A comparative study on moisture sorption thermodynamics of ancient and recent cypress
-
摘要:目的 探究考古木材与现代木材在水分吸附热力学方面的不同及原因,旨在提高出土饱水木质文物的尺寸稳定性,可以为出土饱水考古木材的保护研究提供理论依据。方法 以古代与现代柏木为研究对象,分别采用扫描电子显微镜和傅里叶红外光谱表征试材的微观形貌和化学基团;利用动态水分吸附分析分别测定25和50 ℃下的试材吸湿和解吸等温吸附曲线,并基于Hailwood-Horrobin水分吸着理论进行拟合,结合Clausius-Clapeyron公式分别计算试材的微分吸着热QS、自由能变化ΔG及微分吸着熵ΔS,分析考古试材与现代试材在吸附热力学量的差异。结果 与现代木材相比,考古木材的细胞壁腐朽明显,产生大量细胞壁孔洞,并有菌丝体的存在。考古木材纤维素、半纤维素降解严重,而木质素相对含量升高,且极性基团−OH、−COOH含量减少。在一定温度下,考古木材的平衡含水率大于现代木材,而QS、ΔS值均低于现代木材,并在含水率5%处产生拐点,该拐点对应单分子层吸着水达到饱和;另一方面,考古木材和现代木材的ΔG值差异不大;考古木材在吸湿平衡态下QS、ΔG、ΔS值小于解吸平衡态的值。结论 考古木材在经历长时间腐蚀后,细胞壁结构产生腐朽;与现代木材相比,考古木材纤维素、半纤维素降解程度最大,考古木材对水分的吸着减少;考古木材的吸湿性大于现代木材,而热力学值偏低;考古木材存在热力学吸湿滞后现象。Abstract:Objective This research was carried out to explore the differences and reasons of moisture sorption thermodynamics between archaeological wood and recent wood, and provide a theoretical basis for the protection and research of excavated archaeological wood, and be conducive to improving the dimensional stability of the unearthed moisture-saturated wooden relics.Method Ancient and recent cypress (Cupressus sp.) were used as research objects, and the microscopic morphology and chemical groups of the wood samples were characterized by scanning electron microscope and Fourier transform infrared spectroscopy, respectively. The adsorption and desorption isotherms for both wood at 25 and 50 ℃ were measured by dynamic vapor sorption, and fitted based on the Hailwood-Horrobin moisture sorption theory. The differential adsorption heat QS, Gibbs free energy change ΔG and differential adsorption entropy ΔS of the wood samples were calculated by Clausius-Clapeyron formula to analyze the discrepancy of sorption thermodynamics between archaeological and recent wood.Result Compared with recent wood, the cell wall of archaeological wood was decayed obviously. A large number of cell wall pores and mycelia were found. The cellulose and hemicellulose were degraded seriously with increased relative content for lignin. The content of polar group −OH and −COOH decreased. Under certain temperature conditions, the equilibrium moisture content of archaeological wood was higher than that of recent wood, while the values of QS and ΔS were lower than that of recent wood, and an inflection point occurred at the moisture content of 5%, corresponding to a saturation of the monolayer water. On the other hand, there was little difference in ΔG between archaeological wood and recent wood. The values of QS, ΔG and ΔS of archaeological wood in hygroscopic equilibrium state were lower than those in desorption equilibrium state.Conclusion In this study, it was found that the cell wall structure of archaeological wood decayed after a long time of corrosion. Compared with recent wood, the degradation degree of cellulose and hemicellulose in archaeological wood was the greatest. And the moisture sorption of archaeological wood reduced. Under certain temperature conditions, the hygroscopicity of archaeological wood was higher than that of recent wood, but its thermodynamic values were lower. There were thermodynamic sorption hysteresis of archaeological wood.
