Effects research of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land
-
摘要:
目的 揭示林型和林龄对温带半干旱地区嫩江流域固沙人工林生态系统碳储量的影响规律及机制,为沙地人工林碳汇管理实践提供科学依据。 方法 采用相对生长方程、碳/氮分析仪测定法,同步估算具有幼龄林、中龄林、成熟林年龄序列的11、30、45年生樟子松和6、15、26年生小黑杨2种人工林,以及28年生天然榆树疏林的生态系统碳储量(植被和土壤)、植被年净固碳量及其相关环境因子(土壤含水率、有机质、全氮等),确定林型和林龄对沙地人工林生态系统碳储量影响效果。 结果 (1)在植被固碳方面,樟子松和杨树人工林均强于天然榆树疏林,尤以樟子松人工林为最佳;且樟子松、杨树人工林的植被碳储量均随林龄而递增,但两者植被年净固碳量随林龄变化规律却不同,前者为幼龄林 > 中龄林 = 成熟林,后者随林龄而递增。(2)在土壤固碳方面,杨树人工林优于天然榆树疏林,而樟子松人工林却不及天然榆树疏林;且樟子松、杨树人工林土壤碳储量随林龄的变化规律也不同,分别为先增后稳型和递增型。两者的土壤碳储量的空间分布格局也被改变,在水平空间上,前者降低了上、下部土壤层的碳储量,且在上部土壤层碳储量随林龄增强;后者增加了中上部土壤层碳储量,且在底部土壤层碳储量随林龄增强;在垂直空间上,两者幼龄林土壤碳储量垂直分层明显,至成熟林趋于弱化;(3)在生态系统固碳方面,樟子松和杨树人工林相近且均强于天然榆树疏林;樟子松和杨树人工林生态系统碳储量均随林龄而递增,但其分配格局多以植被碳储量占优势,明显不同于以土壤占优势的天然榆树疏林;(4)樟子松人工林生态系统碳储量与植被年净固碳量主要受土壤全氮所控制,而杨树人工林生态系统碳储量与植被年净固碳量主要受土壤有机质所控制。 结论 在我国温带半干旱地区流动沙丘上营造樟子松和杨树人工林不仅能够固沙而且能够增加森林碳汇(约4/5),且以植被固碳占优势,故在沙地人工林碳汇管理实践中既要加强对植被碳库的维持,也要注重其土壤碳库长期固碳潜力的发挥。 Abstract:Objective This study aimed to reveal the influence laws and mechanisms of forest types and forest age on the carbon storage of sand fixation plantation ecosystems in the Nenjiang River Basin in temperate semi-arid regions, and to provide a scientific basis for the practice of carbon sink management in sandy plantations. Method Relative growth equations and carbon/nitrogen analyzer were used to simultaneously estimate the ecosystem carbon stocks (vegetation and soil), annual net carbon sequestration of vegetation and related environmental factors (soil moisture content, organic matter, total nitrogen, and so on) in two kinds of plantations with a chronosequences of young forests, middle-aged forests, and mature forests of 11, 30 and 45 years old Mongolian Pine(Pinus sylvestris var. mongolica) plantation (Ps); 6, 15 and 26 years old Populus × xiaohei plantation (Px) and 28 years old natural Siberian Elm (Ulmus pumila) forest (Up) at sand dune sites, and to determine the influence law and mechanism of forest types and ages on the ecosystem carbon storage. Result (1) The vegetation carbon storage of Ps and Px increased significantly than Up, which of Ps was the highest among three forest types. Moreover, the vegetation carbon storage of Ps and Px increased with the forest age, but the change trends of annual net carbon sequestration (ANCS) of vegetation with forest age were different between Ps and Px, the former is young forests > Mid-aged forests= mature forests; The latter increases with forest age. (2) In terms of soil carbon sequestration, Px was better than Up, while Ps was less than Up ; Moreover, the change law of soil carbon storage with forest age in Ps and Px was also different, increasing first and then stabilizing and increasing, respectively. And both forest types all changed the spatial distribution pattern of soil carbon