrease in moderate and severe drought. The cell membrane permeability of the leaves in each clone showed an increasing trend with the continuation of drought time, and under severe drought stress, the cell membrane permeability increased to the maximum, with the largest increase in clones 1716 and 1722, and the smallest increase in clones 1733 and 1641. The malondialdehyde content showed a pattern of change, in which it first increased and then decreased, and was the highest content in moderate drought; the superoxide dismutase (SOD) and peroxidase (POD) activities first increased and then decreased, and the activities were the highest under moderate drought, and compared with normal water supply, clones 1627 and 1733 showed the greatest elevation of SOD activity, and clones 1733 and 1641 showed the greatest elevation of POD activity. The accumulation of osmoregulatory substances gradually increased with increasing drought severity, and under severe drought, the clones 1627 and 1733 had the highest free proline (Pro) content and the highest increase, which were significantly different from the control 2025. Principal component analysis showed that under severe drought stress conditions, the 10 clones were 1733, 1627, I-107, 1641, 1640, 1725, 1723, 2025, 1716 and 1722 in order of their drought resistance.
ConclusionThe variation of each index of the 10 clones under drought stress is different. Based on the result of principal component analysis, it is tentatively concluded that the clones 1733 and 1627 have strong drought tolerance and can be used as test materials for further studies in arid site.
-
-
表 1 试验材料
Table 1 Experimental materials
无性系 Clone 拉丁学名 Latin name 母本 Female parent 父本 Male parent 1627 Populus × euramericana ‘1627’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra 1640 P. × euramericana ‘1640’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra 1641 P. × euramericana ‘1641’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra 1716 P. deltoides ‘1716’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides 1722 P. deltoides ‘1722’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides 1723 P. deltoides ‘1723’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides 1725 P. deltoides ‘1725’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides 1733 P. × euramericana ‘1733’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra I-107 P. × euramericana ‘Neva’ 美洲黑杨 P. deltoides 欧洲黑杨 P. nigra 2025 P. deltoides ‘2025’ 美洲黑杨 P. deltoides 美洲黑杨 P. deltoides 表 2 土壤重度干旱对黑杨派无性系生长指标的影响
Table 2 Effects of soil severe drought on differentgrowth of clones
无性系
Clone苗高增量
Ramet height
increment/cm地径增量
Basal diameter
increment/mm生物量增量
Biomass
