Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii
-
摘要:目的
枝CO2通量是林分碳释放的重要组成部分之一,研究模拟氮沉降下的华北落叶松枝CO2通量变化,可以为氮沉降背景下的华北落叶松林分固碳增汇管理提供一定的理论依据。
方法在2021年6—10月,以华北落叶松25年生中龄人工林和32年生近熟人工林为研究对象,设置对照(CK,0 kg/(hm2·a))、低氮(N1,75 kg/(hm2·a))、中氮(N2,150 kg /(hm2·a))、高氮(N3,225 kg/(hm2·a)) 4个强度的氮添加处理,并使用LI-8100A对枝CO2通量进行原位监测,同时采集枝条样品以测定其氮含量。
结果(1)华北落叶松枝CO2通量与空气温度基本呈现出“单峰型”月变化,峰值出现在6—8月,空气温度可以分别解释2个林龄枝CO2通量37% ~ 82%、40% ~ 70%的变化。(2)25年和32年生华北落叶松6—10月平均枝CO2通量随氮添加处理强度增加都呈增大的趋势,但只在N3处理下与CK差异显著(P < 0.05)。CK、N1、N2处理下,25年生枝CO2通量均显著高于32年生(P < 0.05)。除32年生的N1处理外,其余氮添加处理均降低了枝CO2通量的温度敏感性(Q10)。(3)氮添加处理显著增加了25年生枝氮含量(P < 0.05),32年生枝氮含量没有显著变化(P > 0.05)。2个林龄的华北落叶松枝CO2通量与枝氮含量均存在显著的负向线性关系(P < 0.01),且氮含量分别可解释25和32年生华北落叶松16%和32%的枝CO2通量变化。
结论枝CO2通量受空气温度、氮添加和林龄影响,在构建华北落叶松林木碳释放模型时应考虑这3个因素。
Abstract:ObjectiveBranch CO2 efflux is one of the important components of stand carbon release. Studying the change of branch CO2 efflux of Larix principis-rupprechtii under simulated nitrogen deposition could provide a theoretical basis for the management of carbon sequestration and sink increase of L. principis-rupprechtii forest under the background of nitrogen deposition.
Method25-year-old and 32-year-old plantations of L. principis-rupprechtii were selected. Four nitrogen addition treatments, i.e. control (CK, 0 kg/(ha·year)), low nitrogen (N1, 75 kg/(ha·year)), medium nitrogen (N2, 150 kg/(ha·year)) and high nitrogen (N3, 225 kg/(ha·year)) were set. From June to October in 2021, the branch CO2 efflux was monitored in situ using LI-8100A, and the branch samples were collected to determine the nitrogen content.
Result(1) The CO2 efflux and air temperature of L. principis-rupprechtii branches basically showed a “single-peak” monthly change, and the peak appeared from June to August. The air temperature could explain the changes of branch CO2 efflux of two stands by 37%−82% and 40%−70%, respectively.(2) The average branch CO2 efflux of L. principis-rupprechtii at 25-year-old and 32-year-old from June to October showed an increasing trend with the increase of N addition intensity, but only differed significantly under N3 treatment (P < 0.05). The CO2 efflux of CK, N1 and N2 treatments at 25-year-old was significantly higher than that at 32-year-old (P < 0.05). The temperature sensitivity (Q10) of branch CO2 efflux was decreased by N addition except for 32-year-old plantations under N1 treatment. (3) Nitrogen addition significantly increased the 25-year-old branch nitrogen content; there was no significant change in shoot nitrogen content in 32-year-old branch nitrogen content (P > 0.05). There was a significantly negative linear relationship between the branch CO2 efflux of L. principis-rupprechtii and the branch nitrogen content at both ages (P < 0.01). The nitrogen content can explain 16% (25-year-old) and 32% (32-year-old) variation of branch CO2 efflux.
ConclusionThe branch CO2 efflux is affected by air temperature, nitrogen addition and forest age. All three factors should be considered when constructing a tree carbon release model of L. principis-rupprechtii.
