Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship
-
摘要:
目的 深入剖析林分空间结构参数四元分布的生态意义,构筑基于相邻木关系的林分空间结构多样性综合评价指数,为制订有的放矢的森林结构调整策略提供理论依据。 方法 基于生物多样性概念,以参照树与其最近的4株相邻木组成的结构单元为对象,有机整合结构参数角尺度、混交度、大小比数和密集度的四元分布及结构单元树种数和林层数,运用遗传绝对距离公式、自然对数分别表达结构单元类型均匀性和丰富度,构造表达林分空间结构多样性测度指数,并运用长期定位监测样地数据进行验证。 结果 运用本研究提出的林分空间结构多样性指数(DFS)对处于不同气候带或不同起源的森林类型的空间结构多样性测度表明,锐齿栎天然林的DFS值(0.854)与阔叶红松林的DFS值(0.852)几乎相等,二者具有相似的空间结构多样性。侧柏人工林结构参数四元分布类型较多,高于锐齿栎天然林和红松阔叶林,但其空间结构多样性为3个林分类型中最低的(DFS = 0.382),主要原因是其垂直结构(DFSv = 0.369)和水平结构(DFSh = 0.562)多样性方面都比两类天然林低。结构单元中的平均树种数表现为天然林高于人工林,锐齿栎天然林为4.23,阔叶红松天然林为4.09,而侧柏人工林则为1.98,结构单元树种数能充分体现结构单元树种丰富程度。 结论 林分空间结构参数四元分布、结构单元树种数和林层数3者的有机整合是构造有效的林分空间结构多样性指数的基石。基于生物多样性概念提出的林分空间结构多样性指数DFS,既是对结构参数四元分布合适的量化表达,也是对结构参数四元分布生态意义恰当的诠释,更是对林分空间结构多样性的科学综合评价,能够测度出不同林分类型林分空间结构多样性的差异。 Abstract:Objective The ecological significance of 4-variate distribution of stand spatial structure parameters was deeply analyzed and a comprehensive evaluation index of stand spatial structure diversity based on the relationship between adjacent trees was constructed to provide a theoretical basis for formulating targeted forest structure adjustment strategies. Method Based on the concept of biodiversity, taking the structural unit which was composed by reference tree and its nearest four adjacent trees as the object, organically integrating the 4-variate distribution of structural parameters of uniform angle index, mingling, neighborhood comparison and crowding, as well as the number of structural unit trees and forest layers, the genetic absolute distance formula and natural logarithm were used to express the evenness and richness of structural unit types, respectively, and the stand spatial structure diversity index was constructed. The validity of index was verified by long-term positioning monitoring sample plot data. Result Using the stand spatial structure diversity index (DFS) proposed in this study to measure the spatial structure diversity of forest types in different climatic zones or different origins, it was showed that the DFS values of Quercus aliena var. acutiserrata natural forest (0.854) and broadleaved Pinus koraiensis forest (0.852) were almost the same, indicating that the two forest stands had similar spatial structural diversity. The 4-variate distribution types of Platycladus orientalis plantation were higher than other natural forest, however, its spatial structural diversity (DFS = 0.382) was the lowest in the three stand types, mainly due to its lower diversity in both vertical (DFSv = 0.369) and horizontal (DFSh = 0.562) structure than the two natural forest stands. The average number of tree species in the structural units was higher in natural forest than in plantation, with 4.23 in Quercus aliena var. acutiserrata forest, 4.09 in Pinus koraiensis forest, and 1.98 in Platycladus orientalis plantation. The number of tree species in a structural unit fully demonstrated species richness of the structural unit. Conclusion The integration of the three numbers including 4-variate distribution of stand spatial structure parameters, the number of tree species and number of forest layers in structure unit lay the foundation for constructing a valid spatial structure diversity index for forest stands. The stand spatial structural diversity index (DFS), based on the concept of biodiversity, is not only a feasible quantitative expression of the 4-variate distribution of structural parameters, but also is an appropriate interpretation of the ecological significance of the 4-variate distribution of structural parameters, and a comprehensive scientific evaluation of the spatial structural diversity of the stand. The index is able to measure the difference of stand spatial structure diversity of different stand types. -
图 1 林木分布图
圆圈的不同颜色代表不同树种,圆圈大小代表林木的相对大小;外框为样地大小,内框为分析区,外框与内框之间为缓冲区。Different colors of circles represent tree species, and the size of circles represents the relative size of trees; the outer frame is the sample plot size, the inner frame is the analysis area, and the buffer area is between the outer frame and the inner frame.
