高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林型林龄对嫩江沙地人工林生态系统碳储量影响规律研究

鲁艺 牟长城 高旭 梁道省

鲁艺, 牟长城, 高旭, 梁道省. 林型林龄对嫩江沙地人工林生态系统碳储量影响规律研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220294
引用本文: 鲁艺, 牟长城, 高旭, 梁道省. 林型林龄对嫩江沙地人工林生态系统碳储量影响规律研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220294
Lu Yi, Mu Changcheng, Gao Xu, Liang Daosheng. Effects research of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220294
Citation: Lu Yi, Mu Changcheng, Gao Xu, Liang Daosheng. Effects research of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220294

林型林龄对嫩江沙地人工林生态系统碳储量影响规律研究

doi: 10.12171/j.1000-1522.20220294
基金项目: 中央高校基本科研项目(2572019DF07)
详细信息
    作者简介:

    鲁艺。主要研究方向:恢复生态学。Email:1714643715@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路51号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:恢复生态学。Email:muccjs@163.com 地址:同上

  • 中图分类号: S718.55

Effects research of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land

  • 摘要:   目的  揭示林型和林龄对温带半干旱地区嫩江流域固沙人工林生态系统碳储量的影响规律及机制,为沙地人工林碳汇管理实践提供科学依据。  方法  采用相对生长方程、碳/氮分析仪测定法,同步估算具有幼龄林、中龄林、成熟林年龄序列的11、30、45年生樟子松和6、15、26年生小黑杨2种人工林,以及28年生天然榆树疏林的生态系统碳储量(植被和土壤)、植被年净固碳量及其相关环境因子(土壤含水率、有机质、全氮等),确定林型和林龄对沙地人工林生态系统碳储量影响效果。  结果  (1)在植被固碳方面,樟子松和杨树人工林均强于天然榆树疏林,尤以樟子松人工林为最佳;且樟子松、杨树人工林的植被碳储量均随林龄而递增,但两者植被年净固碳量随林龄变化规律却不同,前者为幼龄林 > 中龄林 = 成熟林,后者随林龄而递增。(2)在土壤固碳方面,杨树人工林优于天然榆树疏林,而樟子松人工林却不及天然榆树疏林;且樟子松、杨树人工林土壤碳储量随林龄的变化规律也不同,分别为先增后稳型和递增型。两者的土壤碳储量的空间分布格局也被改变,在水平空间上,前者降低了上、下部土壤层的碳储量,且在上部土壤层碳储量随林龄增强;后者增加了中上部土壤层碳储量,且在底部土壤层碳储量随林龄增强;在垂直空间上,两者幼龄林土壤碳储量垂直分层明显,至成熟林趋于弱化;(3)在生态系统固碳方面,樟子松和杨树人工林相近且均强于天然榆树疏林;樟子松和杨树人工林生态系统碳储量均随林龄而递增,但其分配格局多以植被碳储量占优势,明显不同于以土壤占优势的天然榆树疏林;(4)樟子松人工林生态系统碳储量与植被年净固碳量主要受土壤全氮所控制,而杨树人工林生态系统碳储量与植被年净固碳量主要受土壤有机质所控制。  结论  在我国温带半干旱地区流动沙丘上营造樟子松和杨树人工林不仅能够固沙而且能够增加森林碳汇(约4/5),且以植被固碳占优势,故在沙地人工林碳汇管理实践中既要加强对植被碳库的维持,也要注重其土壤碳库长期固碳潜力的发挥。

     

  • 图  1  嫩江流域流动沙丘不同林龄樟子松、杨树人工林和天然榆树林生态系统碳储量(a)及分配(b)

    Figure  1.  Ecosystem carbon storage (a) and allocation (b) of Pinus sylvestris var. Mongolica, Populus × xiaohei plantations with different stand age and natural Ulmus pumila forest in mobile dunes of Nenjiang River Basin