increment/g1641 16.3 ± 0.6ab 0.75 ± 0.13bc 5.67 ± 0.68abc 1733 19.6 ± 2.3a 1.02 ± 0.08a 7.04 ± 0.40a 1627 16.3 ± 0.7ab 0.89 ± 0.08ab 6.58 ± 0.43ab 2025 12.1 ± 0.9cd 0.63 ± 0.06c 4.38 ± 0.57c 1725 15.4 ± 1.4bc 0.73 ± 0.08bc 4.85 ± 1.07bc 1716 13.5 ± 1.0bcd 0.66 ± 0.07bc 5.56 ± 0.47abc 1722 10.1 ± 1.0d 0.58 ± 0.02c 4.78 ± 0.20bc I-107 16.6 ± 1.4ab 0.82 ± 0.09abc 6.28 ± 0.40abc 1723 14.9 ± 1.3bc 0.72 ± 0.05bc 5.01 ± 0.58bc 1640 15.0 ± 0.6bc 0.61 ± 0.07c 4.94 ± 0.60bc 注:同列中不同小写字母表示差异显著(P < 0.05)。下同。Notes: different lowercase letters in the same column indicate significant differences (P < 0.05). The same below. 表 3 土壤干旱对各无性系叶绿素含量的影响
Table 3 Effects of soil drought on chlorophyll content of each clone
无性系
Clone叶绿素含量 Chlorophyll content/(mg·g−1) 正常供水
Normal water
supply轻度干旱
Mild
drought中度干旱
Moderate
drought重度干旱
Severe
drought1641 2.50 ± 0.09a 3.71 ± 0.29a 1.84 ± 0.14abc 1.47 ± 0.08bcd 1733 2.32 ± 0.24abc 3.53 ± 0.14a 2.09 ± 0.14a 1.52 ± 0.12abc 1627 2.62 ± 0.07a 3.72 ± 0.25a 2.04 ± 0.11ab 1.68 ± 0.08ab 2025 1.83 ± 0.04d 2.02 ± 0.16e 1.41 ± 0.07e 1.29 ± 0.04cd 1725 2.04 ± 0.09bcd 2.85 ± 0.25bcd 1.73 ± 0.08bcd 1.41 ± 0.03cd 1716 2.42 ± 0.07ab 2.24 ± 0.11de 1.46 ± 0.06de 1.24 ± 0.05d 1722 2.44 ± 0.12ab 2.74 ± 0.22cd 1.45 ± 0.09de 1.22 ± 0.06d I-107 2.23 ± 0.20abcd 3.42 ± 0.22ab 1.93 ± 0.13ab 1.76 ± 0.14a 1723 1.99 ± 0.11cd 2.41 ± 0.16de 1.74 ± 0.04bcd 1.32 ± 0.07cd 1640 2.04 ± 0.13bcd 3.36 ± 0.23abc 1.55 ± 0.07cde 1.30 ± 0.07cd 表 4 土壤干旱对各无性系细胞膜透性的影响
Table 4 Effects of soil drought on membrane permeability of each clone
无性系
Clone细胞膜透性 Membrane permeability/% 正常供水
Normal water
supply轻度干旱
Mild
drought中度干旱
Moderate
drought重度干旱
Severe
drought1641 12.5 ± 1.1bc 13.4 ± 0.4b 17.3 ± 1.3cd 24.2 ± 1.1cd 1733 11.1 ± 0.6c 13.5 ± 0.4b 16.9 ± 0.7cd 21.2 ± 1.8d 1627 11.2 ± 1.0c 13.1 ± 1.0b 15.9 ± 1.3d 22.1 ± 1.8d 2025 12.3 ± 0.7bc 14.1 ± 1.0b 18.6 ± 1.8bcd 24.9 ± 2.9bcd 1725 14.7 ± 0.9ab 15.5 ± 0.4ab 20.5 ± 2.9bcd 29.8 ± 2.8abc 1716 11.3 ± 0.4c 14.5 ± 0.2b 21.3 ± 1.1abc 33.1 ± 2.4a 1722 14.5 ± 1.2ab 17.6 ± 0.7a 25.7 ± 1.0a 31.5 ± 1.4ab I-107 12.8 ± 0.3bc 14.4 ± 1.3b 16.9 ± 0.5cd 24.9 ± 2.1bcd 1723 16.6 ± 0.6a 17.7 ± 1.2a 23.2 ± 1.7ab 33.0 ± 1.6a 1640 12.1 ± 0.9bc 14.3 ± 0.7b 19.1 ± 1.2bcd 25.2 ± 2.9bcd 表 5 土壤干旱对各无性系MDA含量的影响
Table 5 Effects of soil drought on MDA content of each clone
无性系
CloneMDA含量 MDA content/(mmol∙kg−1) 正常供水
Normal water
supply轻度干旱
Mild
drought中度干旱
Moderate
drought重度干旱
Severe
drought1641 1.87 ± 0.26a 2.36 ± 0.20b 3.79 ± 0.14b 1.11 ± 0.23e 1733 2.31 ± 0.12a 2.87 ± 0.22ab 3.40 ± 0.37b 1.65 ± 0.14bcde 1627 2.46 ± 0.21a 3.03 ± 0.36ab 3.50 ± 0.41b 1.28 ± 0.14de 2025 2.27 ± 0.13a 2.99 ± 0.27ab 4.12 ± 0.15ab 2.69 ± 0.23a 1725 2.31 ± 0.26a 3.47 ± 0.34a 4.24 ± 0.27ab 1.44 ± 0.15cde 1716 2.22 ± 0.16a 2.94 ± 0.22ab 4.85 ± 0.24a 1.74 ± 0.27bcde 1722 2.21 ± 0.13a 2.78 ± 0.35ab 4.65 ± 0.19a 2.18 ± 0.12ab I-107 2.16 ± 0.22a 3.04 ± 0.20ab 3.75 ± 0.27b 1.80 ± 0.13bcd 1723 1.86 ± 0.23a 2.54 ± 0.21b 4.21 ± 0.21ab 1.60 ± 0.35bcde 1640 2.13 ± 0.30a 2.73 ± 0.27ab 3.76 ± 0.14b 2.07 ± 0.16abc 表 6 土壤干旱对各无性系SOD活性的影响
Table 6 Effects of soil drought on SOD activity of each clone