Figure 1. Tree distribution map
表 1 林分概况
Table 1. Overview of forest stands
样地代号
Sample plot code林分类型
Stand type样地位置
Sample plot location树种数
Tree species number林层数
Number
of forest layer林分断面积/
(m2·hm−2)
Stand basal
area/(m2·ha−1)平均胸径
Mean DBH/cm优势木高
Dominant tree height/m冠幅直径
Crown diameter/m密度/
(株·hm−2)
Density/
(tree·ha−1)A 锐齿栎天然林
Quercus aliena var.
acutiserrata natural forest甘肃小陇山百花林场
Baihua Forest Farm of Xiaolongshan Mountain, Gansu33 2.7 26.91 18.5 16.1 3.98 1 006 B 红松阔叶林
Broadleaved Pinus koraiensis forest吉林蛟河东大坡
Dongdapo of Jiaohe, Jilin22 2.8 28.07 21.6 18.4 6.06 766 C 侧柏人工林
Platycladus orientalis plantation北京九龙山
Jiulongshan Mountain, Beijing8 1.5 20.38 10.4 11.3 2.67 2 388 表 2 结构单元树种数及其占比
Table 2. Number and percentage of tree species in structural units
树种数
Number of tree species红松阔叶林
Broadleaved Pinus koraiensis forest锐齿栎天然林
Quercus aliena var. acutiserrata natural forest侧柏人工林
Platycladus orientalis plantation结构单元数
Number of
structural unit结构单元比例
Percentage of
structural unit/%结构单元数
Number of
structural unit结构单元比例
Percentage of
structural unit/%结构单元数
Number of
structural unit结构单元比例
Percentage of
structural unit/%1 17 2.62 5 1.59 182 50.56 2 42 6.48 9 2.86 84 23.33 3 88 13.58 42 13.33 38 10.56 4 219 33.80 112 35.56 32 8.89 5 282 43.52 147 46.67 24 6.67 结构单元平均树种数
Average number of tree
species of structural unit4.09 4.23 1.98 表 3 林分水平空间结构多样性评价指标
Table 3. Evaluation indicators for diversity of horizontal spatial structure of stands
林分类型
Stand type结构单元类型 Type of structural unit (Ns) 结构单元平均种数 Average species number of structural unit ($ \overline s $) 结构单元林层数均值 Average number of forest layer of structural unit ($ {\overline {N_{\rm{c}}} } $) 结构单元均匀性 Uniformity of structural unit (NSE) 结构单元丰富度 Richness of structural unit (NSR) 结构单元树种丰富度 Tree species richness of structural unit (SSR) 水平结构多样性 Diversity of horizontal structure (DFSh) 垂直结构多样性 Diversity of vertical structure (DFSv) 林分空间结构多样性 Diversity of stand spatial structure (DFS) 林分空间结构多样性等级 Grade of stand spatial structure diversity 锐齿栎天然林 Quercus aliena var. acutiserrata natural forest 130 4.23 2.7 0.669 0.756 0.896 0.805 0.904 0.854 非常好
Very good红松阔叶林 Broadleaved Pinus koraiensis forest 129 4.09 2.8 0.558 0.755 0.875 0.766 0.937 0.852 非常好
Very good侧柏人工林 Platycladus orientalis plantation 134 1.98 1.5 0.641 0.761 0.424 0.562 0.369 0.382 较差
Inferior -
[1] Ampoorter E, Barbaro L, Jactel H, et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe[J]. Oikos, 2020, 129(2): 133−146. doi: 10.1111/oik.06290 [2] Forrester D I, Bauhus J. A review of processes behind diversity-productivity relationships in forests[J]. Current Forestry Reports, 2016, 2(1): 45−61. doi: 10.1007/s40725-016-0031-2 [3] Aussenac R, Bergeron Y, Gravel D, et al. Interactions among trees: a key element in the stabilising effect of species diversity on forest growth[J]. Functional Ecology, 2019, 33(2): 360−367. doi: 10.1111/1365-2435.13257 [4] 惠刚盈, 赵中华, 张弓乔, 等. 结构化森林经营理论与实践[M]. 