    表  1  试验地概况

    Table  1.   Overview of test site

    林型
    Forest type
    海拔
    Altitude/m
    林龄/a
    Stand age/year
    胸高断面积/(m2·hm−2
    Basal area/(m2·ha−1
    平均胸径
    DBH/cm
    胸径范围
    DBH range/cm
    平均树高
    Height/m
    林分密度/(株·hm−2
    Stand density/(tree·ha−1
    PsY1411116.0 ± 3.514.3 ± 0.56.1 ~ 22.26.1 ± 0.3967 ± 73
    PsMD1313023.3 ± 1.422.1 ± 1.811.1 ~ 30.811.2 ± 1.2600 ± 60
    PsM1414528.5 ± 5.132.9 ± 3.529.3 ~ 40.615.4 ± 0.9344 ± 51
    PxY14766.2 ± 0.68.0 ± 1.74.0 ~ 15.38.7 ± 1.31 150 ± 60
    PxMD1291514.5 ± 2.214.1 ± 1.94.4 ~ 22.911.9 ± 0.3906 ± 92
    PxM1612623.8 ± 2.523.0 ± 1.29.3 ~ 30.220.2 ± 2.3556 ± 48
    Up1402811.9 ± 4.813.8 ± 5.14.0 ~ 38.23.8 ± 0.5578 ± 84
    注:PsY, PsMD和PsM:樟子松幼龄林、中龄林和成熟林;PxY, PxMD和PxM:杨树幼龄林、中龄林和成熟林;Up:天然榆树疏林。表中数值为均值 ± 标准差。下同。Note: PsY, PsMD and PsM: young, mid-aged and mature forests of Pinus sylvestris var. mongolica; PxY, PxMD and PxM: young, mid-aged and mature forests of Populus × xiaohei; Up: Ulmus pumila. Values in the table are mean ± standard deviation. The same below.
    下载: 导出CSV

    表  2  嫩江流域流动沙丘樟子松、小黑杨和榆树的相对生长方程

    Table  2.   Relative growth equations of Pinus sylvestris var. Mongolica, Populus × xiaohei and Ulmus pumila in mobile dunes of Nenjiang River Basin

    树种
    Tree species
    胸径范围
    DBH range/cm
    组分
    Component
    生物量方程
    Growth equation for biomass
    R2显著性
    Significance
    樟子松
    Pinus sylvestris var. Mongolica (Ps)
    4.0 ~ 32.0 树干 Trunk Wt = 0.009 6 (D2H) 1.041 7 0.9821 0.000
    树根 Root Wr = 0.006 9 (D2H) 0.980 1 0.9736 0.000
    树枝 Branch Wb = 0.007 6 (D2H) 1.058 7 0.7598 0.010
    树叶 Leaf Wl = 0.056 9 (D2H) 0.802 8 0.7094 0.022
    小黑杨 Populus × xiaohei (Px) 4.0 ~ 32.0 树干 Trunk Wt = 0.030 6 (D2H) 0.919 0 0.9159 0.001
    树根 Root Wr = 0.004 4 (D2H) 0.958 1 0.9762 0.000
    树枝 Branch Wb = 0.000 1 (D2H) 1.378 5 0.9927 0.000
    树叶 Leaf Wl = 0.000 05 (D2H) 1.450 3 0.8364 0.003
    榆树 Ulmus pumila (Up) 4.0 ~ 28.0 树干 Trunk Wt = 0.018 5 (D2H) 0.980 1 0.9786 0.000
    树根 Root Wr = 0.007 2 (D2H) 0.984 0 0.9231 0.002
    树枝 Branch Wb = 0.015 9 (D2H) 0.919 3 0.9281 0.001
    树叶 Leaf Wl = 0.005 8 (D2H) 1.030 8 0.7836 0.018
    注:W. 生物量, kg; D. 胸径, cm; H. 树高, m。 Note: W: biomass, kg; D: DBH, cm; H: High, m.
    下载: 导出CSV

