高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带状采伐毛竹林养分动态特征

郑亚雄 范少辉 周潇 张璇 官凤英

郑亚雄, 范少辉, 周潇, 张璇, 官凤英. 带状采伐毛竹林养分动态特征[J]. 北京林业大学学报, 2023, 45(4): 78-87. doi: 10.12171/j.1000-1522.20220353
引用本文: 郑亚雄, 范少辉, 周潇, 张璇, 官凤英. 带状采伐毛竹林养分动态特征[J]. 北京林业大学学报, 2023, 45(4): 78-87. doi: 10.12171/j.1000-1522.20220353
Zheng Yaxiong, Fan Shaohui, Zhou Xiao, Zhang Xuan, Guan Fengying. Dynamic characteristics of nutrients in striped cutting Moso bamboo forests[J]. Journal of Beijing Forestry University, 2023, 45(4): 78-87. doi: 10.12171/j.1000-1522.20220353
Citation: Zheng Yaxiong, Fan Shaohui, Zhou Xiao, Zhang Xuan, Guan Fengying. Dynamic characteristics of nutrients in striped cutting Moso bamboo forests[J]. Journal of Beijing Forestry University, 2023, 45(4): 78-87. doi: 10.12171/j.1000-1522.20220353

带状采伐毛竹林养分动态特征

doi: 10.12171/j.1000-1522.20220353
基金项目: 国际竹藤中心基本科研业务费(1632022018)
详细信息
    作者简介:

    郑亚雄,博士。主要研究方向:竹资源高效培育与利用。Email:zhengyaxiong502@163.com 地址:100102 北京市朝阳区望京阜通东大街8号国际竹藤中心

    责任作者:

    官凤英,研究员。主要研究方向:竹资源监测。Email:guanfy@icbr.ac.cn 地址:同上

  • 中图分类号: S727.15

Dynamic characteristics of nutrients in striped cutting Moso bamboo forests

  • 摘要:   目的  研究带状采伐毛竹林中氮、磷、钾养分变化特征,为伐后竹林的养分管理策略提供科学依据。  方法  以8 m带宽采伐样地(SC)及其保留样地(RB)为研究对象,以传统经营毛竹林(CK)为对照,调查伐后5年内不同处理样地毛竹生物量、林下灌草生物量、凋落物产量及各组分相应的养分含量,量化养分流通量,计算不同处理样地的养分循环系数,比较不同处理样地的养分流动及循环特征的差异。  结果  (1)伐后第1年,不同处理样地内毛竹氮、磷、钾的留存量无显著差异;采伐样地中氮、磷的归还量减少;(2)伐后3年,保留样地中氮、磷、钾的留存量小于采伐样地和对照样地;采伐样地和保留样地中氮的归还量显著低于对照样地。(3)伐后5年,保留样地中氮的留存量小于采伐样地和对照样地;采伐样地中氮、磷、钾的归还量、养分贮量均与对照样地无显著差异;(4)带状采伐显著增加了氮、磷的利用系数(P < 0.05),随着样地的恢复各养分的利用系数逐渐下降,与对照无差异;采伐对氮、磷、钾的循环系数无显著影响。  结论  伐后5年氮、磷、钾养分贮量达到伐前和现期对照样地水平,从养分循环的角度证明伐后5年带状采伐样地能够恢复到对照样地水平。保留样地养分利用系数和循环系数从伐后第二个大年开始逐渐降低,需要进行密度调控,从而提高养分利用效率。

     

  • 图  1  不同处理样地毛竹地上、地下生物量变化动态

    横坐标上部的柱状图代表毛竹地上部分新增生物量;横坐标下部的柱状图代表毛竹地下部分新增生物量。不同小写字母表示相同时间不同处理样地毛竹生物量存在显著差异(P < 0.05);不同大写字母表示同一处理样地不同时间毛竹生物量存在显著差异(P < 0.05)。The column at the top of the abscissa represents the biomass of Moso bamboo in the aboveground part; the column at the bottom of the abscissa represents the biomass of Moso bamboo in the underground part. Different lowercase letters indicate a significant difference in biomass between varied treatment sample plots at the same time (P < 0.05). Different capital letters indicate a significant difference in biomass between varied time in the same treatment sample plot (P < 0.05).

