Dynamic characteristics of nutrients in striped cutting Moso bamboo forests
-
摘要:
目的 研究带状采伐毛竹林中氮、磷、钾养分变化特征,为伐后竹林的养分管理策略提供科学依据。 方法 以8 m带宽采伐样地(SC)及其保留样地(RB)为研究对象,以传统经营毛竹林(CK)为对照,调查伐后5年内不同处理样地毛竹生物量、林下灌草生物量、凋落物产量及各组分相应的养分含量,量化养分流通量,计算不同处理样地的养分循环系数,比较不同处理样地的养分流动及循环特征的差异。 结果 (1)伐后第1年,不同处理样地内毛竹氮、磷、钾的留存量无显著差异;采伐样地中氮、磷的归还量减少;(2)伐后3年,保留样地中氮、磷、钾的留存量小于采伐样地和对照样地;采伐样地和保留样地中氮的归还量显著低于对照样地。(3)伐后5年,保留样地中氮的留存量小于采伐样地和对照样地;采伐样地中氮、磷、钾的归还量、养分贮量均与对照样地无显著差异;(4)带状采伐显著增加了氮、磷的利用系数(P < 0.05),随着样地的恢复各养分的利用系数逐渐下降,与对照无差异;采伐对氮、磷、钾的循环系数无显著影响。 结论 伐后5年氮、磷、钾养分贮量达到伐前和现期对照样地水平,从养分循环的角度证明伐后5年带状采伐样地能够恢复到对照样地水平。保留样地养分利用系数和循环系数从伐后第二个大年开始逐渐降低,需要进行密度调控,从而提高养分利用效率。 Abstract:Objective This paper aims to study the dynamics of nitrogen (N), phosphorus (P), and potassium (K) nutrients in Moso bamboo forest after strip cutting, so as to provide a scientific basis for nutrient management strategies in the amboo forest after logging. Method We selected the 8 m bandwidth strip cutting sample plots (SC) and its reserved sample plots (RB) as the research object, and the traditional management forest (CK) as control. The biomass of Moso bamboo, understory vegetation, litter yield, and corresponding nutrient contents of each component was investigated for five years after cutting. Therefore, nutrient flux was quantified, and the nutrient cycling coefficient of the Moso bamboo forest was calculated. The characteristics of nutrient flow and cycling were compared among different treatment sample plots. Result (1) In the first year after cutting, there was no significant difference in the retention of N, P, and K among different treatment sample plots. The return of nitrogen in SC was decreased. (2) Three years after cutting, the retention of N, P, and K in the RB was less than that in SC and CK. The return of nitrogen in SC and RB was significantly lower than that in CK. (3) Five years after cutting, the retention of nitrogen in RB was less than that in SC and CK. There was no significant difference in the amount of N, P and K returned and nutrient storage between SC and CK. (4) Strip cutting significantly increased the utilization coefficients of N, P (P < 0.05). With the restoration of sample plots, the utilization coefficient of each nutrient gradually decreased, and there was no difference with CK. Cutting had no significant effect on the cycling coefficients of N, P and K. Conclusion Five years after cutting, nitrogen, phosphorus, and potassium nutrient storage reaches the level of pre-cutting and CK. From the perspective of nutrient cycle, it is proved that SC could recover to the level of CK after 5 years. However, the nutrient use coefficient and recycling coefficient of RB gradually decrease from the second on-year after cutting, and density control management is needed to improve the nutrient use efficiency. -
Key words:
- Moso bamboo forest /
- strip cutting /
- natural restoration /
- nutrient cycling
-
图 1 不同处理样地毛竹地上、地下生物量变化动态
横坐标上部的柱状图代表毛竹地上部分新增生物量;横坐标下部的柱状图代表毛竹地下部分新增生物量。不同小写字母表示相同时间不同处理样地毛竹生物量存在显著差异(P < 0.05);不同大写字母表示同一处理样地不同时间毛竹生物量存在显著差异(P < 0.05)。The column at the top of the abscissa represents the biomass of Moso bamboo in the aboveground part; the column at the bottom of the abscissa represents the biomass of Moso bamboo in the underground part. Different lowercase letters indicate a significant difference in biomass between varied treatment sample plots at the same time (P < 0.05). Different capital letters indicate a significant difference in biomass between varied time in the same treatment sample plot (P < 0.05).