    表  3  嫩江流域流动沙丘樟子松、杨树人工林和天然榆树林植被碳储量和年净固碳量

    Table  3.   Vegetation carbon storage and annual net carbon sequestration of Pinus sylvestris var. Mongolica, Populus × xiaohei plantations and natural Ulmus pumila forest in mobile dunes of Nenjiang River Basin

    指标
    Item
    植被层
    Layer
    处理 Treatments
    PsPxUp
    幼龄林
    Young vforests (Y)
    中龄林
    Middle-aged
    forests (MD)
    成熟林
    Mature
    forests (M)
    YMDMM
    碳含量
    Carbon content
    (SOC)/(g·kg−1
    乔木
    Tree
    476.87 ± 7.50A 467.94 ± 7.25A 468.19 ± 9.77A 442.59 ± 4.67BC 443.68 ± 10.21BC 450.54 ± 3.22B 430.67 ± 9.87C
    灌木
    Shrub
    423.95 ± 18.45A 439.49 ± 1.40A 423.58 ± 5.50A 431.68 ± 8.52A
    草本
    Herb
    386.59 ± 18.51A 399.35 ± 4.62A 374.87 ± 22.28A 394.22 ± 30.97A 395.52 ± 24.94A 399.78 ± 13.66A 400.22 ± 4.62A
    凋落物
    Litter
    362.62 ± 11.00B 416.95 ± 17.34A 361.63 ± 17.33B 228.11 ± 20.34D 287.11 ± 10.48C 319.05 ± 9.43C 236.77 ± 41.20D
    植被
    Vegetation
    436.78 ± 7.41AB 448.01 ± 6.41A 434.88 ± 1.06B 402.38 ± 3.94DE 413.83 ± 4.69CD 420.65 ± 2.51C 398.77 ± 12.79E
    生物量/(t·hm−2
    Biomass/(t·ha−1
    乔木 Tree 81.48 ± 9.10D 155.00 ± 11.13B 244.05 ± 25.84A 13.01 ± 1.28F 50.21 ± 12.21E 114.11 ± 13.66C 50.10 ± 12.27E
    灌木
    Shrub
    0.16 ± 0.01B 0.01 ± 0.01C 0.01 ± 0.01C 0.30 ± 0.05A
    草本
    Herb
    0.11 ± 0.02B 0.07 ± 0.02B 0.11 ± 0.06B 0.09 ± 0.02B 0.08 ± 0.01B 0.04 ± 0.01B 0.54 ± 0.11A
    凋落物
    Litter
    2.64 ± 0.33B 3.42 ± 0.52B 2.47 ± 0.33B 4.19 ± 0.95B 7.84 ± 1.64A 7.74 ± 0.65A 3.84 ± 0.38B
    植被
    Vegetation
    84.23 ± 8.79D 158.48 ± 12.06B 246.63 ± 25.32A 17.53 ± 1.94F 58.13 ± 15.91E 121.90 ± 13.78C 54.56 ± 11.55E
    净初级生产力/(t·hm−2·a−1
    Net primary productivity
    (NPP)/(t·ha−1·year−1
    7.65 ± 0.20A 5.28 ± 0.23B 5.49 ± 0.67B 2.94 ± 0.25C 3.68 ± 0.70C 4.71 ± 0.71B 1.94 ± 0.35D
    碳储量/(t·hm−2
    Carbon storage (SCS)/
    (t·ha−1
    乔木
    Tree
    39.39 ± 3.98D 74.12 ± 5.00B 115.33 ± 10.02A 7.79 ± 1.00F 26.22 ± 7.31E 52.50 ± 5.98C 24.18 ± 5.35E
    灌木
    Shrub
    0.02 ± 0.01B 0.01 ± 0.01C 0.01 ± 0.01C 0.04 ± 0.01A
    草本
    Herb
    0.04 ± 0.01B 0.03 ± 0.01B 0.04 ± 0.01B 0.04 ± 0.01B 0.03 ± 0.01B 0.02 ± 0.01B 0.30 ± 0.04A
    凋落物
    Litter
    1.00 ± 0.04C 1.47 ± 0.07B 0.90 ± 0.13C 1.03 ± 0.13C 2.36 ± 0.10A 2.47 ± 0.12A 1.34 ± 0.15B
    间伐材
    Thinning
    15.34 ± 2.04B 32.26 ± 3.65A 1.88 ± 0.30C 11.05 ± 1.72B
    植被
    Vegetation
    40.43 ± 3.94D 90.96 ± 5.02B 148.53 ± 9.90A 8.88 ± 0.94F 30.49 ± 7.40DE 66.03 ± 6.02C 25.86 ± 5.46E
    年净固碳量/(t·hm−2·a−1
    Annual net carbon sequestration
    (ANCS)/(t·ha−1·year−1
    3.67 ± 0.04A 2.52 ± 0.08B 2.59 ± 0.27B 1.49 ± 0.13D 1.81 ± 0.32CD 2.12 ± 0.31C 0.92 ± 0.16E
    注:不同大写字母表示林型间差异显著(P < 0.05)。下同。Note: different capital letters indicate significant differences between forest types (P < 0.05). The same below.
    下载: 导出CSV