无性系
CloneSOD活性 SOD activity/(U∙g−1) 正常供水
Normal water supply轻度干旱
Mild drought中度干旱
Moderate drought重度干旱
Severe drought1641 642.5 ± 32.8abc 728.5 ± 48.6ab 783.1 ± 20.5bcd 526.1 ± 25.5de 1733 619.4 ± 22.0bc 687.8 ± 16.6b 795.0 ± 11.5abc 667.5 ± 25.2ab 1627 637.3 ± 17.9abc 792.1 ± 11.4a 821.1 ± 23.7ab 700.7 ± 25.5a 2025 584.0 ± 18.7c 678.1 ± 13.3b 746.8 ± 8.1cd 603.5 ± 22.0abcd 1725 658.0 ± 27.0ab 736.3 ± 25.2ab 742.2 ± 31.4cd 547.4 ± 25.3cde 1716 684.4 ± 16.5ab 746.8 ± 9.4ab 795.4 ± 19.0abc 456.7 ± 15.2e 1722 645.9 ± 17.7abc 695.3 ± 12.7b 726.5 ± 20.8d 522.6 ± 39.0de I-107 619.0 ± 19.7bc 706.2 ± 12.9b 781.1 ± 22.2bcd 593.9 ± 14.3bcd 1723 703.0 ± 8.6a 785.9 ± 17.7a 855.3 ± 18.0a 605.1 ± 58.1abcd 1640 647.4 ± 4.9abc 682.0 ± 24.2b 777.5 ± 14.4bcd 629.8 ± 30.4abc 表 7 土壤干旱对各无性系POD活性的影响
Table 7 Effects of soil drought on POD activity of each clone
无性系
ClonePOD活性 POD activity/(U∙g−1) 正常供水
Normal water
supply轻度干旱
Mild
drought中度干旱
Moderate
drought重度干旱
Severe
drought1641 2 808 ± 197ab 6 108 ± 379b 10 275 ± 1032ab 4 633 ± 240bc 1733 2 358 ± 140ab 3 575 ± 388d 9 625 ± 516abc 5 075 ± 123ab 1627 3 392 ± 508a 7 692 ± 251a 11 400 ± 353a 5 433 ± 412a 2025 2 125 ± 205b 3 800 ± 486cd 6 617 ± 262ef 2 658 ± 183fg 1725 2 283 ± 243ab 3 258 ± 271d 7 142 ± 226def 3 075 ± 113ef 1716 3 417 ± 726a 8 092 ± 246a 4 092 ± 435g 2 183 ± 210g 1722 2 325 ± 194ab 4 983 ± 446bc 8 058 ± 130cde 3 567 ± 466de I-107 2 733 ± 269ab 5 792 ± 180b 9 225 ± 1318bc 4 192 ± 235cd 1723 2 325 ± 166ab 3 842 ± 718cd 5 825 ± 175fg 2 950 ± 181efg 1640 2 550 ± 238ab 3 917 ± 171cd 8 608 ± 484bcd 3 075 ± 101ef 表 8 土壤干旱对各无性系游离脯氨酸含量的影响
Table 8 Effects of soil drought on free proline content of each clone
无性系
Clone游离脯氨酸含量 Free proline content/(mg·g−1) 正常供水
Normal water
supply轻度干旱
Mild
drought中度干旱
Moderate
drought重度干旱
Severe
drought1641 19.2 ± 0.6a 24.7 ± 0.7ab 32.0 ± 2.1abc 40.6 ± 2.7cd 1733 18.7 ± 1.6ab 26.0 ± 2.3ab 40.7 ± 3.4a 52.5 ± 4.9a 1627 15.0 ± 1.2cd 28.9 ± 0.7a 38.0 ± 5.4a 52.1 ± 3.4a 2025 20.0 ± 0.9a 23.8 ± 0.8abc 30.8 ± 2.7abc 35.5 ± 2.7cde 1725 18.1 ± 1.1abc 22.9 ± 1.4bcd 31.1 ± 2.7abc 42.1 ± 4.1bc 1716 13.4 ± 1.2d 18.3 ± 1.2cd 24.6 ± 1.3c 31.1 ± 2.5de 1722 14.2 ± 0.3d 17.2 ± 0.8d 24.9 ± 2.9c 28.8 ± 1.7e I-107 18.9 ± 1.2ab 25.2 ± 2.6ab 36.5 ± 3.8ab 50.9 ± 2.7ab 1723 15.5 ± 0.8bcd 22.0 ± 1.5bcd 25.7 ± 1.8c 35.2 ± 3.1cde 1640 15.1 ± 1.2cd 25.2 ± 3.3ab 28.1 ± 1.1bc 39.1 ± 1.0cd 表 9 干旱胁迫下无性系各指标间相关性分析
Table 9 Correlation analysis among indicators of clones under drought stress