-
Keywords:
- archaeological wood /
- Cupressus sp. /
- microstructure /
- moisture /
- sorption thermodynamics
-
从古至今,木材作为一种天然可再生的环保型材料,以其独特的性能和优良的环境学特性深受人们喜爱,并广泛应用于生产生活的各个方面。随着现代科学技术的突飞猛进、人类学理论的不断发展,考古木材作为进行植物考古学和环境考古学研究的一种典型生物材料,正成为专家学者的研究热点,国内外考古作业挖掘出大量的木质文物[1-2],例如:“Riksapplet号”沉船[3]、“小白礁Ⅰ号”沉船[4]、“南海Ⅰ号”船木[5]等为出土考古木材的研究提供了丰富的材料。
Crestini等[6]运用X射线衍射和扫描电镜的方法对埃及古代棺木进行研究,研究发现:考古木材中纤维素、半纤维素、木质素均产生不同程度的降解,小分子化合物发生改变,使考古木材变得脆弱而柔软。Łucejko等[7]运用热裂解气相色谱–质谱联用法对取自比萨圣罗索雷古船的木材样品进行了主成分分析,样品木质素中愈创木基和紫丁香基的去甲基化表明考古木材中多糖产生了流失。卢芸[8]指出大多木质文物纤维素结晶区被严重破坏,葡聚糖侧链的乙酰基消失,多糖类物质遭到严重降解,木质素相对含量明显增加。
考古木材微观结构的变化,将在很大程度上影响其水分吸着行为,因而可利用等温吸附曲线和水分吸着理论对考古木材与吸着水分子的相互作用进行分析,如Guggenheim-Anderson-de Boer模型[9]、Hailwood-Horrobin模型[10]等。Guo等[11]利用Guggenheim-Anderson-de Boer模型计算得到每千克古代润楠木(Machilus pingii Cheng ex Yang)样品的最大单层吸水量为7.388 kg,而相同树种现代木材的最大单层吸水量仅为4.602 kg,考古木材的最大单层吸水量比现代木材增加了61%。
木材的水分吸着过程必然伴随着热量或能量的变化[12],因此基于吸附热力学考察水分吸着机理,有助于从本质上获得考古木材与水分相互作用方面的信息。曹金珍[13]发现西藏云杉(Picea spinulosa)在水分吸着过程中微分吸着热、微分吸着熵值随吸湿过程不断增大。Simón 等[14]研究了在吸湿和解吸平衡态下辐射松(Pinus radiata)的微分吸着熵值随含水率的变化曲线,结果显示在相同平衡含水率下辐射松解吸的微分吸着熵值大于吸湿值。
在以往的研究中,研究者多从成分、结构角度对考古木材水分吸着行为进行研究,且取得了一定进展,而对考古木材的吸附热力学研究较少,而且对各种热力学量变化的系统分析也很欠缺。本研究将聚焦考古木材在吸湿和解吸平衡状态下微分吸着热、自由能变化及微分吸着熵三大热力学量的研究,并分别利用电子显微镜(scanning electron microscope,SEM)、傅里叶红外光谱(Fourier transform infrared spectroscopy,FTIR)分析考古木材的细胞壁结构和化学成分变化,从而建立考古木材微观结构与其水分吸着行为间的构效关系,探究考古木材与现代木材在水分吸附热力学方面的差异及其原因,为从能量角度解析考古木材与水分之间的相互作用机制奠定理论基础,同时也可为我国木质文物的保护提供科学依据,以减少出土饱水木质文物与环境中水分的相互作用,提高木质文物的尺寸稳定性。
1. 材料与方法
1.1 材 料
本研究所用考古木材取自成都文物考古研究院发掘出土的南宋木棺残片,由研究院提供的材料和信息确定为考古柏木,并采集四川产柏木(Cupressus sp.)作为现代对照材。
1.2 细胞壁微观形貌表征
利用滑动切片机(REM-710,Yamato Kohki industrial Co.,Ltd,Japan)制得尺寸为1 mm(轴向) × 2 mm(弦向) × 2 mm(径向)的柏木考古木材与现代木材薄片试样(试样重复数为3),用于SEM观察。在80 ℃的鼓风干燥箱中将试样干燥至质量恒定后进行喷金处理,设置SEM(S-3400,Hitachi,日本)加速电压为3 kV,对柏木试样的细胞结构进行观察,初步了解考古木材的降解、腐朽情况。
1.3 化学成分表征
利用研磨机将考古木材与现代木材样品加工成100目以下的木粉,并在80 ℃的真空干燥箱中干燥至质量恒定,之后将木粉与溴化钾充分混合研磨压制成透明薄片,利用红外光谱仪(BRUKER vertex 70 V,德国)对试样进行检测分析,扫描范围设为400 ~ 4 000 cm−1,分辨率为4 cm−1,每个试样扫描次数为32次。重复测试3次,取平均值。