    Figure  1.  Dynamics of aboveground and underground biomass of Moso bamboo under different treatments

    图  2  不同处理样地养分留存年变化动态

    星号表示研究地点在不同显著性水平上的差异,***、**和*分别表示P < 0.001、P < 0.01和P < 0.05。 下同。Asterisks indicate differences between study sites at different levels of significance. ***, **and * represent P < 0.001, P < 0.01 and P < 0.05, respectively. The same below.

    Figure  2.  Annual changes of nutrient retention in different treatment sample plots

    图  3  不同处理样地养分归还年变化动态

    Figure  3.  Annual variation dynamics of nutrient return in different treatment sample plots

    图  4  不同处理样地养分贮量年变化动态

    D图横坐标上、下部的柱状图分别代表毛竹地上、地下部分新增生物量。不同小写字母表示同一养分循环系数在不同处理样地间存在显著差异(P < 0.05)。The bar chart above and at the bottom of the abscissa represent the nutrient storage of the aboveground and underground part of Moso bamboo, respectively. Different lowercase letters indicate a significant difference in the same nutrient cycling coefficient between different treatment sample plots (P < 0.05).

    Figure  4.  Annual variation dynamics of nutrient storage in different treatment sample plots

    图  5  不同处理样地养分循环系数

    不同小写字母表示同一养分循环系数在不同处理样地间存在显著差异(P < 0.05)。Different lowercase letters indicate a significant difference in the same nutrient cycling coefficient between different treatment sample plots (P < 0.05).

    Figure  5.  Nutrient cycling coefficients in different treatment sample plots

    表  1  试验样地基本信息

    Table  1.   Basic information of the experimental sample plots

    样地
    Sample plot
    坡度
    Slope/(°)
    海拔
    Altitude/m
    密度/(株·hm−2
    Density/(plant·ha−1)
    竹龄结构
    Bamboo age structure (Ⅰ∶Ⅱ∶Ⅲ)
    平均胸径
    Mean DBH/cm
    平均枝下高
    Mean height to
    crown base/m
    平均竹高
    Mean bamboo height/m
    SC151133 25018∶17∶178.684.1012.91
    SC261133 86117∶23∶229.134.6013.75
    SC361133 18716∶18∶178.495.0913.21
    RB161133 45219∶20∶168.834.7612.85
    RB261143 81521∶18∶228.884.0613.22
    RB351143 68719∶21∶199.385.0713.53
    CK161133 65717∶22∶209.064.2313.33
    CK261133 75620∶22∶188.774.4313.63
    CK351143 94821∶23∶198.904.4013.21
    注:Ⅰ、Ⅱ、Ⅲ分别为1 ~ 2年生、3 ~ 4年生、5 ~ 6年生竹子。SC.采伐样地;RB.保留样地;CK. 对照。下同。Notes: Ⅰ, Ⅱ, Ⅲ are 1−2 years old, 3−4 years old and 5−6 years old bamboo. SC, strip cutting sample plot; RB, reserved sample plot; CK, control. The same below.
    下载: 导出CSV

    表  2  采伐移出养分总量 kg/hm2

    Table  2.   Total amount of nutrients removed from logging kg/ha

    组分 Component全氮 Total nitrogen全磷 Total phosphorus全钾 Total potassium
    竹秆 Bamboo clum189.07 ± 20.497.10 ± 0.65112.60 ± 36.45
    竹枝 Bamboo branch41.69 ± 8.752.15 ± 0.4619.04 ± 3.16
    竹叶 Bamboo leaf100.75 ± 6.925.79 ± 0.3941.89 ± 7.39
    合计 Total331.51 ± 32.5015.04 ± 0.53173.54 ± 32.72
    下载: 导出CSV