Figure 1. Dynamics of aboveground and underground biomass of Moso bamboo under different treatments
图 2 不同处理样地养分留存年变化动态
星号表示研究地点在不同显著性水平上的差异,***、**和*分别表示P < 0.001、P < 0.01和P < 0.05。 下同。Asterisks indicate differences between study sites at different levels of significance. ***, **and * represent P < 0.001, P < 0.01 and P < 0.05, respectively. The same below.
Figure 2. Annual changes of nutrient retention in different treatment sample plots
图 4 不同处理样地养分贮量年变化动态
D图横坐标上、下部的柱状图分别代表毛竹地上、地下部分新增生物量。不同小写字母表示同一养分循环系数在不同处理样地间存在显著差异(P < 0.05)。The bar chart above and at the bottom of the abscissa represent the nutrient storage of the aboveground and underground part of Moso bamboo, respectively. Different lowercase letters indicate a significant difference in the same nutrient cycling coefficient between different treatment sample plots (P < 0.05).
Figure 4. Annual variation dynamics of nutrient storage in different treatment sample plots
表 1 试验样地基本信息
Table 1. Basic information of the experimental sample plots
样地
Sample plot坡度
Slope/(°)海拔
Altitude/m密度/(株·hm−2)
Density/(plant·ha−1)竹龄结构
Bamboo age structure (Ⅰ∶Ⅱ∶Ⅲ)平均胸径
Mean DBH/cm平均枝下高
Mean height to
crown base/m平均竹高
Mean bamboo height/mSC1 5 113 3 250 18∶17∶17 8.68 4.10 12.91 SC2 6 113 3 861 17∶23∶22 9.13 4.60 13.75 SC3 6 113 3 187 16∶18∶17 8.49 5.09 13.21 RB1 6 113 3 452 19∶20∶16 8.83 4.76 12.85 RB2 6 114 3 815 21∶18∶22 8.88 4.06 13.22 RB3 5 114 3 687 19∶21∶19 9.38 5.07 13.53 CK1 6 113 3 657 17∶22∶20 9.06 4.23 13.33 CK2 6 113 3 756 20∶22∶18 8.77 4.43 13.63 CK3 5 114 3 948 21∶23∶19 8.90 4.40 13.21 注:Ⅰ、Ⅱ、Ⅲ分别为1 ~ 2年生、3 ~ 4年生、5 ~ 6年生竹子。SC.采伐样地;RB.保留样地;CK. 对照。下同。Notes: Ⅰ, Ⅱ, Ⅲ are 1−2 years old, 3−4 years old and 5−6 years old bamboo. SC, strip cutting sample plot; RB, reserved sample plot; CK, control. The same below. 表 2 采伐移出养分总量 kg/hm2
Table 2. Total amount of nutrients removed from logging
kg/ha 组分 Component 全氮 Total nitrogen 全磷 Total phosphorus 全钾 Total potassium 竹秆 Bamboo clum 189.07 ± 20.49 7.10 ± 0.65 112.60 ± 36.45 竹枝 Bamboo branch 41.69 ± 8.75 2.15 ± 0.46 19.04 ± 3.16 竹叶 Bamboo leaf 100.75 ± 6.92 5.79 ± 0.39 41.89 ± 7.39 合计 Total 331.51 ± 32.50 15.04 ± 0.53 173.54 ± 32.72 表 3 竹蔸生物量全干质量对胸径的拟合模型及养分含量
Table 3. Model of bamboo rhizome dry mass to DBH and nutrient content
竹龄
Bamboo age模型
Model全氮
Total nitrogen (TN)/(g·kg−1)全磷
Total phosphorus (TP)/(g·kg−1)全钾
Total potassium (TK)/(g·kg−1)Ⅰ W = −6.858 2 + 1.319 6 DBH 4.140 ± 0.181 0.318 ± 0.027 3.466 ± 0.732 Ⅱ W = −8.217 8 + 1.582 2 DBH 3.610 ± 0.214 0.502 ± 0.057 2.995 ± 0.382 Ⅲ W = −8.455 1 + 1.628 8 DBH 3.472 ± 0.171 0.670 ± 0.019 2.112 ± 0.127 注:W为单株毛竹的竹蔸干质量(kg),DBH为胸径(cm)。Notes:W is rhizome dry mass of single bamboo (kg), DBH is DBH (cm). 表 4 不同处理样地养分循环年变化动态特征