1.4 吸附热力学量测定
将柏木考古木材、现代木材样品加工为20 mg左右木片,并分别置于(103 ± 2)℃下干燥至质量恒定,用于动态水分吸附分析(dynamic vapor sorption,DVS)实验。将各组试样放入DVS中,分别预设恒定温度为25和50 ℃,相对湿度以10%为梯度从0%增加到90%,继续增加至95%,然后降回至90%,再以10%为梯度从90%降低到0%,试样在每个相对湿度下逐渐达到吸湿/解吸平衡后(当样品质量变化速率连续在10 min内小于0.000 1%/min,则认为样品达到吸湿/解吸平衡),仪器自动进入下一个相对湿度梯度。仪器每隔1 min记录样品质量、温度和相对湿度等数据,得到考古木材和现代木材的吸湿和解吸平衡的等温吸附曲线。
利用Hailwood-Horrobin水分吸着理论[10]分析所获得的等温吸附曲线,木材在不同相对湿度条件下达到的平衡含水率可表达为
M=Mh+Md=18m(KhKdH1+KhKdH+KdH1−KdH) (1) 式中:M为试样平衡含水率(%);Mh为水合水质量分数(%);Md为溶解水质量分数(%);m为单位摩尔数吸着位点的绝干木材质量(g/mol);Kh为水合水与溶解水之间的平衡常数;Kd为溶解水与环境温湿度之间的平衡常数;H为相对湿度(%)。
将式(1)整理成多项式,具体为
HM=A+BH−CH2 (2) 式中:A、B、C为多项式的拟合参数,A、B、C与Kh、Kd、m的关系为
A=m18×1Kd(Kh+1) (3) B=m18×Kh−1Kh+1 (4) C=m18×KhKdKh+1 (5) 通过不同相对湿度环境试样的等温吸湿曲线数据分析可得到拟合参数A、B、C的值,进而可以求解m、Kh和Kd的值,公式中
m18 的倒数18m 表示木材中有效吸着基团被水合水饱和时的含水率,间接表达了水分吸着位点的数量。利用各组试样的DVS数据拟合等温吸附曲线,进一步通过Clausius-Clapeyron公式[15]分别计算考古木材与现代木材的微分吸着热QS、自由能变化ΔG和微分吸着熵ΔS,分析考古木材与现代木材在吸附热力学量间的差异,各热力学量的计算公式如下。
QS=0.254d(ln1H)/d(ln1H)d(1T)d(1T) (6) ΔG=−RT18lnH (7) ΔS=QS−ΔG/T (8) 式中:T为温度(K);R为气体常数。
T和H的值均由DVS实验的拟合数据获取,然后分别通过公式(6)、(7)计算得到QS和ΔG的值,进一步计算得到ΔS。
2. 结果与讨论
2.1 细胞壁结构
图1为考古木材与现代木材横切面、纵切面的SEM图片。对比考古木材与现代木材图像,可以发现在经历长时间的饱水腐朽下,考古木材除复合胞间层、细胞角隅保存相对完整外[16-17],其细胞壁结构发生了明显的变化,与现代木材完整有序的细胞排列相比(图1b),考古木材由于长时间遭受微生物降解,细胞结构发生破坏,细胞壁产生腐朽。
具体而言,考古木材细胞壁上出现少量圆形孔洞(图1a),除此之外,从考古木材纵切面可见纹孔膜腐朽细节(图1c),并有菌丝体的存在(图1d),该菌丝体是导致考古木材在所处环境中受到降解的各类真菌的聚集体。Guo等[11]通过氮气吸附法和压汞法对山桐子(Idesia polycarpa)考古木材多孔结构的研究结果表明,考古木材的中孔隙的总孔体积比现代木材样品增加了471%,这也进一步证明了本研究中考古木材孔洞增多的事实。
2.2 化学成分变化
对等量考古木材与现代木材样品的红外光谱进行归一化处理后,可用吸收峰高度半定量表示吸收峰所代表基团的含量[18],通过对比考古木材与现代木材试样红外光谱(图2)的特征吸收峰位置变化及消失情况,结合各特征吸收峰所代表的化学基团,研究得到考古木材3种主要化学成分(纤维素、半纤维素、木质素)的含量变化情况及极性基团−OH、−COOH类型和含量的变化情况。
3 337 ~ 3 401 cm−1范围内的吸收峰代表极性基团−OH(O−H伸缩振动),考古木材在此处的吸收峰高度小于现代木材,证明考古木材中−OH含量减少。选取1 742 cm−1(半纤维素C=O伸缩振动)、1 231 cm−1(半纤维素酰氧键−COO伸缩振动)为半纤维素的代表特征峰,与现代木材相比,柏木考古木材的红外吸收光谱在1 742、1 231 cm−1处吸光度变小,特别是在1 742 cm−1处吸收峰几乎完全消失,证明考古木材细胞壁结构中的半纤维素降解严重;另一方面,1 231 cm−1吸收峰代表半纤维素酰氧键−COO,考古木材在1 231 cm−1处的吸收峰高度明显小于现代木材,证明考古木材半纤维素上的−COOH含量减少。