-
-
图 2 不同氮添加处理下温度标准化枝CO2通量的变化
E15为枝温度标准化(15 ℃)CO2通量。不同大写字母表示相同氮添加处理不同林龄间差异显著(P < 0.05),不同小写字母代表相同林龄不同氮添加处理之间差异显著(P < 0.05)。下同。E15 means branch CO2 efflux at standard temperature (15 ℃). Different capital letters indicate significant differences between different stand ages under the same nitrogen addition treatment (P < 0.05), and different lowercase letters indicate significant differences between different nitrogen addition treatments in the same stand age (P < 0.05). The same below.
Figure 2. Changes in temperature-standardized branch CO2 efflux under different nitrogen addition treatments
表 1 样地基本信息
Table 1 Basic information of the sample plots
处理
Treatment25年生 25-year-old 32年生 32-year-old 林分密度/(株·hm−2)
Stand density/(tree·ha−1)平均胸径
Mean DBH/cm平均树高
Mean tree height/m林分密度/(株·hm−2)
Stand density /(tree·ha−1)平均胸径
Mean DBH/cm平均树高
Mean tree height/mCK 3 175 10.8 10.9 1 500 12.4 14.3 N1 3 625 10.1 11.8 1 325 14.9 13.7 N2 3 225 10.0 11.5 1 425 15.1 13.1 N3 3 200 10.1 11.4 1 450 13.6 13.3 注:CK处理为添加等量的水作为对照处理;N1、N2、N3处理分别为低氮、中氮、高氮处理,分别对应的氮添加强度为75、150、225 kg/(hm2·a)。下同。Notes: The CK treatment was the addition of equal amounts of water as a control treatment; the N1, N2, and N3 treatments were low, medium, and high nitrogen treatments, corresponding to nitrogen addition of 75, 150 and 225 kg/(ha·year) respectively. The same below. 表 2 测定样树基本信息表
Table 2 Basic information of the sampling trees
处理
Treatment25年生 25-year-old 32年生32-year-old 胸径
DBH/cm树高
Tree-height/m枝条平均高
Mean height of
branch/m枝条直径
Diameter of
branch/cm胸径
DBH/cm树高
Tree height/m枝条平均高
Mean height of
branch/m枝条直径
Diameter of
branch/cmCK 13.5 12.2 7.5 1.42 ~ 2.69 16.7 14.4 7.9 1.38 ~ 2.83 N1 15.2 12.8 7.6 1.36 ~ 2.03 17.8 15.4 8.8 1.87 ~ 2.81 N2 13.9 11.8 7.5 1.22 ~ 1.88 18.8 14.5 8.4 2.48 ~ 3.23 N3 12.8 11.7 7.3 1.44 ~ 1.52 20.0 14.8 8.2 2.50 ~ 3.20 表 3 枝CO2通量与空气温度回归方程
Table 3 Regression equation of branch CO2 efflux and air temperature
林龄
Forest age处理
Treatment回归方程
Regression equationP R2 样本量
Sample sizeQ10 25年生 25-year-old CK ln E = 0.145T − 2.738 < 0.01 0.707 3 66 4.26 N1 ln E = 0.121T − 2.286 < 0.01 0.823 7 75 3.35 N2 ln E = 0.130T − 2.431 < 0.01 0.520 3 75 3.68 N3 ln E = 0.118T − 2.137 < 0.01 0.376 2 75 3.26 32年生 32-year-old CK ln E = 0.129T − 2.956 < 0.01 0.703 0 73 3.63 N1 ln E = 0.154T − 3.143 < 0.01 0.561 3 75 4.68 N2 ln E = 0.110T − 2.512 < 0.01 0.689 7 71 2.99 N3 ln E = 0.090T − 1.896 < 0.01 0.484 5 75 2.47 注:E为枝CO2通量值,T为空气温度,Q10为温度敏感系数。Notes: E is branch CO2 efflux, T is air temperature, and Q10 is the temperature sensitivity coefficient. -
[1] Fang J Y, Yu G Y, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4015−4020. doi: 10.1073/pnas.1700304115
[2] 朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学: 地球科学, 2022, 52(7): 1419−1426. Piao S L, Yue C, Ding J Z, et al. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy[J]. Science China Earth Sciences, 2022, 52(7): 1419−1426.