Table 4. Dynamic characteristics of nutrient cycling in different treatment sample plots
指标
Index元素
Element样地
Sample plot年份 Year 2017 2018 2019 2020 2021 利用系数 Utilization coefficient N SC 0.51 ± 0.06Aa 0.25 ± 0.02Ac 0.43 ± 0.04Ab 0.16 ± 0.01Ad 0.28 ± 0.02Ac RB 0.26 ± 0.02Ca 0.12 ± 0.01Bc 0.18 ± 0.04Cb 0.10 ± 0.010Bc 0.13 ± 0.01Bc CK 0.34 ± 0.03Ba 0.10 ± 0.01Bc 0.31 ± 0.04Bab 0.10 ± 0.02Bc 0.27 ± 0.02Ab P SC 0.50 ± 0.06Aa 0.30 ± 0.01Abc 0.39 ± 0.09Ab 0.24 ± 0.02Ac 0.28 ± 0.03Ac RB 0.25 ± 0.02Ba 0.21 ± 0.02Bb 0.25 ± 0.02Ba 0.13 ± 0.01Bc 0.11 ± 0.01Cc CK 0.31 ± 0.04Ba 0.18 ± 0.02Bbc 0.35 ± 0.03ABa 0.15 ± 0.01Bc 0.21 ± 0.04Bb K SC 0.54 ± 0.06Aa 0.20 ± 0.01Acd 0.38 ± 0.03Ab 0.16 ± 0.02Ad 0.26 ± 0.05Ac RB 0.32 ± 0.02Aa 0.10 ± 0.00Bc 0.17 ± 0.05Bb 0.08 ± 0.01Bc 0.16 ± 0.02Bb CK 0.41 ± 0.05Aa 0.09 ± 0.02Bd 0.31 ± 0.04Ab 0.10 ± 0.02Bd 0.26 ± 0.05Ac 循环系数 Cycle coefficient N SC 0.16 ± 0.04Ac 0.43 ± 0.05Ab 0.14 ± 0.02Bc 0.53 ± 0.03Aa 0.19 ± 0.02Bc RB 0.13 ± 0.02Ad 0.29 ± 0.04Bb 0.20 ± 0.02Ac 0.45 ± 0.02Ba 0.29 ± 0.03Ab CK 0.15 ± 0.03Ab 0.44 ± 0.06Aa 0.17 ± 0.02ABb 0.45 ± 0.04Ba 0.19 ± 0.01Bb P SC 0.11 ± 0.03Abc 0.21 ± 0.06Aa 0.08 ± 0.02Ac 0.16 ± 0.03Aab 0.10 ± 0.02Bbc RB 0.08 ± 0.01Abc 0.10 ± 0.03Bb 0.07 ± 0.00Ac 0.16 ± 0.02Aa 0.14 ± 0.01Aa CK 0.09 ± 0.02Aab 0.11 ± 0.01Ba 0.07 ± 0.00Ab 0.11 ± 0.02Ba 0.11 ± 0.02Ba K SC 0.10 ± 0.03Abc 0.20 ± 0.03Aa 0.09 ± 0.01Cc 0.14 ± 0.04Ab 0.10 ± 0.02Bbc RB 0.08 ± 0.02Ac 0.18 ± 0.03Aab 0.16 ± 0.01Ab 0.21 ± 0.04Aa 0.17 ± 0.03Aab CK 0.08 ± 0.01Ab 0.18 ± 0.02Aa 0.11 ± 0.01Bb 0.16 ± 0.02Aa 0.10 ± 0.02Bb 注:不同大写字母表示相同时间同一养分循环系数在不同处理样地间存在显著差异(P < 0.05);不同小写字母表示同一养分循环系数在同一样地内不同时间存在显著差异(P < 0.05)。Notes: different capital letters indicate a significant difference in the same nutrient cycling coefficient between different treatment sample plots (P < 0.05). Different lowercase letters indicate that the cycling coefficient of the same nutrient is significantly different at varied time in the same place (P < 0.05). -
[1] 江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.Jiang Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Publishing House, 2002. [2] 范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展[J]. 林业科学研究, 2018, 31(1): 137−144. doi: 10.13275/j.cnki.lykxyj.2018.01.017Fan S H, Liu G L, Su W H, et al. Advances in research of bamboo forest cultivation[J]. Forest Research, 2018, 31(1): 137−144. doi: 10.13275/j.cnki.lykxyj.2018.01.017 [3] 詹美春, 官凤英, 晏颖杰, 等. 带状采伐对毛竹林林下植被物种多样性的影响[J]. 