此外,由于考古木材纤维素结晶区中纤维素链的氢键网络的部分断裂,导致892 cm−1处的峰几乎消失,而该处波峰代表C−H弯曲振动,并且对氢键系统的性质敏感,因此该峰几乎消失表明,在考古木材试样中形成更稳定氢键的羟基数量减少,同时这也表明考古木材中无论是无定形区还是结晶区中的纤维素链都发生部分降解[19]。
指纹区吸收光谱峰数多、较为复杂,包含了更多能反映分子结构细微变化的信息[20]。为了提供更多的信息,将FTIR光谱图分析细化至3个指纹区域(1 550 ~ 1 800 cm−1、1 200 ~ 1 550 cm−1和850 ~ 1 200 cm−1),在这个范围内通过直接的红外光谱分析考古木材和现代木材仍存在一定局限性,因为指纹区往往存在高度重叠的峰,难以分辨和解析。为此,通过对考古木材和现代木材指纹区光谱进行分峰拟合处理,得到分峰拟合曲线,可以更直观地分析考古木材化学成分的变化。
通过对比考古木材和现代木材FTIR在1 550 ~ 1 800 cm−1波数范围内的分峰拟合曲线(图3a)可以发现,考古木材在1 654 cm−1(木质素中共轭C=O伸缩振动)处吸收峰吸光度值较高,这说明考古木材木质素相对含量升高。通过对比考古木材和现代木材FTIR在1 200 ~ 1 550 cm−1波数范围内的分峰拟合曲线(图3b)可以发现,考古木材在1 418 cm−1(木质素甲基中C−H弯曲振动)处吸收峰强度变大,代表考古木材木质素相对含量升高。通过对比分析考古木材和现代木材FTIR在850 ~ 1 200 cm–1波数范围内的分峰拟合曲线(图3c)可以得到:考古木材在892 cm–1(纤维素C−H弯曲振动)处峰几乎消失,这表明在考古木材中形成更稳定氢键的羟基数目减少;1 159 cm–1(综纤维素C−O−C变形振动)处,考古木材吸收峰吸光度值很低,这表明综纤维素也有一定程度的降解。
综上可以发现,考古木材与现代木材相比,半纤维素、纤维素降解严重,纤维素骨架结构受到破坏,因此在SEM下可观察到细胞壁产生腐朽,这种化学成分和化学结构的变化进一步导致了细胞壁孔洞的出现,从化学成分变化角度解释了SEM中观察到考古木材出现孔洞等腐朽现象的原因。通过Xia等[21]的研究,考古木材木质素的化学结构也发生了变化,木质素仍会有降解,但考古木材中多糖类物质(纤维素、半纤维素)比芳环类物质(木质素)降解程度更高,因而木质素相对含量总体有升高趋势[22-23]。除纤维素、半纤维素含量降低及木质素相对含量升高的变化外,考古木材中极性基团−OH、−COOH含量均减少,导致考古木材对水分的吸着减少。
2.3 吸附热力学分析
2.3.1 Hailwood-Horrobin模型拟合
通过Hailwood-Horrobin模型拟合等温吸附曲线,不仅可以得到给定温度下木材吸湿和解吸任意平衡含水率状态下的相对湿度,更可以通过研究考古木材与现代木材的曲线差异,帮助理解考古木材水分吸附行为的差异本质。
根据Hailwood-Horrobin模型分别拟合出在25和50 ℃下考古木材、现代木材的等温吸附曲线(图4)。从中可以看出各等温吸附曲线的拟合度R2值均高于0.99,即Hailwood-Horrobin模型能够较好地描述考古木材及现代木材的等温吸附曲线。所有的等温吸附曲线均呈现“S”形,这说明无论考古木材还是现代木材都属于Ⅱ类等温吸附曲线,具备多孔材料的吸附特征[24-25]。在给定温度的每一个相对湿度条件下,考古木材的平衡含水率均高于现代木材,以温度为50 ℃,相对湿度为0.6时为例,考古木材平衡含水率为7.94%,现代木材为7.46%,考古木材是现代木材的1.1倍。这是因为图1a的 SEM图像显示考古木材物理环境遭到改变,细胞壁孔洞增多,即木材降解程度越大,木材细胞壁内孔隙越多,对水分的容纳空间增加,含水率越高,所以考古木材在经历长时间的降解后平衡含水率高于现代木材。
图5为50 ℃下考古木材吸湿和解吸平衡状态的等温吸附曲线,图5显示考古木材的解吸曲线始终位于吸湿之上,即出现了水分吸湿滞后现象。表1总结了在不同相对湿度条件下,考古木材、现代木材分别在25、50 ℃下的滞后率。从表1可以看出:随着温度或相对湿度的升高,考古木材和现代木材的滞后率均增大,即水分吸湿滞后均减小,这与以往研究结果一致[13];另一方面,考古木材与现代木材的水分吸湿滞后大小差异不大。
2.3.2 吸湿平衡状态下的热力学量分析