    表  4  嫩江流域流动沙丘樟子松、杨树人工林和天然榆树林土壤碳储量

    Table  4.   Soil carbon storage of Pinus sylvestris var. Mongolica, Populus × xiaohei and Ulmus pumila forest in mobile dunes of Nenjiang River Basin

    指标
    Item
    土壤深度
    Soil depth/cm
    处理 Treatments
    PsPxUp
    YMDMYMDMM
    土壤密度
    Soil density/
    (g·cm−3
    0 ~ 20 1.02 ± 0.05ABa 1.07 ± 0.07ABab 1.09 ± 0.05Aa 1.09 ± 0.02Aa 1.06 ± 0.02ABa 0.99 ± 0.07Bb 0.98 ± 0.01Bb
    20 ~ 40 1.02 ± 0.03BCa 1.00 ± 0.04Cb 1.07 ± 0.03ABa 1.09 ± 0.04Aa 1.12 ± 0.03Aa 1.08 ± 0.03ABa 1.07 ± 0.01ABa
    40 ~ 60 1.01 ± 0.03Ba 1.06 ± 0.03ABab 1.07 ± 0.02ABa 1.06 ± 0.02ABa 1.12 ± 0.06Aa 1.11 ± 0.02Aa 1.01 ± 0.07Bab
    60 ~ 80 0.98 ± 0.05Ba 1.06 ± 0.03Aab 1.12 ± 0.05Aa 1.06 ± 0.03Aa 1.10 ± 0.02Aa 1.12 ± 0.02Aa 1.09 ± 0.05Aa
    80 ~ 100 1.00 ± 0.02Da 1.06 ± 0.02BCa 1.09 ± 0.01ABa 1.08 ± 0.01ABCa 1.11 ± 0.02Aa 1.08 ± 0.01ABCa 1.05 ± 0.02Ca
    0 ~ 100 1.00 ± 0.02C 1.06 ± 0.02B 1.09 ± 0.01A 1.08 ± 0.01AB 1.11 ± 0.02A 1.08 ± 0.01AB 1.05 ± 0.02BC
    SOC/
    (g·kg−1
    0 ~ 20 3.28 ± 0.16Fa 4.60 ± 0.44Da 5.57 ± 0.59Ca 3.94 ± 0.14Ea 4.20 ± 0.52DEa 8.91 ± 1.08Aa 6.48 ± 0.14Ba
    20 ~ 40 2.54 ± 0.21Cb 3.61 ± 0.14Bb 2.80 ± 0.40Cb 3.48 ± 0.26Bb 3.03 ± 0.26BCb 5.63 ± 0.56Ab 3.08 ± 0.37BCb
    40 ~ 60 2.41 ± 0.17ABb 3.42 ± 0.95Ab 2.21 ± 0.54Bbc 2.42 ± 0.12ABc 3.36 ± 0.28Ab 3.15 ± 0.77ABc 2.84 ± 0.63ABb
    60 ~ 80 1.84 ± 0.18BCc 1.65 ± 0.19Cc 1.56 ± 0.31Ccd 1.59 ± 0.06Cd 2.18 ± 0.18Bc 2.98 ± 0.29Acd 3.10 ± 0.25Ab
    80 ~ 100 1.03 ± 0.08Dd 0.86 ± 0.03Dc 1.01 ± 0.37Dd 0.86 ± 0.15De 1.72 ± 0.22Cc 2.24 ± 0.31Bd 3.11 ± 0.32Ab
    0 ~ 100 2.22 ± 0.05E 2.83 ± 0.28CD 2.63 ± 0.18CD 2.46 ± 0.05DE 2.90 ± 0.08C 4.58 ± 0.37A 3.72 ± 0.21B
    SCS/
    (t·hm−2
    0 ~ 20 6.67 ± 0.13Da 9.77 ± 0.39Ca 12.08 ± 1.02Ba 8.62 ± 0.47Ca 8.91 ± 1.28Ca 17.66 ± 1.31Aa 12.71 ± 0.18Ba
    20 ~ 40 5.21 ± 0.55Db 7.24 ± 0.59BCb 6.00 ± 1.01CDb 7.61 ± 0.69Bb 6.80 ± 0.72BCb 12.18 ± 1.01Ab 6.61 ± 0.85BCDb
    40 ~ 60 4.88 ± 0.47Bb 7.31 ± 2.18Ab 4.74 ± 1.11Bbc 5.12 ± 0.32ABc 7.53 ± 0.31Ab 6.96 ± 1.64ABc 5.76 ± 1.46ABb
    60 ~ 80 3.59 ± 0.14Cc 3.50 ± 0.30Cc 3.48 ± 0.63Ccd 3.36 ± 0.13Cd 4.80 ± 0.40Bc 6.66 ± 0.61Ac 6.76 ± 0.36Ab
    80 ~ 100 2.06 ± 0.13Dd 1.82 ± 0.09Dc 2.21 ± 0.82Dd 1.84 ± 0.32De 3.80 ± 0.41Cc 4.84 ± 0.72Bc 6.52 ± 0.82Ab
    0 ~ 100 22.41 ± 0.86E 29.65 ± 2.25CD 28.50 ± 1.69CD 26.55 ± 0.80D 31.84 ± 0.42C 48.30 ± 5.13A 38.36 ± 1.76B
    注:不同小写字母表示不同土壤层次之间差异显著 (P < 0.05)。Note: Different lower-case letters indicate significant differences between soil layers (P < 0.05).
    下载: 导出CSV

    表  5  嫩江流域流动沙丘樟子松、杨树人工林生态系统碳储量与环境因子多元线性逐步回归分析

    Table  5.   Multiple linear stepwise regression analysis of ecosystem carbon storage and environmental factors in Pinus sylvestris var. Mongolica and Populus × xiaohei plantation in mobile dunes of Nenjiang River Basin