指标 Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X1 1 X2 0.880** 1 X3 0.793** 0.906** 1 X4 0.695* 0.755* 0.757* 1 X5 −0.615 −0.627 −0.585 −0.651* 1 X6 −0.617 −0.541 −0.547 −0.482 0.116 1 X7 0.518 0.586 0.441 0.530 −0.704* −0.033 1 X8 0.634* 0.782** 0.791** 0.757* −0.752* −0.537 0.593 1 X9 0.857** 0.882** 0.807** 0.913** −0.789** −0.446 0.709* 0.788** 1 注:X1. 苗高增量;X2. 地径增量;X3. 生物量增量;X4. 叶绿素含量;X5. 细胞膜透性;X6. MDA含量;X7. SOD活性;X8. POD活性;X9. 游离脯氨酸含量。*表示在0.05水平上显著相关,**表示在0.01水平上极显著相关。Notes: X1, ramet height increment; X2, basal diameter increment; X3, biomass increment; X4,chlorophyll content; X5, membrane permeability; X6, MDA content; X7, SOD activity; X8, POD activity; X9, free proline content. * indicates significant correlation at the 0.05 level, ** indicates highly significant correlation at the 0.01 level. 表 10 干旱胁迫下各指标的主成分特征向量、特征值及累计贡献率
Table 10 Principal component characteristic vector, characteristic value and cumulative contribution rate of each index under drought stress
测定指标
Measurement index第1主成分
Principal
component 1第2主成分
Principal
component 2苗高增量 Ramet height increment 0.351 −0.169 地径增量 Basal diameter increment 0.371 −0.100 生物量增量 Biomass increment 0.354 −0.182 叶绿素 Chlorophyll 0.349 −0.017 细胞膜透性 Membrane permeability −0.313 −0.424 丙二醛 MDA −0.222 0.678 超氧化物岐化酶 SOD 0.271 0.528 过氧化物酶 POD 0.351 0.012 游离脯氨酸 Free proline 0.384 0.097 特征值 Characteristic value 6.335 1.221 累计贡献率 Cumulative contribution rate/% 70.393 83.962 表 11 干旱胁迫下10个无性系的综合主成分值
Table 11 Intergrated principal component values of 10 clones under drought stress
无性系
CloneF1 F2 F 排序
Ranking1641 0.936 −1.223 0.493 4 1733 3.904 0.302 2.789 1 1627 3.567 0.306 2.552 2 2025 −2.188 2.135 −1.250 8 1725 −0.580 −0.876 −0.527 6 1716 −2.545 −1.497 −1.995 9 1722 −3.092 0.202 −2.149 10 I-107 2.150 0.092 1.526 3 1723 −1.218 −0.596 −0.938 7 1640 −0.723 1.155 −0.352 5 注:F1和F2代表第1主成分值和第2主成分值,F代表综合主成分值。Notes: F1 and F2 represent the 1st and 2nd principal component values and F represents the composite principal component value. -
[1] Pyngrope S, Bhoomika K, Dubey R S. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit[J]. Protoplasma, 2013, 250(2): 585−600. doi: 10.1007/s00709-012-0444-0
[2] He F, Wang H L, Li H G, et al. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus[J]. Plant Biotechnology Journal, 2018, 16(8): 1514−1528. doi: 10.1111/pbi.12893
[3] 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018, 46(17): 23−27. Lai J L, Li X X, Xue L, et al. Advances in plant drought resistance research[J]. Jiangsu Agricultural Science, 2018, 46(17): 23−27.
[4] Sun W J, Nie Y X, Gao Y, et al. Exogenous cinnamic acid regulates antioxidant enzyme activity and reduces lipid peroxidation in drought-stressed cucumber leaves[J]. Acta Physiologiae Plantarum, 2012, 34(2): 641−655. doi: 10.1007/s11738-011-0865-y
[5] 高建社, 王军, 周永学, 等. 5个杨树无性系抗旱性研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(2): 112−116. Gao J S, Wang J, Zhou Y X, et al. A study on the drought resistance of five poplar clones[J]. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(2): 112−116.
[6] 王磊. 十个杨树无性系叶片旱生结构与抗寒性比较研究[D]. 杨凌: 西北农林科技大学, 2021. Wang L. Comparative study on xerophytic structure and cold resistance of leaves from ten poplar clones[D]. Yangling: Northwest Agriculture and Forestry University, 2021.