    表  3  竹蔸生物量全干质量对胸径的拟合模型及养分含量

    Table  3.   Model of bamboo rhizome dry mass to DBH and nutrient content

    竹龄
    Bamboo age
    模型
    Model
    全氮
    Total nitrogen (TN)/(g·kg−1)
    全磷
    Total phosphorus (TP)/(g·kg−1)
    全钾
    Total potassium (TK)/(g·kg−1)
    W = −6.858 2 + 1.319 6 DBH4.140 ± 0.1810.318 ± 0.0273.466 ± 0.732
    W = −8.217 8 + 1.582 2 DBH3.610 ± 0.2140.502 ± 0.0572.995 ± 0.382
    W = −8.455 1 + 1.628 8 DBH3.472 ± 0.1710.670 ± 0.0192.112 ± 0.127
    注:W为单株毛竹的竹蔸干质量(kg),DBH为胸径(cm)。Notes:W is rhizome dry mass of single bamboo (kg), DBH is DBH (cm).
    下载: 导出CSV

    表  4  不同处理样地养分循环年变化动态特征

    Table  4.   Dynamic characteristics of nutrient cycling in different treatment sample plots

    指标
    Index
    元素
    Element
    样地
    Sample plot
    年份 Year
    20172018201920202021
    利用系数 Utilization coefficient N SC 0.51 ± 0.06Aa 0.25 ± 0.02Ac 0.43 ± 0.04Ab 0.16 ± 0.01Ad 0.28 ± 0.02Ac
    RB 0.26 ± 0.02Ca 0.12 ± 0.01Bc 0.18 ± 0.04Cb 0.10 ± 0.010Bc 0.13 ± 0.01Bc
    CK 0.34 ± 0.03Ba 0.10 ± 0.01Bc 0.31 ± 0.04Bab 0.10 ± 0.02Bc 0.27 ± 0.02Ab
    P SC 0.50 ± 0.06Aa 0.30 ± 0.01Abc 0.39 ± 0.09Ab 0.24 ± 0.02Ac 0.28 ± 0.03Ac
    RB 0.25 ± 0.02Ba 0.21 ± 0.02Bb 0.25 ± 0.02Ba 0.13 ± 0.01Bc 0.11 ± 0.01Cc
    CK 0.31 ± 0.04Ba 0.18 ± 0.02Bbc 0.35 ± 0.03ABa 0.15 ± 0.01Bc 0.21 ± 0.04Bb
    K SC 0.54 ± 0.06Aa 0.20 ± 0.01Acd 0.38 ± 0.03Ab 0.16 ± 0.02Ad 0.26 ± 0.05Ac
    RB 0.32 ± 0.02Aa 0.10 ± 0.00Bc 0.17 ± 0.05Bb 0.08 ± 0.01Bc 0.16 ± 0.02Bb
    CK 0.41 ± 0.05Aa 0.09 ± 0.02Bd 0.31 ± 0.04Ab 0.10 ± 0.02Bd 0.26 ± 0.05Ac
    循环系数 Cycle coefficient N SC 0.16 ± 0.04Ac 0.43 ± 0.05Ab 0.14 ± 0.02Bc 0.53 ± 0.03Aa 0.19 ± 0.02Bc
    RB 0.13 ± 0.02Ad 0.29 ± 0.04Bb 0.20 ± 0.02Ac 0.45 ± 0.02Ba 0.29 ± 0.03Ab
    CK 0.15 ± 0.03Ab 0.44 ± 0.06Aa 0.17 ± 0.02ABb 0.45 ± 0.04Ba 0.19 ± 0.01Bb
    P SC 0.11 ± 0.03Abc 0.21 ± 0.06Aa 0.08 ± 0.02Ac 0.16 ± 0.03Aab 0.10 ± 0.02Bbc
    RB 0.08 ± 0.01Abc 0.10 ± 0.03Bb 0.07 ± 0.00Ac 0.16 ± 0.02Aa 0.14 ± 0.01Aa
    CK 0.09 ± 0.02Aab 0.11 ± 0.01Ba 0.07 ± 0.00Ab 0.11 ± 0.02Ba 0.11 ± 0.02Ba
    K SC 0.10 ± 0.03Abc 0.20 ± 0.03Aa 0.09 ± 0.01Cc 0.14 ± 0.04Ab 0.10 ± 0.02Bbc
    RB 0.08 ± 0.02Ac 0.18 ± 0.03Aab 0.16 ± 0.01Ab 0.21 ± 0.04Aa 0.17 ± 0.03Aab
    CK 0.08 ± 0.01Ab 0.18 ± 0.02Aa 0.11 ± 0.01Bb 0.16 ± 0.02Aa 0.10 ± 0.02Bb
    注:不同大写字母表示相同时间同一养分循环系数在不同处理样地间存在显著差异(P < 0.05);不同小写字母表示同一养分循环系数在同一样地内不同时间存在显著差异(P < 0.05)。Notes: different capital letters indicate a significant difference in the same nutrient cycling coefficient between different treatment sample plots (P < 0.05). Different lowercase letters indicate that the cycling coefficient of the same nutrient is significantly different at varied time in the same place (P < 0.05).
    下载: 导出CSV
  • [1] 江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.