storage. In the horizontal space, Ps reduced the carbon storage in the upper and lower soil layers, and its soil carbon storage increased with the forest age in the upper soil layer; while Px increased the soil carbon storage in the middle and upper soil layer, and its carbon storage increased with the forest age in the bottom soil layer; In the vertical space, the vertical stratification of soil carbon storage in young forests was evident and tended to weaken in mature forest stage. (3) In terms of ecosystem carbon sequestration, Ps and Px were similar and higher than Up. The ecosystem carbon storage of both Ps and Px increased with stand age. However, the distribution patterns of ecosystem carbon stocks for Ps and Px were mostly dominated by vegetation, which was clearly different from that of Up dominated by soil. (4) The ecosystem carbon storage and ANCS of Ps were mainly controlled by soil total nitrogen. The ecosystem carbon storage and ANCS of Px were mainly controlled by soil organic matter. Conclusion Therefore, the establishment of Ps and Px could not only fix sand, but also significantly increase forest carbon sink (about 4/5) in the temperate Nenjiang Sandy Land, which was dominated by vegetation carbon sequestration. Therefore, in the management of carbon sinks in sandy plantations, it is necessary to strengthen the maintenance of the vegetation carbon pool as well as to focus on the long-term carbon sequestration potential of the soil. -
表 1 试验地概况
Table 1. Overview of test site
林型
Forest type海拔
Altitude/m林龄/a
Stand age/year胸高断面积/(m2·hm−2)
Basal area/(m2·ha−1)平均胸径
DBH/cm胸径范围
DBH range/cm平均树高
Height/m林分密度/(株·hm−2)
Stand density/(tree·ha−1)PsY 141 11 16.0 ± 3.5 14.3 ± 0.5 6.1 ~ 22.2 6.1 ± 0.3 967 ± 73 PsMD 131 30 23.3 ± 1.4 22.1 ± 1.8 11.1 ~ 30.8 11.2 ± 1.2 600 ± 60 PsM 141 45 28.5 ± 5.1 32.9 ± 3.5 29.3 ~ 40.6 15.4 ± 0.9 344 ± 51 PxY 147 6 6.2 ± 0.6 8.0 ± 1.7 4.0 ~ 15.3 8.7 ± 1.3 1 150 ± 60 PxMD 129 15 14.5 ± 2.2 14.1 ± 1.9 4.4 ~ 22.9 11.9 ± 0.3 906 ± 92 PxM 161 26 23.8 ± 2.5 23.0 ± 1.2 9.3 ~ 30.2 20.2 ± 2.3 556 ± 48 Up 140 28 11.9 ± 4.8 13.8 ± 5.1 4.0 ~ 38.2 3.8 ± 0.5 578 ± 84 注:PsY, PsMD和PsM:樟子松幼龄林、中龄林和成熟林;PxY, PxMD和PxM:杨树幼龄林、中龄林和成熟林;Up:天然榆树疏林。表中数值为均值 ± 标准差。下同。Note: PsY, PsMD and PsM: young, mid-aged and mature forests of Pinus sylvestris var. mongolica; PxY, PxMD and PxM: young, mid-aged and mature forests of Populus × xiaohei; Up: Ulmus pumila. Values in the table are mean ± standard deviation. The same below. 表 2 嫩江流域流动沙丘樟子松、小黑杨和榆树的相对生长方程
Table 2. Relative growth equations of Pinus sylvestris var. Mongolica, Populus × xiaohei and Ulmus pumila in mobile dunes of Nenjiang River Basin
树种
Tree species胸径范围
DBH range/cm组分
Component生物量方程
Growth equation for biomassR2 显著性
Significance樟子松