[3] Martínez-García E, Dadi T, Rubio E, et al. Aboveground autotrophic respiration in a Spanish black pine forest: comparison of scaling methods to improve component partitioning[J]. Science of the Total Environment, 2017, 580: 1505−1517. doi: 10.1016/j.scitotenv.2016.12.136
[4] Kim M H, Nakane K, Lee J T, et al. Stem/branch maintenance respiration of Japanese red pine stand[J]. Forest Ecology and Management, 2007, 243(2): 283−290.
[5] Campioli M, Malhi Y, Vicca S, et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests[J]. Nature Communications, 2016, 7(1): 13717. doi: 10.1038/ncomms13717
[6] Bloemen J, Mcguire M A, Aubrey D P, et al. Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees[J]. New Phytologist, 2013, 197(2): 555−565. doi: 10.1111/j.1469-8137.2012.04366.x
[7] 张茜茜, 杨庆朋, 刘亮, 等. 环剥对毛白杨树干表面CO2通量及其温度敏感性的影响[J]. 林业科学, 2019, 55(5): 1−10. Zhang X X, Yang Q P, Liu L, et al. Effects of girdling on stem CO2 efflux and its temperature sensitivity of Populus tomentosa[J]. Scientia Silvae Sinicae, 2019, 55(5): 1−10.
[8] 贺同鑫, 赵国华, 刘兰兰, 等. 遮光对杉木幼苗树干表面CO2通量的影响[J]. 生态学报, 2019, 39(6): 2131−2138. He T X, Zhao G H, Liu L L, et al. Effects of shading on stem surface CO2 effluxes of Chinese fir seedlings[J]. Acta Ecologica Sinica, 2019, 39(6): 2131−2138.
[9] 赵广, 刘刚才, 朱万泽. 贡嘎山峨眉冷杉树干呼吸空间特征及其对温度的响应[J]. 生态学报, 2018, 38(8): 2732−2742. Zhao G, Liu G C, Zhu W Z. Spatial variations in the stem CO2 efflux rate of Abies fabri and the response to temperature in the Gongga Mountains[J]. Acta Ecologica Sinica, 2018, 38(8): 2732−2742.
[10] 赵琼, 刘兴宇, 胡亚林, 等. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5): 14−19. Zhao Q, Liu X Y, Hu Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Scientia Silvae Sinicae, 2010, 46(5): 14−19.
[11] 唐月坤, 王嗣奇, 张彦东. 氮磷施肥对落叶松叶片非结构性碳浓度的影响[J]. 森林工程, 2018, 34(4): 1−6. doi: 10.3969/j.issn.1006-8023.2018.04.001 Tang Y K, Wang S Q, Zhang Y D. Effect of nitrogen and phosphorus fertilizers on foliar non-structural carbohydrates concentration in Larix olgensis[J]. Forest Engineering, 2018, 34(4): 1−6. doi: 10.3969/j.issn.1006-8023.2018.04.001
[12] 魏丽娜, 周冠军, 孙海龙, 等. 氮磷施肥对水曲柳叶片光合特征及体内非结构性碳的影响[J]. 森林工程, 2021, 37(5): 20−27. Wei L N, Zhou G J, Sun H L, et al. Effects of nitrogen and phosphorus fertilization on the net photosynthetic rate and non-structural carbohydrate of Fraxinus mandshurica[J]. Forest Engineering, 2021, 37(5): 20−27.
[13] 邹安龙, 李修平, 倪晓凤, 等. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783−792. doi: 10.17521/cjpe.2018.0232 Zou A L, Li X P, Ni X F, et al. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 783−792. doi: 10.17521/cjpe.2018.0232
[14] 孙涛, 刘瑞鹏, 李兴欢, 等. 模拟氮沉降对东北地区兴安落叶松树干呼吸的影响[J]. 生态学报, 2015, 35(11): 3684−3691. Sun T, Liu R P, Li X H, et al. Effects of simulated nitrogen deposition on stem respiration of Larix gmelinii Rupr. in northeastern China[J]. Acta Ecologica Sinica, 2015, 35(11): 3684−3691.