    林型
    Forest types
    指标
    Item
    环境因子 Environmental factors截距
    Intercept
    R2P
    有机质
    Organic
    matter
    全氮
    Total
    nitrogen
    全磷
    Total
    phosphorus
    速效磷
    Available
    phosphorus
    速效钾
    Available
    potassium
    含水率
    Water
    content
    pH
    Ps 植被
    Vegetation
    0.626*** −0.446** 130.040 0.964 0.003
    土壤Soil 0.761*** 0.286* 1.033 0.971 0.017
    生态系统
    Ecosystem
    0.680*** −0.387** 132.982 0.963 0.006
    年净固碳量
    Annual net carbon
    sequestration
    −0.885** 4.482 0.752 0.002
    Px 植被
    Vegetation
    0.961*** −46.693 0.912 0.000
    土壤 Soil 1.097*** 0.132*** −9.141 0.999 0.000
    生态系统
    Ecosystem
    0.979*** −45.022 0.953 0.000
    年净固碳量
    Annual net carbon
    sequestration
    0.748* 0.907 0.497 0.020
    *. P < 0.05;**. P < 0.01;***. P < 0.001.
    下载: 导出CSV
  • [1] Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global Change Biology, 1998, 4: 185−198. doi: 10.1046/j.1365-2486.1998.00125.x
    [2] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2016, 292(5525): 2320−2322.
    [3] Grnzweig J M, Lin T, Rotenberg E, et al. Carbon sequestration in arid-land forest[J]. Global Change Biology, 2003, 9: 791−799. doi: 10.1046/j.1365-2486.2003.00612.x
    [4] Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships[J]. Science China Life Sciences, 2010, 53(7): 776−783. doi: 10.1007/s11427-010-4030-4
    [5] Huang L, Liu J Y, Shao Q Q, et al. Carbon sequestration by forestation across China: past, present, and future[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291−1299. doi: 10.1016/j.rser.2011.10.004
    [6] Nosetto M D, Jobbágy E G, Paruelo J M. Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia[J]. Journal of Arid Environments, 2006, 67: 142−156. doi: 10.1016/j.jaridenv.2005.12.008
    [7] Wang K B, Deng L, Ren Z P, et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. Journal of Arid Land, 2016, 8(2): 207−220. doi: 10.1007/s40333-015-0091-3
    [8] Lan Z L, Zhao Y, Zhang J G, et al. Long-term vegetation restoration increases deep soil carbon storage in the Northern Loess Plateau[J]. Scientifc Reports, 2021, 11: 13758−13769. doi: 10.1038/s41598-021-93157-0
    [9] Li D J, Niu S L, Luo Y Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis[J]. New Phytologist, 2012, 195(1): 172−181. doi: 10.1111/j.1469-8137.2012.04150.x
    [10] Hong S B, Yin G D, Piao S L, et al. Divergent responses of soil organic carbon to afforestation[J]. Nature Sustainability, 2020, 3(9): 694−700. doi: 10.1038/s41893-020-0557-y
    [11] Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis[J]. Global Change Biology, 2002, 8: 345−360. doi: 10.1046/j.1354-1013.2002.00486.x
    [12] Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168: 241−257.
    [13] IPCC. Land use, land-use change, and forestry. Special report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2000.
    [14] Matos E S, Freese D, Ślązak A, et al. Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany[J]. Journal of Plant Nutrition and Soil Science, 2010, 173: 654−661. doi: 10.1002/jpln.200900046