Pinus sylvestris var. Mongolica (Ps)4.0 ~ 32.0 树干 Trunk Wt = 0.009 6 (D2H) 1.041 7 0.9821 0.000 树根 Root Wr = 0.006 9 (D2H) 0.980 1 0.9736 0.000 树枝 Branch Wb = 0.007 6 (D2H) 1.058 7 0.7598 0.010 树叶 Leaf Wl = 0.056 9 (D2H) 0.802 8 0.7094 0.022 小黑杨 Populus × xiaohei (Px) 4.0 ~ 32.0 树干 Trunk Wt = 0.030 6 (D2H) 0.919 0 0.9159 0.001 树根 Root Wr = 0.004 4 (D2H) 0.958 1 0.9762 0.000 树枝 Branch Wb = 0.000 1 (D2H) 1.378 5 0.9927 0.000 树叶 Leaf Wl = 0.000 05 (D2H) 1.450 3 0.8364 0.003 榆树 Ulmus pumila (Up) 4.0 ~ 28.0 树干 Trunk Wt = 0.018 5 (D2H) 0.980 1 0.9786 0.000 树根 Root Wr = 0.007 2 (D2H) 0.984 0 0.9231 0.002 树枝 Branch Wb = 0.015 9 (D2H) 0.919 3 0.9281 0.001 树叶 Leaf Wl = 0.005 8 (D2H) 1.030 8 0.7836 0.018 注:W. 生物量, kg; D. 胸径, cm; H. 树高, m。 Note: W: biomass, kg; D: DBH, cm; H: High, m. 表 3 嫩江流域流动沙丘樟子松、杨树人工林和天然榆树林植被碳储量和年净固碳量
Table 3. Vegetation carbon storage and annual net carbon sequestration of Pinus sylvestris var. Mongolica, Populus × xiaohei plantations and natural Ulmus pumila forest in mobile dunes of Nenjiang River Basin
指标
Item植被层
Layer处理 Treatments Ps Px Up 幼龄林
Young vforests (Y)中龄林
Middle-aged
forests (MD)成熟林
Mature
forests (M)Y MD M M 碳含量
Carbon content
(SOC)/(g·kg−1)乔木
Tree476.87 ± 7.50A 467.94 ± 7.25A 468.19 ± 9.77A 442.59 ± 4.67BC 443.68 ± 10.21BC 450.54 ± 3.22B 430.67 ± 9.87C 灌木
Shrub423.95 ± 18.45A 439.49 ± 1.40A 423.58 ± 5.50A 431.68 ± 8.52A 草本
Herb386.59 ± 18.51A 399.35 ± 4.62A 374.87 ± 22.28A 394.22 ± 30.97A 395.52 ± 24.94A 399.78 ± 13.66A 400.22 ± 4.62A 凋落物
Litter362.62 ± 11.00B 416.95 ± 17.34A 361.63 ± 17.33B 228.11 ± 20.34D 287.11 ± 10.48C 319.05 ± 9.43C 236.77 ± 41.20D 植被
Vegetation436.78 ± 7.41AB 448.01 ± 6.41A 434.88 ± 1.06B 402.38 ± 3.94DE 413.83 ± 4.69CD 420.65 ± 2.51C 398.77 ± 12.79E 生物量/(t·hm−2)
Biomass/(t·ha−1)乔木 Tree 81.48 ± 9.10D 155.00 ± 11.13B 244.05 ± 25.84A 13.01 ± 1.28F 50.21 ± 12.21E 114.11 ± 13.66C 50.10 ± 12.27E 灌木
Shrub0.16 ± 0.01B 0.01 ± 0.01C 0.01 ± 0.01C 0.30 ± 0.05A 草本
Herb0.11 ± 0.02B 0.07 ± 0.02B 0.11 ± 0.06B 0.09 ± 0.02B 0.08 ± 0.01B 0.04 ± 0.01B 0.54 ± 0.11A 凋落物
Litter2.64 ± 0.33B 3.42 ± 0.52B 2.47 ± 0.33B 4.19 ± 0.95B 7.84 ± 1.64A 7.74 ± 0.65A 3.84 ± 0.38B 植被
Vegetation84.23 ± 8.79D 158.48 ± 12.06B 246.63 ± 25.32A 17.53 ± 1.94F 58.13 ± 15.91E 121.90 ± 13.78C 54.56 ± 11.55E 净初级生产力/(t·hm−2·a−1)
Net primary productivity
(NPP)/(t·ha−1·year−1)7.65 ± 0.20A 5.28 ± 0.23B 5.49 ± 0.67B 2.94 ± 0.25C 3.68 ± 0.70C 4.71 ± 0.71B 1.94 ± 0.35D 碳储量/(t·hm−2)
Carbon storage (SCS)/
(t·ha−1)乔木
Tree39.39 ± 3.98D 74.12 ± 5.00B 115.33 ± 10.02A 7.79 ± 1.00F 26.22 ± 7.31E 52.50 ± 5.98C 24.18 ± 5.35E 灌木
Shrub0.02 ± 0.01B 0.01 ± 0.01C 0.01 ± 0.01C 0.04 ± 0.01A 草本
Herb0.04 ± 0.01B 0.03 ± 0.01B 0.04 ± 0.01B 0.04 ± 0.01B 0.03 ± 0.01B 0.02 ± 0.01B 0.30 ± 0.04A 凋落物
Litter1.00 ± 0.04C 1.47 ± 0.07B 0.90 ± 0.13C 1.03 ± 0.13C 2.36 ± 0.10A 2.47 ± 0.12A 1.34 ± 0.15B 间伐材