[7] 刘建华. 干旱胁迫对杨树幼苗生长的影响[J]. 防护林科技, 2016(6): 8−11. Liu J H. Effects of drought stress on the growth of seedlings for poplar[J]. Protected Forest Sicence and Technology, 2016(6): 8−11.
[8] 张江涛, 晏增, 杨淑红, 等. 干旱胁迫对杨树品种2025及其2个芽变品种叶片光合生理特征的影响[J]. 中南林业科技大学学报, 2017, 37(3): 17−23, 78. Zhang J T, Yan Z, Yang S H, et al. Effects of leaf photosynthetic characteristics of poplar 2025 and its two bud mutation varieties under drought stress[J]. Journal of Central South University of Forestry & Technology, 2017, 37(3): 17−23, 78.
[9] 晏增, 张江涛, 赵蓬晖, 等. 持续淹水胁迫对美洲黑杨幼苗生长及生理生化的影响[J]. 中南林业科技大学学报, 2019, 39(12): 16−23. Yan Z, Zhang J T, Zhao P H, et al. Effects of continuous waterlogging stress on growth, physiology and biochemistry of Populus deltoides seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(12): 16−23.
[10] 潘昕, 邱权, 李吉跃, 等. 干旱胁迫对青藏高原6种植物生理指标的影响[J]. 生态学报, 2014, 34(13): 3558−3567. Pan X, Qiu Q, Li J Y, et al. Physiological indexes of six plant species from the Tibetan Plateau under drought stress[J]. Acta Ecologica Sinica, 2014, 34(13): 3558−3567.
[11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. Li H S. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000.
[12] Zhang X, Yang Z, Li Z, et al. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: identification of genes involved in resistance to drought stress[J]. Gene, 2019, 710: 375−386. doi: 10.1016/j.gene.2019.05.055
[13] Guo Y Y, Yu H Y, Kong D S, et al. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings[J]. Photosynthetica, 2016, 54(4): 524−531. doi: 10.1007/s11099-016-0206-x
[14] 罗彬莹, 刘卫东, 吴际友, 等. 干旱胁迫对樟树幼苗光合特性和水分利用的影响[J]. 中南林业科技大学学报, 2019, 39(5): 49−55. Luo B Y, Liu W D, Wu J Y, et al. Effect of drought stress on photosynthetic characteristics and water use of Cinnamomum camphora seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 49−55.
[15] 马成侠, 杨桑吉, 李强峰. 干旱胁迫对不同小叶杨无性系生理特性的影响[J]. 青海大学学报, 2019, 37(5): 15−19. Ma C X, Yang S J, Li Q F. Effects of drought stress on physiological characteristics of different Populus simonii clones[J]. Journal of Qinghai University, 2019, 37(5): 15−19.
[16] 杨传宝, 姚俊修, 李善文, 等. 白杨派无性系苗期对干旱胁迫的生长生理响应及抗旱性综合评价[J]. 北京林业大学学报, 2016, 38(5): 58−66. Yang C B, Yao J X, Li S W, et al. Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2016, 38(5): 58−66.
[17] 邱兴, 吕小锋, 李晓东, 等. 4个杨树新无性系的抗旱性研究[J]. 西北林学院学报, 2015, 30(4): 99−108. Qiu X, Lü X F, Li X D, et al. Research on drought resistance of four new poplar clones[J]. Journal of Northwest Forestry University, 2015, 30(4): 99−108.
[18] 杨淑红, 宋德才, 刘艳萍, 等. 土壤干旱胁迫和复水后3个杨树品种叶片部分生理指标变化及抗旱性评价[J]. 植物资源与环境学报, 2014, 23(3): 65−73. Yang S H, Song D C, Liu Y P, et al. Changes of some physiological indexes in leaf of three cultivars of Populus after drought stress in soil and rewatering and evaluation on their drought resistance[J]. Journal of Plant Resources and Environment, 2014, 23(3): 65−73.
[19] 王罗霞, 赵志光, 王锁民. 一氧化氮对水分胁迫下小麦叶片活性氧代谢及膜脂过氧化的影响[J]. 草业学报, 2006, 15(4): 104−108. Wang L X, Zhao Z G, Wang S M. Effect of nitric oxide on reactive oxygen metabolism and membrane lipid peroxidation in wheat leaves under water stress[J]. Acta Prataculturae Sinica, 2006, 15(4): 104−108.