生态学报, 2020, 40(12): 4169−4179.Zhan M C, Guan F Y, Yan Y J, et al. Effects of strip harvesting on species diversity of undergrowth in bamboo (Phyllostachys edulis) forest[J]. Acta Ecologica Sinica, 2020, 40(12): 4169−4179. [4] White E H. Whole-tree harvesting depletes soil nutrients[J]. Revue Canadienne de Recherche Forestière, 1974, 4(4): 530−535. [5] Pyttel P L, Köhn M, Bauhus J. Effects of different harvesting intensities on the macro nutrient pools in aged oak coppice forests[J]. Forest Ecology and Management, 2015, 349: 94−105. doi: 10.1016/j.foreco.2015.03.037 [6] 曾宪礼. 皖南毛竹林带状采伐恢复特征及影响因子研究[D]. 北京: 中国林业科学研究院, 2019.Zeng X L. Recovery characteristics and influencing factors of moso bamboo forests under different strip clearcutting in south Anhui Province[D]. Beijing: Chinese Academy of Forestry, 2019. [7] 王树梅. 带状采伐毛竹林地下鞭根系统与地面成竹响应特征的研究[D]. 北京: 中国林业科学研究院, 2021.Wang S M. Study on response characteristics of underground whip root system and ground growth of Phyllostachys edulis forests under different strip cutting[D]. Beijing: Chinese Academy of Forestry, 2021. [8] 王树梅, 范少辉, 肖箫, 等. 带状采伐对毛竹地上生物量分配及异速生长的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 19−24.Wang S M, Fan S H, Xiao X, et al. Effects of strip cutting on aboveground biomass accumulation and allocation, and allometric growth of Phyllostachys edulis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 19−24. [9] Zheng Y X, Guan F Y, Fan S H, et al. Dynamics of leaf-litter biomass, nutrient resorption efficiency and decomposition in a moso bamboo forest after strip clearcutting[J/OL]. Frontiers in Plant Science, 2022, 12: 799424[2022−11−14]. https://www.frontiersin.org/articles/10.3389/fpls.2021.799424/full. [10] 曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林土壤质量评价[J]. 生态学杂志, 2019, 38(10): 3015−3023. doi: 10.13292/j.1000-4890.201910.007Zeng X L, Su W H, Fan S H, et al. Soil quality assessment in Moso bamboo forests under different strip clearcutting[J]. Chinese Journal of Ecology, 2019, 38(10): 3015−3023. doi: 10.13292/j.1000-4890.201910.007 [11] 刘广路. 毛竹林长期生产力保持机制研究[D]. 北京: 中国林业科学研究院, 2009.Liu G L. Study on the mechanism of maintaining long-termproductivity of bamboo forest[D]. Beijing: Chinese Academy of Forestry, 2009. [12] 夏传格, 宁晨, 罗赵慧, 等. 不同年龄毛竹林养分分布及生物循环特征[J]. 生态学报, 2020, 40(11): 3715−3725.Xia C G, Ning C, Luo Z H, et al. Nutrient distribution and biochemical cycling in different aged Moso bamboo (Phyllostachys pubescens) ecosystems[J]. Acta Ecologica Sinica, 2020, 40(11): 3715−3725. [13] 樊后保, 李燕燕, 刘文飞, 等. 连续年龄序列尾巨桉人工林养分循环[J]. 