    Jiang Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Publishing House, 2002.
    [2] 范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展[J]. 林业科学研究, 2018, 31(1): 137−144. doi: 10.13275/j.cnki.lykxyj.2018.01.017

    Fan S H, Liu G L, Su W H, et al. Advances in research of bamboo forest cultivation[J]. Forest Research, 2018, 31(1): 137−144. doi: 10.13275/j.cnki.lykxyj.2018.01.017
    [3] 詹美春, 官凤英, 晏颖杰, 等. 带状采伐对毛竹林林下植被物种多样性的影响[J]. 生态学报, 2020, 40(12): 4169−4179.

    Zhan M C, Guan F Y, Yan Y J, et al. Effects of strip harvesting on species diversity of undergrowth in bamboo (Phyllostachys edulis) forest[J]. Acta Ecologica Sinica, 2020, 40(12): 4169−4179.
    [4] White E H. Whole-tree harvesting depletes soil nutrients[J]. Revue Canadienne de Recherche Forestière, 1974, 4(4): 530−535.
    [5] Pyttel P L, Köhn M, Bauhus J. Effects of different harvesting intensities on the macro nutrient pools in aged oak coppice forests[J]. Forest Ecology and Management, 2015, 349: 94−105. doi: 10.1016/j.foreco.2015.03.037
    [6] 曾宪礼. 皖南毛竹林带状采伐恢复特征及影响因子研究[D]. 北京: 中国林业科学研究院, 2019.

    Zeng X L. Recovery characteristics and influencing factors of moso bamboo forests under different strip clearcutting in south Anhui Province[D]. Beijing: Chinese Academy of Forestry, 2019.
    [7] 王树梅. 带状采伐毛竹林地下鞭根系统与地面成竹响应特征的研究[D]. 北京: 中国林业科学研究院, 2021.

    Wang S M. Study on response characteristics of underground whip root system and ground growth of Phyllostachys edulis forests under different strip cutting[D]. Beijing: Chinese Academy of Forestry, 2021.
    [8] 王树梅, 范少辉, 肖箫, 等. 带状采伐对毛竹地上生物量分配及异速生长的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 19−24.

    Wang S M, Fan S H, Xiao X, et al. Effects of strip cutting on aboveground biomass accumulation and allocation, and allometric growth of Phyllostachys edulis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 19−24.
    [9] Zheng Y X, Guan F Y, Fan S H, et al. Dynamics of leaf-litter biomass, nutrient resorption efficiency and decomposition in a moso bamboo forest after strip clearcutting[J/OL]. Frontiers in Plant Science, 2022, 12: 799424[2022−11−14]. https://www.frontiersin.org/articles/10.3389/fpls.2021.799424/full.
    [10] 曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林土壤质量评价[J]. 生态学杂志, 2019, 38(10): 3015−3023. doi: 10.13292/j.1000-4890.201910.007

    Zeng X L, Su W H, Fan S H, et al. Soil quality assessment in Moso bamboo forests under different strip clearcutting[J]. Chinese Journal of Ecology, 2019, 38(10): 3015−3023. doi: 10.13292/j.1000-4890.201910.007
    [11] 刘广路. 毛竹林长期生产力保持机制研究[D]. 北京: 中国林业科学研究院, 2009.