Thinning15.34 ± 2.04B 32.26 ± 3.65A 1.88 ± 0.30C 11.05 ± 1.72B 植被
Vegetation40.43 ± 3.94D 90.96 ± 5.02B 148.53 ± 9.90A 8.88 ± 0.94F 30.49 ± 7.40DE 66.03 ± 6.02C 25.86 ± 5.46E 年净固碳量/(t·hm−2·a−1)
Annual net carbon sequestration
(ANCS)/(t·ha−1·year−1)3.67 ± 0.04A 2.52 ± 0.08B 2.59 ± 0.27B 1.49 ± 0.13D 1.81 ± 0.32CD 2.12 ± 0.31C 0.92 ± 0.16E 注:不同大写字母表示林型间差异显著(P < 0.05)。下同。Note: different capital letters indicate significant differences between forest types (P < 0.05). The same below. 表 4 嫩江流域流动沙丘樟子松、杨树人工林和天然榆树林土壤碳储量
Table 4. Soil carbon storage of Pinus sylvestris var. Mongolica, Populus × xiaohei and Ulmus pumila forest in mobile dunes of Nenjiang River Basin
指标
Item土壤深度
Soil depth/cm处理 Treatments Ps Px Up Y MD M Y MD M M 土壤密度
Soil density/
(g·cm−3)0 ~ 20 1.02 ± 0.05ABa 1.07 ± 0.07ABab 1.09 ± 0.05Aa 1.09 ± 0.02Aa 1.06 ± 0.02ABa 0.99 ± 0.07Bb 0.98 ± 0.01Bb 20 ~ 40 1.02 ± 0.03BCa 1.00 ± 0.04Cb 1.07 ± 0.03ABa 1.09 ± 0.04Aa 1.12 ± 0.03Aa 1.08 ± 0.03ABa 1.07 ± 0.01ABa 40 ~ 60 1.01 ± 0.03Ba 1.06 ± 0.03ABab 1.07 ± 0.02ABa 1.06 ± 0.02ABa 1.12 ± 0.06Aa 1.11 ± 0.02Aa 1.01 ± 0.07Bab 60 ~ 80 0.98 ± 0.05Ba 1.06 ± 0.03Aab 1.12 ± 0.05Aa 1.06 ± 0.03Aa 1.10 ± 0.02Aa 1.12 ± 0.02Aa 1.09 ± 0.05Aa 80 ~ 100 1.00 ± 0.02Da 1.06 ± 0.02BCa 1.09 ± 0.01ABa 1.08 ± 0.01ABCa 1.11 ± 0.02Aa 1.08 ± 0.01ABCa 1.05 ± 0.02Ca 0 ~ 100 1.00 ± 0.02C 1.06 ± 0.02B 1.09 ± 0.01A 1.08 ± 0.01AB 1.11 ± 0.02A 1.08 ± 0.01AB 1.05 ± 0.02BC SOC/
(g·kg−1)0 ~ 20 3.28 ± 0.16Fa 4.60 ± 0.44Da 5.57 ± 0.59Ca 3.94 ± 0.14Ea 4.20 ± 0.52DEa 8.91 ± 1.08Aa 6.48 ± 0.14Ba 20 ~ 40 2.54 ± 0.21Cb 3.61 ± 0.14Bb 2.80 ± 0.40Cb 3.48 ± 0.26Bb 3.03 ± 0.26BCb 5.63 ± 0.56Ab 3.08 ± 0.37BCb 40 ~ 60 2.41 ± 0.17ABb 3.42 ± 0.95Ab 2.21 ± 0.54Bbc 2.42 ± 0.12ABc 3.36 ± 0.28Ab 3.15 ± 0.77ABc 2.84 ± 0.63ABb 60 ~ 80 1.84 ± 0.18BCc 1.65 ± 0.19Cc 1.56 ± 0.31Ccd 1.59 ± 0.06Cd 2.18 ± 0.18Bc 2.98 ± 0.29Acd 3.10 ± 0.25Ab 80 ~ 100 1.03 ± 0.08Dd 0.86 ± 0.03Dc 1.01 ± 0.37Dd 0.86 ± 0.15De 1.72 ± 0.22Cc 2.24 ± 0.31Bd 3.11 ± 0.32Ab 0 ~ 100 2.22 ± 0.05E 2.83 ± 0.28CD 2.63 ± 0.18CD 2.46 ± 0.05DE 2.90 ± 0.08C 4.58 ± 0.37A 3.72 ± 0.21B SCS/
(t·hm−2)0 ~ 20 6.67 ± 0.13Da 9.77 ± 0.39Ca 12.08 ± 1.02Ba 8.62 ± 0.47Ca 8.91 ± 1.28Ca 17.66 ± 1.31Aa 12.71 ± 0.18Ba 20 ~ 40 5.21 ± 0.55Db 7.24 ± 0.59BCb 6.00 ± 1.01CDb 7.61 ± 0.69Bb 6.80 ± 0.72BCb 12.18 ± 1.01Ab 6.61 ± 0.85BCDb 40 ~ 60 4.88 ± 0.47Bb 7.31 ± 2.18Ab 4.74 ± 1.11Bbc 5.12 ± 0.32ABc 7.53 ± 0.31Ab 6.96 ± 1.64ABc 5.76 ± 1.46ABb 60 ~ 80 3.59 ± 0.14Cc 3.50 ± 0.30Cc 3.48 ± 0.63Ccd 3.36 ± 0.13Cd 4.80 ± 0.40Bc 6.66 ± 0.61Ac 6.76 ± 0.36Ab 80 ~ 100 2.06 ± 0.13Dd 1.82 ± 0.09Dc 2.21 ± 0.82Dd 1.84 ± 0.32De 3.80 ± 0.41Cc 4.84 ± 0.72Bc 6.52 ± 0.82Ab 0 ~ 100 22.41 ± 0.86E 29.65 ± 2.25CD 28.50 ± 1.69CD 26.55 ± 0.80D 31.84 ± 0.42C 48.30 ± 5.13A 38.36 ± 1.76B 注:不同小写字母表示不同土壤层次之间差异显著 (P < 0.05)。Note: Different lower-case letters indicate significant differences between soil layers (P < 0.05). 表 5 嫩江流域流动沙丘樟子松、杨树人工林生态系统碳储量与环境因子多元线性逐步回归分析