2.3.2.1 微分吸着热
图6是吸湿平衡状态下考古木材与现代木材中水分的微分吸着热(QS)随含水率(moisture content,MC)的变化曲线,QS值越大表示木材中水分子与周围分子之间的结合力越强[13]。与以往研究结果略有不同的是,在MC为5%处产生一明显拐点。根据曲线变化趋势,可以将曲线分为两个阶段,当MC小于 5%的低含水率状态下时,QS值逐渐增大直至达到最大值,这表明水分子和木材之间的氢键结合首先表现为单层分子之间的相互结合,且随MC增大,单个水分子和木材中的−OH形成了更多的氢键结合,相互作用更强,形成的键能更高[18]。当含水率大于5%时,QS值随MC的增大而减小,此时单分子层吸着水几乎达到饱和,吸着水分子与木材实质之间形成的氢键结合作用变弱,键能降低[13]。
表 1 考古木材、现代木材在25、50 ℃下不同相对湿度下的吸湿滞后Table 1. Moisture sorption hysteresis of archaeological wood and recent wood under different relative humidities at 25 and 50 ℃相对湿度
Relative humidity滞后率 Hysteresis rate 25 ℃考古木材
25 ℃-archaeological wood50 ℃考古木材
50 ℃-archaeological wood25 ℃现代木材
25 ℃-recent wood50 ℃现代木材
50 ℃-recent wood0.1 0.62 0.74 0.63 0.71 0.2 0.63 0.72 0.64 0.73 0.3 0.64 0.72 0.65 0.74 0.4 0.66 0.73 0.67 0.76 0.5 0.68 0.75 0.70 0.78 0.6 0.71 0.77 0.73 0.81 0.7 0.76 0.81 0.77 0.84 0.8 0.82 0.86 0.84 0.89 0.9 0.91 0.94 0.93 0.95 考古木材与现代木材相比,整体曲线形状基本相同,但考古木材的QS值随MC的变化曲线位于现代木材之下。根据上文FTIR分析,考古木材化学成分中纤维素、半纤维素大量降解,因此外界水分子可结合−OH、−COOH位点数量减少,这种化学环境的改变导致吸着水与木材分子之间的结合减少,QS值降低[26]。
2.3.2.2 自由能变化
水分的自由能变化的物理意义是水分子润胀木材并切断木材分子相互间氢键结合,裸露木材吸着点所需做的功[13]。基于图7所示吸湿平衡状态下考古木材与现代木材中水分的自由能变化ΔG值随MC的变化曲线,可以发现考古木材与现代木材的ΔG值均随MC的增大而减小。ΔG值与MC变化呈负相关可以解释为,MC升高使木材可塑性增大,吸着水分子与木材实质分子的协同运动加剧,因此裸露木材吸着点所需做的功减少。
其次,无论是考古木材或是现代木材,50 ℃相较于25 ℃的ΔG值都有一定程度的减小,这是因为温度升高吸着水分子能量增加,活动加剧,所需做的功减小。
2.3.2.3 微分吸着熵
微分吸着熵(ΔS)体现了木材中吸着的水分子与液态水分子相比排列规则上的差异,ΔS > 0代表木材中水分子排列更有规律[13]。根据吸湿平衡状态下考古木材与现代木材中水分的ΔS值随MC的变化曲线(图8)可知:ΔS值与QS值随MC的变化曲线在MC小于5%呈现相似的变化趋势,都随MC的增大而增大。在MC小于5%的低含水率阶段,ΔS < 0表明木材中吸着的水分子比液态水分子更无序,这是因为此时木材中吸着的水分子主要为单分子层吸着水,它们比处于液体状态的水分子显示出更无序的状态;在经过5%的拐点之后,ΔS值随MC变化不明显。而随着MC的增大,ΔS值经历了由负到正、由无序到有序的变化,这说明吸着在木材中的水分子排列越来越规则。
进一步分析考古木材与现代木材的曲线差异,考古木材ΔS值低于现代木材,这是因为考古木材在经历长期酸碱环境下软腐菌等真菌的降解后[27],细胞壁出现的孔洞分布是随机的,且与水结合的−OH分布也十分不均匀,造成考古木材中吸着的水分子排列更无序。
2.3.3 水分吸湿与解吸的比较
以50 ℃考古木材为例,分别绘制QS、ΔG、ΔS三大热力学量随MC的变化曲线,每张图包含吸湿和解吸平衡态下的两条曲线(图9)。发现吸湿和解吸变化曲线形状基本一致,但解吸的QS、ΔG和ΔS值均大于吸湿的值[14],对应于水分吸湿滞后(图5),这个现象即为“热力学吸湿滞后”,其表征在吸湿与解吸平衡态下,每一个吸着水分子与木材吸着点之间的氢键结合平均数的差异[13]。