    Liu G L. Study on the mechanism of maintaining long-termproductivity of bamboo forest[D]. Beijing: Chinese Academy of Forestry, 2009.
    [12] 夏传格, 宁晨, 罗赵慧, 等. 不同年龄毛竹林养分分布及生物循环特征[J]. 生态学报, 2020, 40(11): 3715−3725.

    Xia C G, Ning C, Luo Z H, et al. Nutrient distribution and biochemical cycling in different aged Moso bamboo (Phyllostachys pubescens) ecosystems[J]. Acta Ecologica Sinica, 2020, 40(11): 3715−3725.
    [13] 樊后保, 李燕燕, 刘文飞, 等. 连续年龄序列尾巨桉人工林养分循环[J]. 应用与环境生物学报, 2012, 18(6): 897−903.

    Fan H B, Li Y Y, Liu W F, et al. Nutrient accumulation and cycling of an Eucalyptus urophylly × E. grandis plantation[J]. Chinese Journal of Applied & Environmental Biology, 2012, 18(6): 897−903.
    [14] Shanmughavel P, Francis K. Bioproductivity and nutrient cycling in bamboo and acacia plantation forests[J]. Bioresource Technology, 2001, 80: 45−48. doi: 10.1016/S0960-8524(01)00060-8
    [15] 苏文会. 基于生长和养分积累规律的毛竹林施肥理论与实践研究[D]. 北京: 中国林业科学研究院, 2012.

    Su W H. Fertilization theory and practice for Phyllostachys edulis stand based on growth and nutrient accumulation rules[D]. Beijing: Chinese Academy of Forestry, 2012.
    [16] Zheng Y X, Guan F Y, Fan S H, et al. Biomass estimation, nutrient content, and decomposition rate of shoot sheath in Moso bamboo forest of Yixing Forest Farm, China[J]. Forests, 2021, 12(11): 1555. doi: 10.3390/f12111555
    [17] 张文元, 范少辉, 苏文会, 等. 毛竹成竹期各器官营养元素动态变化规律[J]. 安徽农业科学, 2009, 37: 8227−8232. doi: 10.3969/j.issn.0517-6611.2009.36.153

    Zhang W Y, Fan S H, Su W H, et al. A dynamic change law on nutrient elements in various organs of P hyllostachys edulis during bamboo forming stage[J]. Journal of Anhui Agricultural Sciences, 2009, 37: 8227−8232. doi: 10.3969/j.issn.0517-6611.2009.36.153
    [18] 张幼法, 林世奎, 张世渊. 毛竹林地下鞭动态生长的研究[J]. 竹子研究汇刊, 1999, 18(3): 62−65.

    Zhang Y F, Lin S K, Zhang S Y. A study on dynamic growth of underground rhizome of Phyllostachys pubescens[J]. Journal of Bamboo Research, 1999, 18(3): 62−65.
    [19] 郭宝华, 刘广路, 范少辉, 等. 不同生产力水平毛竹林碳氮磷的分布格局和计量特征[J]. 林业科学, 2014, 50(9): 1−9.

    Guo B H, Liu G L, Fan S H, et al. Distribution patterns and stoichiometry characteristics of C, N, P in Phyllostachys edulis forests of different productivity levels[J]. Scientia Silvae Sinicae, 2014, 50(9): 1−9.
    [20] 刘西军. 亚热带北缘毛竹林群落生产力、有机碳及养分动态[D]. 合肥: 安徽农业大学, 2011.