    [15] Penne C, Ahrends B, Deurer M, et al. The impact of the canopy structure on the spatial variability in forest floor carbon stocks[J]. Geoderma, 2010, 158: 282−297. doi: 10.1016/j.geoderma.2010.05.007
    [16] Kaul M, Mohren G M J, Dadhwal V K. Carbon storage and sequestration potential of selected tree species in India[J]. Mitigation and Adaptation Strategies for Global Change, 2010, 15: 489−510. doi: 10.1007/s11027-010-9230-5
    [17] Zhang Q Z, Wang C K, Wang X C, et al. Carbon concentration variability of 10 Chinese temperate tree species[J]. Forest Ecology and Management, 2009, 258(5): 722−727. doi: 10.1016/j.foreco.2009.05.009
    [18] Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137: 253−268. doi: 10.1016/j.geoderma.2006.09.003
    [19] Vesterdal L, Elberling B, Christiansen J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J]. Forest Ecology and Management, 2012, 264: 185−196. doi: 10.1016/j.foreco.2011.10.009
    [20] Finzi A C, Breemen N V, Canham C D. Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen[J]. Ecological Applications, 1998, 8(2): 440−446.
    [21] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [22] Binkley D. A hypothesis about the interaction of tree dominance and stand production through stand development[J]. Forest Ecology and Management, 2004, 190: 265−271. doi: 10.1016/j.foreco.2003.10.018
    [23] Taylor A R, Wang J R, Chen H Y H. Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada[J]. Canadian Journal of Forest Research-revue Canadienne De Recherche Forestiere, 2007, 37: 2260−2269. doi: 10.1139/X07-080
    [24] Pregitzer K S, Eusirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2004, 10: 2052−2077. doi: 10.1111/j.1365-2486.2004.00866.x
    [25] Nam-Jin N, Yowhan S, Sue-Kyoung L, et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J]. Science China Life Sciences, 2010, 53(7): 822−830. doi: 10.1007/s11427-010-4018-0
    [26] Cuong L, Hung B, Bolanle-Ojo O T, et al. Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in Southeastern region, Vietnam[J]. Forest Systems, 2020, 29(2): e009. doi: 10.5424/fs/2020292-16685
    [27] Li T J, Liu G B. Age-related changes of carbon accumulation and allocation in plants and soil of Black Locust forest on Loess Plateau in Ansai county, Shaanxi province of China[J]. Chinese Geographical Science, 2014, 24(4): 414−422. doi: 10.1007/s11769-014-0704-3
    [28] Ma Q L, Wang X Y, Chen F, et al. Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin: storage, rate and potential[J]. Global Ecology and Conservation, 2021, 28: e01607. doi: 10.1016/j.gecco.2021.e01607
    [29] Cao J J, Gong Y F, Adamowski J F, et al. Effects of stand age on carbon storage in dragon spruce forest ecosystems in the upper reaches of the Bailongjiang River basin, China[J]. Scientific Reports, 2019, 9: 3005−3016. doi: 10.1038/s41598-019-39626-z
    [30] 王树力, 胡天然, 赵雨森, 等. 齐齐哈尔市嫩江沙地沙化土地的成因、类型、分布及治理技术[J]. 林业科技, 2004, 29(5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005