热力学吸湿滞后同样可以用水分吸湿滞后的“有效羟基说”[28]解释,即在干燥状态下,部分木材吸着点之间形成氢键结合,当木材从干燥状态开始吸湿时,由于这部分已经形成的氢键结合的影响,处于游离状态能够吸着水分子的吸着点的数量减少,每个吸着水分子与木材吸着点之间的氢键结合平均数减少,从而吸湿的热力学量也低于解吸过程。
3. 结 论
为探究考古木材的水分吸着行为与现代木材的差异机理,本研究从考古木材与现代木材微观结构与吸附热力学两个层面进行了研究。
考古木材三大主要成分(纤维素、半纤维素、木质素)均发生不同程度的降解,且考古木材中极性基团−OH、−COOH含量均减少,导致考古木材对水分的吸着减少。其中半纤维素、纤维素降解程度更大,因此在SEM中可观察到细胞壁产生腐朽,且可见孔洞分布;而考古木材中多糖类物质(纤维素、半纤维素)比芳环类物质(木质素)降解程度更高,因而木质素相对含量升高。
在吸附热力学研究中,通过DVS等温吸附实验并利用Hailwood-Horrobin模型拟合等温吸附曲线,在给定温度条件下考古木材的平衡含水率高于现代木材。结合Clausius-Clapeyron公式计算考古木材与现代木材的QS、ΔG和ΔS三大热力学量。考古木材因纤维素、半纤维素降解导致−OH、−COOH数量减小,QS值低于现代木材;考古木材与现代木材的ΔG值差异不大,且随温度升高而减小;考古木材的细胞壁孔洞、−OH分布不均匀,所以ΔS值低于现代木材;在MC小于5%,考古木材QS值和ΔS值随MC的变化曲线趋势相似,在此范围内木材中吸着的水分子主要为单分子层吸着水,随后在5%处产生一拐点,此时单分子层吸着水达到饱和,此后木材中吸着的水分子以多分子层吸着水占主导。最后,通过对比吸湿和解吸过程的热力学量(吸湿 < 解吸),发现考古木材存在热力学吸湿滞后现象。
基于以上对于考古木材水分吸着行为差异的研究,考古木材的吸湿性在经历长时间的泡水、腐朽下发生了较大变化,因此在出土饱水木质文物的保护工作中,建议采用各种物理、化学手段减少木质文物与环境中水分的相互作用,如涂覆防水涂层、浸渍脱水材料等,从而提高木质文物的尺寸稳定性[29],为我国出土饱水木质文物的保护提供理论支撑。
-
表 1 考古木材、现代木材在25、50 ℃下不同相对湿度下的吸湿滞后
Table 1 Moisture sorption hysteresis of archaeological wood and recent wood under different relative humidities at 25 and 50 ℃
相对湿度
Relative humidity滞后率 Hysteresis rate 25 ℃考古木材
25 ℃-archaeological wood50 ℃考古木材
50 ℃-archaeological wood25 ℃现代木材
25 ℃-recent wood50 ℃现代木材
50 ℃-recent wood0.1 0.62 0.74 0.63 0.71 0.2 0.63 0.72 0.64 0.73 0.3 0.64 0.72 0.65 0.74 0.4 0.66 0.73 0.67 0.76 0.5 0.68 0.75 0.70 0.78 0.6 0.71 0.77 0.73 0.81 0.7 0.76 0.81 0.77 0.84 0.8 0.82 0.86 0.84 0.89 0.9 0.91 0.94 0.93 0.95 -
[1] Sandstrom M, Jalilehvand F, Persson I, et al. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid[J]. Nature, 2002, 415: 893−897. doi: 10.1038/415893a
[2] Walsh-Korb Z, Avérous L. Recent developments in the conservation of materials properties of historical wood[J]. Progress in Materials Science, 2019, 102: 167−221. doi: 10.1016/j.pmatsci.2018.12.001