    Liu X J. Productivity, organic carbon and nutrient dynamics of Phyllostachys pubescens ecosystem in northern subtropical area[D]. Hefei: Anhui Agricultural University, 2011.
    [21] Johnson D W, Turner J. Nutrient cycling in forests: a historical look and newer developments[J]. Forest Ecology and Management, 2019, 444: 344−373. doi: 10.1016/j.foreco.2019.04.052
    [22] Miller H G, Cooper J M, Miller J D, et al. Nutrient cycles in pine and their adaptation to poor soils[J]. Revue Canadienne de Recherche Forestière, 1979, 9(1): 19−26.
    [23] Turner J, Lambert M J. Analysis of nutrient use efficiency (NUE) in Eucalyptus pilularis forests[J]. Australian Journal of Botany, 2015, 62(7): 558−569.
    [24] Holub P, Tůma I, Záhora J, et al. Different nutrient use strategies of expansive grasses Calamagrostis epigejos and Arrhenatherum elatius[J]. Biologia, 2012, 67(4): 673−680. doi: 10.2478/s11756-012-0050-9
    [25] Yuan Z Y, Li L H, Han X G, et al. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China[J]. Journal of Arid Environments, 2005, 63(1): 191−202. doi: 10.1016/j.jaridenv.2005.01.023
    [26] Krift T A J D, Gioacchini P, Kuikman P J, et al. Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralisation[J]. Soil Biology and Biochemistry, 2001, 33(15): 2115−2124. doi: 10.1016/S0038-0717(01)00145-6
    [27] 张希彪, 上官周平. 黄土丘陵区主要林分生物量及营养元素生物循环特征[J]. 生态学报, 2005, 25(3): 527−537. doi: 10.3321/j.issn:1000-0933.2005.03.021

    Zhang X B, Shangguan Z P. The bio-cycle patterns of nutrient elements and stand biomass in forest communities in hilly loess regions[J]. Acta Ecologica Sinica, 2005, 25(3): 527−537. doi: 10.3321/j.issn:1000-0933.2005.03.021
    [28] 陈日升, 康文星, 周玉泉, 等. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173−184. doi: 10.17521/cjpe.2017.0209

    Chen R S, Kang W X, Zhou Y Q, et al. Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest[J]. Chinese Journal of Plant Ecology, 2018, 42(2): 173−184. doi: 10.17521/cjpe.2017.0209
    [29] Lilli K, Janne V, Mikael M, et al. Stump harvesting in Picea abies stands: soil surface disturbance and biomass distribution of the harvested stumps and roots[J]. Forest Ecology and Management, 2018, 425: 27−34. doi: 10.1016/j.foreco.2018.05.032
    [30] 王树梅, 王波, 范少辉, 等. 带状采伐对毛竹林土壤细菌群落结构及多样性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 60−68.

    Wang S M, Wang B, Fan S H, et al. Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 60−68.
    [31] 吴昌明, 范少辉, 冯云, 等. 带状采伐对毛竹林土壤细菌群落结构的影响[J]. 中南林业科技大学学报, 2021, 41(7): 42−51. doi: 10.14067/j.cnki.1673-923x.2021.07.006

    Wu C M, Fan S H, Feng Y, et al. Effects of strip cutting on soil bacterial community structure in bamboo forest[J]. Journal of Central South University of Forestry & Technology, 2021, 41(7): 42−51. doi: 10.14067/j.cnki.1673-923x.2021.07.006
    [32] 倪惠菁, 苏文会, 范少辉, 等. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 2019, 38(3): 863−872. doi: 10.13292/j.1000-4890.201903.015

    Ni H J, Su W H, Fan S H, et al. Responses of forest soil nutrient cycling to nutrient input modes: a review[J]. Chinese Journal of Ecology, 2019, 38(3): 863−872. doi: 10.13292/j.1000-4890.201903.015
    [33] 申景昕, 范少辉, 刘广路, 等. 毛竹林采伐林窗近地层温度时空分布特征[J]. 生态学杂志, 2020, 39(11): 3549−3557. doi: 10.13292/j.1000-4890.202011.024

    Shen J X, Fan S H, Liu G L, et al. Spatiotemporal distribution characteristics of temperature on the surface layer of cutting gap of Phyllostachys edulis forest[J]. Chinese Journal of Ecology, 2020, 39(11): 3549−3557. doi: 10.13292/j.1000-4890.202011.024
    [34] Helmisaari H S, Hanssen K H, Jacobson S, et al. Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth[J]. Forest Ecology and Management, 2011, 261(11): 1919−1927. doi: 10.1016/j.foreco.2011.02.015
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  94
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 修回日期:  2022-09-15
  • 网络出版日期:  2023-03-18
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回