北京: 科学出版社, 2020.Hui G Y, Zhao Z H, Zhang G Q, et al. Theory and practice of structure-based forest management[M]. Beijing: Science Press, 2020. [5] Spies T A. Forest structure: a key to the ecosystem[J]. Northwest Science, 1998, 72: 34−39. [6] Franklin J F, Spies T A, Pelt V R, et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example[J]. Forest Ecology and Management, 2002, 155(1−3): 399−423. doi: 10.1016/S0378-1127(01)00575-8 [7] Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management, 2006, 224(3): 266−277. [8] 惠刚盈, 克劳斯·冯佳多, 胡艳波, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.Hui G Y,von Gadow K, Hu Y B, et al. Structure-based forest management[M]. Beijing: China Forestry Publishing House, 2007. [9] von Gadow K, Zhang C Y, Wehenkel C, et al. Forest structure and disversity[M]// von Gadow K, Jurgen N, Joachim S. Continuous cover forestry. Berlin: Springer, 2012: 29−83. [10] Ali A. Forest stand structure and functioning: current knowledge and future challenges[J]. Ecological Informatics, 2019, 98: 665−677. [11] Fichtner A, HäRdtle W, Bruelheide H, et al. Neighbourhood interactions drive overyielding in mixed-species tree communities[J]. Nature Communications, 2018, 9(1): 1144. doi: 10.1038/s41467-018-03529-w [12] Hui G Y, Wang Y, Zhang G Q, et al. A novel approach for assessing the neighborhood competition in two different aged forests[J]. Forest Ecology and Management, 2018, 422: 49−58. doi: 10.1016/j.foreco.2018.03.045 [13] Pommerening A, Grabarnik P. Individual-based methods in forest ecology and management[M]. Berlin: Springer International Publishing, 2019. [14] Zhang G, Hui G, Hu Y, et al. Designing near-natural planting patterns for plantation forests in China[J]. Forest Ecosystems, 2019, 6(3): 60−72. [15] 惠刚盈. 基于相邻木关系的林分空间结构参数应用研究[J]. 北京林业大学学报, 2013, 35(4): 1−9. doi: 10.13332/j.1000-1522.2013.04.015Hui G Y. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees[J]. Journal of Beijing Forestry University, 2013, 35(4): 1−9. doi: 10.13332/j.1000-1522.2013.04.015 [16] Li Y F, Hui G Y, Zhao Z H, et al. The bivariate distribution characteristics of spatial structure in natural Korean pine broadleaved forest[J]. Journal of Vegetation Science, 2012, 23(6): 1180−1190. [17] 白超. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院, 2016.Bai C. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest[D]. Beijing: Chinese Academy of Forestry, 2016. [18] 张岗岗. 天然林结构解译及林分状态综合评价[D]. 北京: 中国林业科学研究院, 2020.Zhang G G. Natural forest structure interpretation and forest state comprehensive evaluation[D]. Beijing: Chinese Academy of Forestry, 2020. [19] 安慧君. 阔叶红松林空间结构研究[D]. 北京: 北京林业大学, 2003.An H J. Study on the spatial structure of the broadleaved Korean pine forest[D]. Beijing: Beijing Forestry University, 2003. [20] 惠刚盈, 赵中华, 袁士云. 森林经营模式评价方法: 以甘肃小陇山林区为例[J]. 林业科学, 2011, 47(11): 114−120. doi: 10.11707/j.1001-7488.20111118Hui G Y, Zhao Z H, Yuan S Y. Evaluation method of forest management models: a case study of Xiaolongshan Forest Area in Gansu Province[J]. Scientia Silvae Sinicae, 2011, 47(11): 114−120. doi: 10.11707/j.1001-7488.20111118 [21] 袁士云. 甘肃省小陇山现有林分经营模式评价研究[D]. 北京: 中国林业科学研究院, 2010.Yuan S Y. Evaluation of existing forest management models in Xiaolongshan, Gansu Province[M]. Beijing: Chinese Academy of Forestry, 2010. [22] Kovács B, Tinya F, Ódor P. Stand structural drivers of microclimate in mature temperate mixed forests[J]. Agricultural and Forest Meteorology, 2017, 234−235: 11−21. doi: 10.1016/j.agrformet.2016.11.268 [23] Neumann M, Starlinger F. The significance of different indices for stand structure and diversity in forests[J]. Forest Ecology and Management, 2001, 145(1): 91−106. [24] 胡艳波. 