[20] 鲁俊倩, 武舒, 钟姗辰, 等. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析[J]. 北京林业大学学报, 2021, 43(2): 46−53. Lu J Q, Wu S, Zhong S C, et al. Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’[J]. Journal of Beijing Forestry University, 2021, 43(2): 46−53.
[21] Devi R, Kaur N, Gupta A K. Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.)[J]. Indian Journal of Biochemistry & Biophysics, 2012, 49(4): 257−265.
[22] Kong J, Dong Y, Xu L, et al. Role of exogenous nitricoxide inalleviating iron deficiency-induced peanut chlorosis on calcareous soil[J]. Journal of Plant Interactions, 2014, 9(1): 450−459. doi: 10.1080/17429145.2013.853327
[23] 井大炜. 杨树苗叶片光合特性和抗氧化酶对干旱胁迫的响应[J]. 核农学报, 2014, 28(3): 532−539. Jing D W. Photosynthetic properties and antioxidant enzymes of poplar seedling leaves in response to drought stress[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(3): 532−539.
[24] 刘建民, 李美芹, 刘永光, 等. ‘鲁硕红’蔷薇的抗旱性研究[J]. 山东农业科学, 2013, 45(9): 33−35. Liu J M, Li M Q, Liu Y G, et al. Study on drought resistance of Rosa multiflora var.lushuohong[J]. Shandong Agricultural Sciences, 2013, 45(9): 33−35.
[25] 王霞, 侯平, 尹林克, 等. 土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J]. 干旱区研究, 2002, 19(3): 17−20. Wang X, Hou P, Yin L K, et al. Effects of soil water stress on membrane protective enzymes and membrane lipid peroxidation in Tamarix tamarisk[J]. Arid Zone Research, 2002, 19(3): 17−20.
[26] 付士磊, 周永斌, 何兴元, 等. 干旱胁迫对杨树光合生理指标的影响[J]. 应用生态学报, 2006, 17(11): 2016−2019. Fu S L, Zhou Y B, He X Y, et al. Effects of drought stress on photosyn thesis physiology of Populus pseudo-simonii[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2016−2019.
[27] Boriboonkaset T, Theerawitaya C, Yamada N, et al. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress[J]. Protoplasma, 2013, 250(5): 1157−1167. doi: 10.1007/s00709-013-0496-9
[28] Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673−689. doi: 10.1007/s00018-014-1767-0
[29] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185−212. doi: 10.1051/agro:2008021
[30] 李敏, 马金龙. 盐胁迫及干旱胁迫对三种杨树脯氨酸含量的影响[J]. 湖南农业科学, 2013, 43(1): 105−107, 110. doi: 10.3969/j.issn.1006-060X.2013.01.029 Li M, Ma J L. Influences of salt and drought stress on proline content in three poplar varieties[J]. Hunan Agricultural Sciences, 2013, 43(1): 105−107, 110. doi: 10.3969/j.issn.1006-060X.2013.01.029
-
期刊类型引用(12)
1. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 . 百度学术
3. 冯健,张金博,杨圆圆,杜超群,徐柏松,曹颖,姚飞. 基于生长性状和SSR遗传多样性分析的红松第二代优树选择研究. 西南林业大学学报(自然科学). 2024(04): 1-7 . 百度学术
4. 胡勐鸿,吕寻,戴小芬,李宗德,李万峰. 日本落叶松无性系种子园和优树半同胞家系苗期比较. 东北林业大学学报. 2024(12): 10-17 . 百度学术
5. 向华,向文明,向明. 我国用材林优树选择技术研究进展. 湖南林业科技. 2021(02): 89-96 . 百度学术
6. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 . 百度学术
7. 邓乐平,黄婷,王哲,吴惠姗,李晓华,廖仿炎,李义良,郭文冰,赵奋成. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择. 林业与环境科学. 2020(04): 1-7 . 百度学术
8. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 . 百度学术
9. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 . 百度学术
10. 金星,于忠峰,苗海伟,于国斌,朱瑞,张丽杰. 辽宁地区油松花粉形态及生活力的测定. 分子植物育种. 2019(15): 5115-5119 . 百度学术
11. 康向阳. 关于林木育种策略的思考. 北京林业大学学报. 2019(12): 15-22 . 本站查看
12. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 409
- HTML全文浏览量: 86
- PDF下载量: 55
- 被引次数: 16