[15] Gong C J, Wang A Z, Yuan F H, et al. Effects of soil nitrogen addition on crown CO2 exchange of Fraxinus mandshurica Rupr. saplings[J]. Forests, 2021, 12(9): 1170. doi: 10.3390/f12091170
[16] Maier C A, Zarnoch S J, Dougherty P M. Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation[J]. Tree Physiology, 1998, 18(1): 11−20. doi: 10.1093/treephys/18.1.11
[17] Reich P B, Tjoelker M G, Pregitzer K S, et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants[J]. Ecology Letters, 2008, 11(8): 793−801. doi: 10.1111/j.1461-0248.2008.01185.x
[18] Wieser G, Bahn M. Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the central Austrian Alps[J]. Trees, 2004, 18(5): 576−580.
[19] 贾彦龙, 李倩茹, 许中旗, 等. 基于CO2FIX模型的华北落叶松人工林碳循环过程[J]. 植物生态学报, 2016, 40(4): 405−415. doi: 10.17521/cjpe.2015.0208 Jia Y L, Li Q R, Xu Z Q, et al. Carbon cycle of larch plantation based on CO2FIX model[J]. Chinese Journal of Plant Ecology, 2016, 40(4): 405−415. doi: 10.17521/cjpe.2015.0208
[20] Zhao K J, Dong B Q, Jia Z K, et al. Effect of climatic factors on the temporal variation of stem respiration in Larix principis-rupprechtii Mayr[J]. Agricultural and Forest Meteorology, 2018, 248: 441−448. doi: 10.1016/j.agrformet.2017.10.033
[21] Zhao K J, Zheng M X, Fahey T J, et al. Vertical gradients and seasonal variations in the stem CO2 efflux of Larix principis-rupprechtii Mayr[J]. Agricultural and Forest Meteorology, 2018, 262: 71−80. doi: 10.1016/j.agrformet.2018.07.003
[22] Zhao K J, Fahey T J, Wang X Z, et al. Effect of thinning intensity on the stem CO2 efflux of Larix principis-rupprechtii Mayr[J]. Forest Ecosystems, 2021, 8: 63. doi: 10.1186/s40663-021-00346-4
[23] 盛浩, 周萍. 树干/枝呼吸作用对环境变化的响应[J]. 生态学杂志, 2011, 30(8): 1822−1829. doi: 10.13292/j.1000-4890.2011.0264 Sheng H, Zhou P. Responses of stem/branch respiration to environmental change: a review[J]. Chinese Journal of Ecology, 2011, 30(8): 1822−1829. doi: 10.13292/j.1000-4890.2011.0264
[24] Wang Z, Zhang X, Liu L, et al. Spatial and seasonal patterns of atmospheric nitrogen deposition in North China[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3): 188−194. doi: 10.1080/16742834.2019.1701385
[25] Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424−429. doi: 10.1038/s41561-019-0352-4
[26] Guidolotti G, de Dato G, Liberati D, et al. Canopy chamber: a useful tool to monitor the CO2 exchange dynamics of shrubland[J]. iForest-Biogeosciences and Forestry, 2017, 10(3): 597. doi: 10.3832/ifor2209-010
[27] Yang Y, Zhao M, Xu X T, et al. Diurnal and seasonal change in stem respiration of Larix principis-rupprechtii trees, northern China[J]. PLoS ONE, 2014, 9(2): e89294. doi: 10.1371/journal.pone.0089294
[28] Zhao G, Liu G C, Zhu W Z, et al. Stem CO2 efflux of Abies fabri in subalpine forests in the Gongga Mountains, eastern Tibetan Plateau[J]. Journal of Plant Ecology, 2017, 10(6): 1001−1011.
[29] 韩风森, 胡聃, 王晓琳, 等. 北京2种阔叶树不同高度枝干的呼吸速率及其对温度的敏感性[J]. 植物生态学报, 2015, 39(2): 197−205. doi: 10.17521/cjpe.2015.0019 Han F S, Hu D, Wang X L, et al. Respiration rates of stems at different heights and their sensitivity to temperature in two broad-leaved trees in Beijing[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 197−205. doi: 10.17521/cjpe.2015.0019
[30] 韩风森, 王晓琳, 胡聃. 北京典型树种木质组织碳释放速率温度敏感性的时间变化规律和铅锤分异特征[J]. 生态学报, 2018, 38(2): 595−605. Han F S, Wang X L, Hu D. Temporal dynamics and vertical variations in the temperature sensitivity of woody-tissue CO2 efflux for typical tree species in Beijing[J]. Acta Ecologica Sinica, 2018, 38(2): 595−605.