[3] Zoia L, Salanti A, Orlandi M. Chemical characterization of archaeological wood: softwood Vasa and hardwood Riksapplet case studies[J]. Journal of Cultural Heritage, 2015, 16(4): 428−437. doi: 10.1016/j.culher.2014.09.015
[4] 林国聪, 孟原召, 王光远. 浙江宁波渔山小白礁一号沉船遗址调查与试掘[J]. 中国国家博物馆馆刊, 2011, 33(11): 54−68. Lin G C, Meng Y Z, Wang G Y. Survey and exploratory excavation of the Xiaobaijiao 1 Wreck Site in Yushan[J]. Journal of National Museum of China, 2011, 33(11): 54−68.
[5] 张玄微. 浅析饱水古木材低温低氧保藏技术—以“南海Ⅰ号”出土饱水木材标本为例[J]. 客家文博, 2020, 13(4): 17−21. Zhang X W. Analysis on the preservation technology of moisture-saturated ancient wood at low temperature and low oxygen: taking the moisture-saturated wood specimen unearthed from “Nanhai Ⅰ” as an example[J]. Hakka Cultural Heritage Vision, 2020, 13(4): 17−21.
[6] Crestini C, El Hadidi N M N, Palleschi G. Characterisation of archaeological wood: a case study on the deterioration of a coffin[J]. Microchemical Journal, 2009, 92(2): 150−154. doi: 10.1016/j.microc.2009.03.003
[7] Łucejko J J, Modugno F, Ribechini E, et al. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques[J]. Analytica Chimica Acta, 2009, 654(1): 26−34. doi: 10.1016/j.aca.2009.07.007
[8] 卢芸. 木材超分子科学: 科学意义及展望[J]. 木材科学与技术, 2022, 36(2): 1−10. doi: 10.12326/j.2096-9694.2022026 Lu Y. Wood supramolecular science: scientific significance and prospects[J]. Chinese Journal of Wood Science and Technology, 2022, 36(2): 1−10. doi: 10.12326/j.2096-9694.2022026
[9] Majka J, Babiński L, Olek W. Sorption isotherms of waterlogged subfossil scots pine wood impregnated with a lactitol and trehalose mixture[J]. Holzforschung, 2017, 71(10): 813−819. doi: 10.1515/hf-2017-0006
[10] Hailwood A J, Horrobin S. Absorption of water by polymers: analysis in terms of a simple model[J]. Transactions of the Faraday Society, 1946, 42: 84−92. doi: 10.1039/tf946420b084
[11] Guo J, Yin Y F, Han L Y, et al. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old[J]. International Association of Wood Anatomists Journal, 2019, 40(4): 1−25.