Table 5. Multiple linear stepwise regression analysis of ecosystem carbon storage and environmental factors in Pinus sylvestris var. Mongolica and Populus × xiaohei plantation in mobile dunes of Nenjiang River Basin
林型
Forest types指标
Item环境因子 Environmental factors 截距
InterceptR2 P 有机质
Organic
matter全氮
Total
nitrogen全磷
Total
phosphorus速效磷
Available
phosphorus速效钾
Available
potassium含水率
Water
contentpH Ps 植被
Vegetation0.626*** −0.446** 130.040 0.964 0.003 土壤Soil 0.761*** 0.286* 1.033 0.971 0.017 生态系统
Ecosystem0.680*** −0.387** 132.982 0.963 0.006 年净固碳量
Annual net carbon
sequestration−0.885** 4.482 0.752 0.002 Px 植被
Vegetation0.961*** −46.693 0.912 0.000 土壤 Soil 1.097*** 0.132*** −9.141 0.999 0.000 生态系统
Ecosystem0.979*** −45.022 0.953 0.000 年净固碳量
Annual net carbon
sequestration0.748* 0.907 0.497 0.020 *. P < 0.05;**. P < 0.01;***. P < 0.001. -
[1] Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global Change Biology, 1998, 4: 185−198. doi: 10.1046/j.1365-2486.1998.00125.x [2] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2016, 292(5525): 2320−2322. [3] Grnzweig J M, Lin T, Rotenberg E, et al. Carbon sequestration in arid-land forest[J]. Global Change Biology, 2003, 9: 791−799. doi: 10.1046/j.1365-2486.2003.00612.x [4] Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships[J]. Science China Life Sciences, 2010, 53(7): 776−783. doi: 10.1007/s11427-010-4030-4 [5] Huang L, Liu J Y, Shao Q Q, et al. Carbon sequestration by forestation across China: past, present, and future[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291−1299. doi: 10.1016/j.rser.2011.10.004 [6] Nosetto M D, Jobbágy E G, Paruelo J M. Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia[J]. Journal of Arid Environments, 2006, 67: 142−156. doi: 10.1016/j.jaridenv.2005.12.008 [7] Wang K B, Deng L, Ren Z P, et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. Journal of Arid Land, 2016, 8(2): 207−220. doi: 10.1007/s40333-015-0091-3 [8] Lan Z L, Zhao Y, Zhang J G, et al. Long-term vegetation restoration increases deep soil carbon storage in the Northern Loess Plateau[J]. Scientifc Reports, 2021, 11: 13758−13769. doi: 10.1038/s41598-021-93157-0 [9] Li D J, Niu S L, Luo Y Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis[J]. New Phytologist, 2012, 195(1): 172−181. doi: 10.1111/j.1469-8137.2012.04150.x [10] Hong S B, Yin G D, Piao S L, et al. Divergent responses of soil organic carbon to afforestation[J]. Nature Sustainability, 2020, 3(9): 694−700. doi: 10.1038/s41893-020-0557-y [11] Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis[J]. Global Change Biology, 2002, 8: 345−360. doi: 10.1046/j.1354-1013.2002.00486.x [12] Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168: 241−257. [13] IPCC. Land use, land-use change, and forestry. Special report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2000. [14] Matos E S, Freese D, Ślązak A, et al. Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany[J]. Journal of Plant Nutrition and Soil Science, 2010, 173: 654−661. doi: 10.1002/jpln.200900046 [15] Penne C, Ahrends B, Deurer M, et al. The impact of the canopy structure on the spatial variability in forest floor carbon stocks[J]. Geoderma, 2010, 158: 282−297. doi: 10.1016/j.geoderma.2010.05.007 [16] Kaul M, Mohren G M J, Dadhwal V K. Carbon storage and sequestration potential of selected tree species in India[J]. Mitigation and Adaptation Strategies for Global Change, 2010, 15: 489−510. doi: 10.1007/s11027-010-9230-5 [17] Zhang Q Z, Wang C K, Wang X C, et al. Carbon concentration variability of 10 Chinese temperate tree species[J]. Forest Ecology and Management, 2009, 258(5): 722−727. doi: 10.1016/j.foreco.2009.05.009 [18] Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137: 253−268. doi: 10.1016/j.geoderma.2006.09.003 [19] Vesterdal L, Elberling B, Christiansen J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J]. Forest Ecology and Management, 2012, 264: 185−196. doi: 10.1016/j.foreco.2011.10.009 [20] Finzi A C, Breemen N V, Canham C D. Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen[J]. Ecological Applications, 1998, 8(2): 440−446. [21] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 [22] Binkley D. A hypothesis about the interaction of tree dominance and stand production through stand development[J]. Forest Ecology and Management, 2004, 190: 265−271. doi: 10.1016/j.foreco.2003.10.018 [23] Taylor A R, Wang J R, Chen H Y H. Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada[J]. Canadian Journal of Forest Research-revue Canadienne De Recherche Forestiere, 2007, 37: 2260−2269. doi: 10.1139/X07-080 [24] Pregitzer K S, Eusirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2004, 10: 2052−2077. doi: 10.1111/j.1365-2486.2004.00866.x [25] Nam-Jin N, Yowhan S, Sue-Kyoung L, et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J]. Science China Life Sciences, 2010, 53(7): 822−830. doi: 10.1007/s11427-010-4018-0 [26] Cuong L, Hung B, Bolanle-Ojo O T, et al. Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in Southeastern region, Vietnam[J]. Forest Systems, 2020, 29(2): e009. doi: 10.5424/fs/2020292-16685 [27] Li T J, Liu G B. Age-related changes of carbon accumulation and allocation in plants and soil of Black Locust forest on Loess Plateau in Ansai county, Shaanxi province of China[J]. Chinese Geographical Science, 2014, 24(4): 414−422. doi: 10.1007/s11769-014-0704-3 [28] Ma Q L, Wang X Y, Chen F, et al. Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin: storage, rate and potential[J]. Global Ecology and Conservation, 2021, 28: e01607. doi: 10.1016/j.gecco.2021.e01607 [29] Cao J J, Gong Y F, Adamowski J F, et al. Effects of stand age on carbon storage in dragon spruce forest ecosystems in the upper reaches of the Bailongjiang River basin, China[J]. Scientific Reports, 2019, 9: 3005−3016. doi: 10.1038/s41598-019-39626-z [30] 王树力, 胡天然, 赵雨森, 等. 齐齐哈尔市嫩江沙地沙化土地的成因、类型、分布及治理技术[J]. 林业科技, 2004, 29(5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005Wang S L, Hu T R, Zhao Y S, et al. Causes, types, distribution and control techniques of desertified land in Nenjiang Sandy Land of Qiqihar city[J]. Forestry Science and Technology, 2004, 29(5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005 [31] 孙虎, 李凤日, 孙美欧, 等. 松嫩平原杨树人工林生态系统碳储量研究[J]. 北京林业大学学报, 2016, 38(5): 33−41. doi: 10.13332/j.1000-1522.20150336Sun H, Li F R, Sun M O, et al. Carbon storage of poplar plantations in Songnen Plain, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(5): 33−41. doi: 10.13332/j.1000-1522.20150336 [32] 王亚辉, 牟长城, 杨智慧, 等. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响[J]. 北京林业大学学报, 2021, 43(10): 54−64. doi: 10.12171/j.1000-1522.20200361Wang Y H, Mu C C, Yang Z H, et al. Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(10): 54−64. doi: 10.12171/j.1000-1522.20200361 [33] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000.Bao S D. Soil and Agricultural Chemistry Analysis[M]. 3nd ed. Beijing: China Agricultural Press, 2000. [34] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 83−90.Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 83−90. [35] 李合生. 《现代植物生理学》(第3版)[J]. 生命世界, 2012(11): 2.Li H S. 《Modern Plant Physiology》(3rd edition)[J]. Life World, 2012(11): 2. [36] 袁立敏, 闫德仁, 王熠青, 等. 沙地樟子松人工林碳储量研究[J]. 内蒙古林业科技, 2011, 37(1): 9−13. doi: 10.3969/j.issn.1007-4066.2011.01.003Yuan L M, Yan D R, Wang Y Q, et al. Carbon storage of Pinus sylvestris var. mongolica Litv. plantation in sandy land[J]. Journal of Inner Mongolia Forestry Science and Technology, 2011, 37(1): 9−13. doi: 10.3969/j.issn.1007-4066.2011.01.003 [37] Schulze E D. Carbon and nitrogen cycling in European forest ecosystems[J]. Agricultural and Forest Meteorology, 2004, 124: 135−136. doi: 10.1016/j.agrformet.2004.01.001 [38] Marris E. Old forests capture plenty of carbon[J]. Nature, 2008, 455: 213−215. doi: 10.1038/nature07276 [39] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518−522. doi: 10.3321/j.issn:1005-264X.2000.05.002Zhou Y R, Yu Z L, Zhao S D. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 2000, 24(5): 518−522. doi: 10.3321/j.issn:1005-264X.2000.05.002 [40] 何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029 [41] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379−389. doi: 10.11821/xb200104001Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001 [42] Wu G L, Liu Y, Tian F P, et al. Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity[J]. Land Degradation and Development, 2017, 28(4): 1336−1344. doi: 10.1002/ldr.2570 [43] Hu Y L, Zeng D H, Fan Z P, et al. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China[J]. Journal of Arid Environments, 2008, 72(12): 2193−2200. doi: 10.1016/j.jaridenv.2008.07.007 [44] Wang Y F, Liu L, Yue F X, et al. Dynamics of carbon and nitrogen storage in two typical plantation ecosystems of different stand ages on the Loess Plateau of China[J]. PeerJ, 2019, 7: 0−20. [45] Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land[J]. Forest Ecology and Management, 2002, 169: 137−147. doi: 10.1016/S0378-1127(02)00304-3 [46] Kaye J P, Sigrid C P, Kaye M W, et al. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees[J]. Ecology, 2000, 81(12): 3267−3273. doi: 10.2307/177491 [47] 韩美娜, 魏亚伟, 秦胜金, 等. 沙地樟子松人工林碳库动态及其分配特征[J]. 生态学杂志, 2015, 34(7): 1798−1803. doi: 10.13292/j.1000-4890.20150616.004Han M N, Wei Y Y, Qin S J, et al. Carbon storage dynamics and its distribution pattern in Pinus sylvestris var. mongolica plantation in sandy land[J]. Chinese Journal of Ecology, 2015, 34(7): 1798−1803. doi: 10.13292/j.1000-4890.20150616.004 [48] 淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征[J]. 干旱区研究, 2018, 35(4): 789−795.Shu M, Jiang T, Wang D L, et al. Soil eco-logical stoichiometry under the planted of Pinus sylvestris var. mongolica forests with different stand ages in the horqin sandy land[J]. Arid Zone Research, 2018, 35(4): 789−795. [49] Richter D, Markewitz D, Trumbore S, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400(56−58). [50] Johnson D W. Effects of forest management on soil carbon storage[J]. Water, Air, and Soil Pollution, 1992, 64: 83−120. doi: 10.1007/BF00477097 [51] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437−5448.Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448. [52] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185 [53] 白晓霞, 艾海舰. 榆林沙地樟子松人工林土壤养分变化特征[J]. 西部林业科学, 2020, 49(3): 80−85. doi: 10.16473/j.cnki.xblykx1972.2020.03.013Bai X X, Ai H J. Soil nutrients variability of Pinus sylvestris var. mongolica plantations in desertificated land of Yulin[J]. Journal of West China Forestry Science, 2020, 49(3): 80−85. doi: 10.16473/j.cnki.xblykx1972.2020.03.013 [54] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48−57.Yan E R, Wang X H, Guo M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57. [55] Peichl M, Arain M A. Above ground and below ground ecosystem biomass carbon pools in an age sequeance of temperate pine plantation forests[J]. Agricultural and Forest Meteorology, 2006, 140: 51−53. doi: 10.1016/j.agrformet.2006.08.004 -