    Wang S L, Hu T R, Zhao Y S, et al. Causes, types, distribution and control techniques of desertified land in Nenjiang Sandy Land of Qiqihar city[J]. Forestry Science and Technology, 2004, 29(5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005
    [31] 孙虎, 李凤日, 孙美欧, 等. 松嫩平原杨树人工林生态系统碳储量研究[J]. 北京林业大学学报, 2016, 38(5): 33−41. doi: 10.13332/j.1000-1522.20150336

    Sun H, Li F R, Sun M O, et al. Carbon storage of poplar plantations in Songnen Plain, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(5): 33−41. doi: 10.13332/j.1000-1522.20150336
    [32] 王亚辉, 牟长城, 杨智慧, 等. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响[J]. 北京林业大学学报, 2021, 43(10): 54−64. doi: 10.12171/j.1000-1522.20200361

    Wang Y H, Mu C C, Yang Z H, et al. Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(10): 54−64. doi: 10.12171/j.1000-1522.20200361
    [33] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and Agricultural Chemistry Analysis[M]. 3nd ed. Beijing: China Agricultural Press, 2000.
    [34] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 83−90.

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 83−90.
    [35] 李合生. 《现代植物生理学》(第3版)[J]. 生命世界, 2012(11): 2.

    Li H S. 《Modern Plant Physiology》(3rd edition)[J]. Life World, 2012(11): 2.
    [36] 袁立敏, 闫德仁, 王熠青, 等. 沙地樟子松人工林碳储量研究[J]. 内蒙古林业科技, 2011, 37(1): 9−13. doi: 10.3969/j.issn.1007-4066.2011.01.003