应用与环境生物学报, 2012, 18(6): 897−903.Fan H B, Li Y Y, Liu W F, et al. Nutrient accumulation and cycling of an Eucalyptus urophylly × E. grandis plantation[J]. Chinese Journal of Applied & Environmental Biology, 2012, 18(6): 897−903. [14] Shanmughavel P, Francis K. Bioproductivity and nutrient cycling in bamboo and acacia plantation forests[J]. Bioresource Technology, 2001, 80: 45−48. doi: 10.1016/S0960-8524(01)00060-8 [15] 苏文会. 基于生长和养分积累规律的毛竹林施肥理论与实践研究[D]. 北京: 中国林业科学研究院, 2012.Su W H. Fertilization theory and practice for Phyllostachys edulis stand based on growth and nutrient accumulation rules[D]. Beijing: Chinese Academy of Forestry, 2012. [16] Zheng Y X, Guan F Y, Fan S H, et al. Biomass estimation, nutrient content, and decomposition rate of shoot sheath in Moso bamboo forest of Yixing Forest Farm, China[J]. Forests, 2021, 12(11): 1555. doi: 10.3390/f12111555 [17] 张文元, 范少辉, 苏文会, 等. 毛竹成竹期各器官营养元素动态变化规律[J]. 安徽农业科学, 2009, 37: 8227−8232. doi: 10.3969/j.issn.0517-6611.2009.36.153Zhang W Y, Fan S H, Su W H, et al. A dynamic change law on nutrient elements in various organs of P hyllostachys edulis during bamboo forming stage[J]. Journal of Anhui Agricultural Sciences, 2009, 37: 8227−8232. doi: 10.3969/j.issn.0517-6611.2009.36.153 [18] 张幼法, 林世奎, 张世渊. 毛竹林地下鞭动态生长的研究[J]. 竹子研究汇刊, 1999, 18(3): 62−65.Zhang Y F, Lin S K, Zhang S Y. A study on dynamic growth of underground rhizome of Phyllostachys pubescens[J]. Journal of Bamboo Research, 1999, 18(3): 62−65. [19] 郭宝华, 刘广路, 范少辉, 等. 不同生产力水平毛竹林碳氮磷的分布格局和计量特征[J]. 林业科学, 2014, 50(9): 1−9.Guo B H, Liu G L, Fan S H, et al. Distribution patterns and stoichiometry characteristics of C, N, P in Phyllostachys edulis forests of different productivity levels[J]. Scientia Silvae Sinicae, 2014, 50(9): 1−9. [20] 刘西军. 亚热带北缘毛竹林群落生产力、有机碳及养分动态[D]. 合肥: 安徽农业大学, 2011.Liu X J. Productivity, organic carbon and nutrient dynamics of Phyllostachys pubescens ecosystem in northern subtropical area[D]. Hefei: Anhui Agricultural University, 2011. [21] Johnson D W, Turner J. Nutrient cycling in forests: a historical look and newer developments[J]. Forest Ecology and Management, 2019, 444: 344−373. doi: 10.1016/j.foreco.2019.04.052 [22] Miller H G, Cooper J M, Miller J D, et al. Nutrient cycles in pine and their adaptation to poor soils[J]. Revue Canadienne de Recherche Forestière, 1979, 9(1): 19−26. [23] Turner J, Lambert M J. Analysis of nutrient use efficiency (NUE) in Eucalyptus pilularis forests[J]. Australian Journal of Botany, 2015, 62(7): 558−569. [24] Holub P, Tůma I, Záhora J, et al. Different nutrient use strategies of expansive grasses Calamagrostis epigejos and Arrhenatherum elatius[J]. Biologia, 2012, 67(4): 673−680. doi: 10.2478/s11756-012-0050-9 [25] Yuan Z Y, Li L H, Han X G, et al. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China[J]. Journal of Arid Environments, 2005, 63(1): 191−202. doi: 10.1016/j.jaridenv.2005.01.023 [26] Krift T A J D, Gioacchini P, Kuikman P J, et al. Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralisation[J]. Soil Biology and Biochemistry, 2001, 33(15): 2115−2124. doi: 10.1016/S0038-0717(01)00145-6 [27] 张希彪, 上官周平. 黄土丘陵区主要林分生物量及营养元素生物循环特征[J]. 生态学报, 2005, 25(3): 527−537. doi: 10.3321/j.issn:1000-0933.2005.03.021Zhang X B, Shangguan Z P. The bio-cycle patterns of nutrient elements and stand biomass in forest communities in hilly loess regions[J]. Acta Ecologica Sinica, 2005, 25(3): 527−537. doi: 10.3321/j.issn:1000-0933.2005.03.021 [28] 陈日升, 康文星, 周玉泉, 等. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173−184. doi: 10.17521/cjpe.2017.0209Chen R S, Kang W X, Zhou Y Q, et al. Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest[J]. Chinese Journal of Plant Ecology, 2018, 42(2): 173−184. doi: 10.17521/cjpe.2017.0209 [29] Lilli K, Janne V, Mikael M, et al. Stump harvesting in Picea abies stands: soil surface disturbance and biomass distribution of the harvested stumps and roots[J]. Forest Ecology and Management, 2018, 425: 27−34. doi: 10.1016/j.foreco.2018.05.032 [30] 王树梅, 王波, 范少辉, 等. 带状采伐对毛竹林土壤细菌群落结构及多样性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 60−68.Wang S M, Wang B, Fan S H, et al. Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 60−68. [31] 吴昌明, 范少辉, 冯云, 等. 带状采伐对毛竹林土壤细菌群落结构的影响[J]. 中南林业科技大学学报, 2021, 41(7): 42−51. doi: 10.14067/j.cnki.1673-923x.2021.07.006Wu C M, Fan S H, Feng Y, et al. Effects of strip cutting on soil bacterial community structure in bamboo forest[J]. Journal of Central South University of Forestry & Technology, 2021, 41(7): 42−51. doi: 10.14067/j.cnki.1673-923x.2021.07.006 [32] 倪惠菁, 苏文会, 范少辉, 等. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 2019, 38(3): 863−872. doi: 10.13292/j.1000-4890.201903.015Ni H J, Su W H, Fan S H, et al. Responses of forest soil nutrient cycling to nutrient input modes: a review[J]. Chinese Journal of Ecology, 2019, 38(3): 863−872. doi: 10.13292/j.1000-4890.201903.015 [33] 申景昕, 范少辉, 刘广路, 等. 毛竹林采伐林窗近地层温度时空分布特征[J]. 生态学杂志, 2020, 39(11): 3549−3557. doi: 10.13292/j.1000-4890.202011.024Shen J X, Fan S H, Liu G L, et al. Spatiotemporal distribution characteristics of temperature on the surface layer of cutting gap of Phyllostachys edulis forest[J]. Chinese Journal of Ecology, 2020, 39(11): 3549−3557. doi: 10.13292/j.1000-4890.202011.024 [34] Helmisaari H S, Hanssen K H, Jacobson S, et al. Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth[J]. Forest Ecology and Management, 2011, 261(11): 1919−1927. doi: 10.1016/j.foreco.2011.02.015 -