基于结构化森林经营的天然异龄林空间优化经营模型研究[D]. 北京: 中国林业科学研究院, 2010.Hu Y B. Structure-based spatial optimization management model for natural uneven-aged forest[D]. Beijing: Chinese Academy of Forestry, 2010. [25] 汤孟平, 娄明华, 陈永刚, 等. 不同混交度指数的比较分析[J]. 林业科学, 2012, 48(8): 46−53. doi: 10.11707/j.1001-7488.20120808Tang M P, Lou M H, Chen Y G, et al. Comparative analyses on different mingling indices[J]. Scientia Silvae Sinicae, 2012, 48(8): 46−53. doi: 10.11707/j.1001-7488.20120808 [26] Hui G Y, Zhao X H, Zhao Z H, et al. Evaluating tree species spatial diversity based on neighborhood relationships[J]. Forest Science, 2011, 57(4): 292−300. [27] 王宏翔, 胡艳波, 赵中华. 树种空间多样性指数(TSS)的简洁预估方法[J]. 西北林学院学报, 2013, 28(4): 184−187. doi: 10.3969/j.issn.1001-7461.2013.04.38Wang H X, Hu Y B, Zhao Z H. A simple method for the estimation of tree species spatial diversity index (TSS)[J]. Journal of Northwest Forestry University, 2013, 28(4): 184−187. doi: 10.3969/j.issn.1001-7461.2013.04.38 [28] Zhao Z H, Hui G Y, Liu W Z, et al. A novel method for calculating stand structural diversity based on the relationship of adjacent trees[J]. Forests, 2022, 13: 343. doi: 10.3390/f13020343 [29] 惠刚盈, 赵中华, 胡艳波. 结构化森林经营技术指南[M]. 北京: 中国林业出版社, 2010.Hui G Y, Zhao Z H, Hu Y B. A guide to structure-based forest management[M]. Beijing: China Forestry Publishing House, 2010. [30] 张岗岗, 刘瑞红, 惠刚盈, 等. 林分空间结构参数N元分布及其诠释: 以小陇山锐齿栎天然混交林为例[J]. 北京林业大学学报, 2019, 41(4): 21−31.Zhang G G, Liu R H, Hui G Y, et al. N-variate distribution and its annotation on forest spatial structural parameters: a case study of Quercus aliena var. acuteserrata natural mixed forest in Xiaolong Mountains, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 21−31. [31] 惠刚盈, 李丽, 赵中华, 等. 林木空间分布格局分析方法[J]. 生态学报, 2007, 27(11): 4717−4728. doi: 10.3321/j.issn:1000-0933.2007.11.040Hui G Y, Li L, Zhao Z H, et al. The comparison of methods in analysis of the tree spatial distribution pattern[J]. Acta Ecologica Sinica, 2007, 27(11): 4717−4728. doi: 10.3321/j.issn:1000-0933.2007.11.040 [32] 李远发, 赵中华, 胡艳波, 等. 天然林经营效果评价方法及其应用[J]. 林业科学研究, 2012, 25(2): 123−129. doi: 10.3969/j.issn.1001-1498.2012.02.003Li Y F, Zhao Z H, Hu Y B, et al. Evaluating natural forest management efficiency[J]. Forest Research, 2012, 25(2): 123−129. doi: 10.3969/j.issn.1001-1498.2012.02.003 [33] 张连金, 胡艳波, 赵中华, 等. 北京九龙山侧柏人工林空间结构多样性[J]. 生态学杂志, 2015, 34(1): 60−69. doi: 10.13292/j.1000-4890.2015.0010Zhang L J, Hu Y B, Zhao Z H, et al. Spatial structure diversity of Platycladus orientalis plantation in Beijing Jiulong Mountain[J]. Chinese Journal of Ecology, 2015, 34(1): 60−69. doi: 10.13292/j.1000-4890.2015.0010 [34] 惠刚盈, 克劳斯·冯佳多. 结构化森林经营原理[M]. 北京: 中国林业出版社, 2016.Hui G Y, Klaus K V, et al. Principles of structure-based forest management[M]. Beijing: China Forestry Publishing House, 2016. [35] Fisher R A, Corbet A S, Williams C B. The relation between the number of species and the number of individuals in a random sample of an animal population[J]. The Journal of Animal Ecology, 1943, 12(1): 42. doi: 10.2307/1411 [36] Zhang G Q, Hui G Y, Zhao Z H, et al. Composition of basal area in natural forests based on the uniform angle index[J]. Ecological Informatics, 2018, 45: 1−8. doi: 10.1016/j.ecoinf.2018.01.002 -