    Yuan L M, Yan D R, Wang Y Q, et al. Carbon storage of Pinus sylvestris var. mongolica Litv. plantation in sandy land[J]. Journal of Inner Mongolia Forestry Science and Technology, 2011, 37(1): 9−13. doi: 10.3969/j.issn.1007-4066.2011.01.003
    [37] Schulze E D. Carbon and nitrogen cycling in European forest ecosystems[J]. Agricultural and Forest Meteorology, 2004, 124: 135−136. doi: 10.1016/j.agrformet.2004.01.001
    [38] Marris E. Old forests capture plenty of carbon[J]. Nature, 2008, 455: 213−215. doi: 10.1038/nature07276
    [39] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518−522. doi: 10.3321/j.issn:1005-264X.2000.05.002

    Zhou Y R, Yu Z L, Zhao S D. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 2000, 24(5): 518−522. doi: 10.3321/j.issn:1005-264X.2000.05.002
    [40] 何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029

    He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029
    [41] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379−389. doi: 10.11821/xb200104001

    Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
    [42] Wu G L, Liu Y, Tian F P, et al. Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity[J]. Land Degradation and Development, 2017, 28(4): 1336−1344. doi: 10.1002/ldr.2570
    [43] Hu Y L, Zeng D H, Fan Z P, et al. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China[J]. Journal of Arid Environments, 2008, 72(12): 2193−2200. doi: 10.1016/j.jaridenv.2008.07.007
    [44] Wang Y F, Liu L, Yue F X, et al. Dynamics of carbon and nitrogen storage in two typical plantation ecosystems of different stand ages on the Loess Plateau of China[J]. PeerJ, 2019, 7: 0−20.
    [45] Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land[J]. Forest Ecology and Management, 2002, 169: 137−147. doi: 10.1016/S0378-1127(02)00304-3
    [46] Kaye J P, Sigrid C P, Kaye M W, et al. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees[J]. Ecology, 2000, 81(12): 3267−3273. doi: 10.2307/177491
    [47] 韩美娜, 魏亚伟, 秦胜金, 等. 沙地樟子松人工林碳库动态及其分配特征[J]. 生态学杂志, 2015, 34(7): 1798−1803. doi: 10.13292/j.1000-4890.20150616.004

    Han M N, Wei Y Y, Qin S J, et al. Carbon storage dynamics and its distribution pattern in Pinus sylvestris var. mongolica plantation in sandy land[J]. Chinese Journal of Ecology, 2015, 34(7): 1798−1803. doi: 10.13292/j.1000-4890.20150616.004
    [48] 淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征[J]. 干旱区研究, 2018, 35(4): 789−795.

    Shu M, Jiang T, Wang D L, et al. Soil eco-logical stoichiometry under the planted of Pinus sylvestris var. mongolica forests with different stand ages in the horqin sandy land[J]. Arid Zone Research, 2018, 35(4): 789−795.
    [49] Richter D, Markewitz D, Trumbore S, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400(56−58).
    [50] Johnson D W. Effects of forest management on soil carbon storage[J]. Water, Air, and Soil Pollution, 1992, 64: 83−120. doi: 10.1007/BF00477097
    [51] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437−5448.

    Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448.
    [52] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
    [53] 白晓霞, 艾海舰. 榆林沙地樟子松人工林土壤养分变化特征[J]. 西部林业科学, 2020, 49(3): 80−85. doi: 10.16473/j.cnki.xblykx1972.2020.03.013

    Bai X X, Ai H J. Soil nutrients variability of Pinus sylvestris var. mongolica plantations in desertificated land of Yulin[J]. Journal of West China Forestry Science, 2020, 49(3): 80−85. doi: 10.16473/j.cnki.xblykx1972.2020.03.013
    [54] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48−57.

    Yan E R, Wang X H, Guo M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57.
    [55] Peichl M, Arain M A. Above ground and below ground ecosystem biomass carbon pools in an age sequeance of temperate pine plantation forests[J]. Agricultural and Forest Meteorology, 2006, 140: 51−53. doi: 10.1016/j.agrformet.2006.08.004
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  13
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-10-01
  • 录用日期:  2023-07-24
  • 网络出版日期:  2023-07-26

目录

    /

    返回文章
    返回