[31] Darenova E, Horáček P, Krejza J, et al. Seasonally varying relationship between stem respiration, increment and carbon allocation of Norway spruce trees[J]. Tree Physiology, 2020, 40(7): 943−955. doi: 10.1093/treephys/tpaa039
[32] Ryan M G, Cavaleri M A, Almeida A C, et al. Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil[J]. Tree Physiology, 2009, 29(10): 1213−1222. doi: 10.1093/treephys/tpp059
[33] Lintunen A, Preisler Y, Oz I, et al. Bark transpiration rates can reach needle transpiration rates under dry conditions in a semi-arid forest[J]. Frontiers in Plant Science, 2021, 12: 790684. doi: 10.3389/fpls.2021.790684
[34] Westerband A C, Wright I J, Eller A S D, et al. Nitrogen concentration and physical properties are key drivers of woody tissue respiration[J]. Annals of Botany, 2022, 129(6): 633−646. doi: 10.1093/aob/mcac028
[35] 岳国强, 侯瑞丽, 闫鑫泽, 等. 土壤氮浓度对油松天然林新生枝叶碳氮磷含量的影响[J]. 森林与环境学报, 2022, 42(1): 38−45. Yue G Q, Hou R L, Yan X Z, et al. Effect of soil nitrogen concentration on the contents of carbon, nitrogen and phosphorus of new branches and leaves of Pinus tabuliformis natural forest stand[J]. Journal of Forest and Environment, 2022, 42(1): 38−45.
[36] Li Z, Qiu X, Sun Y, et al. C: N: P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest[J]. Science of the Total Environment, 2021, 796: 148925. doi: 10.1016/j.scitotenv.2021.148925
[37] 洪琮浩, 洪震, 雷小华, 等. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响[J]. 林业科学, 2020, 56(6): 186−192. Hong C H, Hong Z, Lei X H, et al. Effects of nitrogen addition on contents of C, N and P nutrient and non-structural carbohydrate in Ulmus elongata[J]. Scientia Silvae Sinicae, 2020, 56(6): 186−192.
[38] Berveiller D, Fresneau C, Damesin C. Effect of soil nitrogen supply on carbon assimilation by tree stems[J]. Annals of Forest Science, 2010, 67(6): 609. doi: 10.1051/forest/2010022
[39] Sendall K M, Reich P B. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees[J]. Tree Physiology, 2013, 33(7): 713−729. doi: 10.1093/treephys/tpt048
[40] 赵亚芳, 徐福利, 王渭玲, 等. 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化[J]. 植物学报, 2014, 49(5): 560−568. doi: 10.3724/SP.J.1259.2014.00560 Zhao Y F, Xu F L, Wang W L, et al. Seasonal variation in contents of C, N and P and stoichiometry characteristics in fine roots, stems and needles of Larix principis-rupprechtii[J]. Chinese Bulletin of Botany, 2014, 49(5): 560−568. doi: 10.3724/SP.J.1259.2014.00560
-
期刊类型引用(3)
1. 李婧,左欣欣,赵培伶,张陆玉,徐文鸾,张徐杨,倪德江,王明乐. 茶树高亲和硝酸盐转运蛋白家族基因NRT2的鉴定与表达. 应用与环境生物学报. 2022(01): 50-56 . 百度学术
2. 杨利艳,高源,朱满喜,邓妍,王创云. 藜麦NRT2基因家族的鉴定及表达分析. 华北农学报. 2022(S1): 8-18 . 百度学术
3. 张云,赵艳菲,王雅平,牟彬,张嘉越,马浩然,韩玉珠. 延薯4号马铃薯对氮素的生理生化响应及转录组分析. 广东农业科学. 2021(02): 56-66 . 百度学术
其他类型引用(1)