[12] Thybring E E, Kymäläinen M, Rautkari L. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated[J]. Wood Science and Technology, 2018, 52(2): 297−329. doi: 10.1007/s00226-017-0977-7
[13] 曹金珍. 吸着·解吸过程中水分与木材之间的相互作用—从介电弛豫及吸附热力学[D]. 北京: 北京林业大学, 2001. Cao J Z. Interaction between water and wood during adsorption and desorption processes: from dielectric and thermodynamic approaches[D]. Beijing: Beijing Forestry University, 2001.
[14] Simón C, Esteban L G, Palacios P, et al. Thermodynamic properties of the water sorption isotherms of wood of limba (Terminalia superba Engl. & Diels), obeche (Triplochiton scleroxylon K. Schum.), radiata pine (Pinus radiata D. Don) and chestnut (Castanea sativa Mill.)[J]. Industrial Crops and Products, 2016, 94(8): 122−131.
[15] Perry N P, Audimar P B, Andy L. Thermodynamics of moisture sorption by the giant-timber bamboo[J]. Holzforschung, 1997, 51(2): 177−182. doi: 10.1515/hfsg.1997.51.2.177
[16] 韩刘杨. 小白礁Ⅰ号沉船饱水· 脱水加固木材的结构与性能研究[D]. 北京: 中国林业科学研究院, 2020. Han L Y. Structure and performance of both waterlogged and consolidated archaeological wood: a case of Xiaobaijiao No. 1 Shipwreck[D]. Beijing: Chinese Academy of Forestry, 2020.
[17] Bari E, Nazarmezhad N, Kazemi S M, et al. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreanus and Trametes versicolor in beech wood[J]. International Biodeterioration & Biodegradation, 2015, 104(12): 231−237.
[18] 孙佳楠. 东营凹陷页岩可动油评价及留烃机理[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021. Sun J N. Evalution of movable oil and retention machanics of Dongying depression shales[D]. Guangzhou: University of Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, 2021.
[19] Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi[J], International Biodeterioration & Biodegradation, 2003, 52(3): 151−160.
[20] Oudiani A E, Msahli S, Sakli F. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy[J]. Carbohydrate Polymers, 2017, 164(5): 242−248.
[21] Xia Y, Chen T Y, Wen J L, et al. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood[J]. International Journal of Biological Macromolecules, 2018, 109: 407−416. doi: 10.1016/j.ijbiomac.2017.12.114
[22] 袁诚, 翟胜丞, 章一蒙, 等. 红外光谱结合热重法对考古木材降解状况的分析[J]. 光谱学与光谱分析, 2020, 40(9): 2943−2950. Yuan C, Zhai S C, Zhang Y M, et al. Simple evaluation of the degradation state of archaeological wood based on the infrared spectroscopy combined with thermogravimetry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2943−2950.
[23] 袁诚, 陈冰炜, 黄曹兴, 等. 徐州出土汉代棺木用材树种鉴定及其化学性质[J]. 林业工程学报, 2019, 4(3): 52−59. Yuan C, Chen B W, Huang C X, et al. Species identification and chemical analysis of coffin wood in the Han Dynasty excavated in Xuzhou[J]. Journal of Forestry Engineering, 2019, 4(3): 52−59.
[24] Kadita S. Studies on the water sorption of wood[J]. Wood Research, 1960, 23: 1−61.
[25] Simpson W. Sorption theories applied to wood[J]. Wood and Fiber Science, 1980, 12(3): 183−195.
[26] García-Iruela A, García E L, García F F, et al. Effect of degradation on wood hygroscopicity: the case of a 400-year-old coffin[J]. Forests, 2020, 11(7): 712. doi: 10.3390/f11070712
[27] Nilsson T, Rowell R. Historical wood-structure and properties[J]. Journal of Cultural Heritage, 2012, 13(3): S5−S9. doi: 10.1016/j.culher.2012.03.016
[28] Urquhart A R. The mechanism of the adsorption of water by cotton[J]. Journal of the Textile Institute, 1929, 20: 125−132. doi: 10.1080/19447022908661485
[29] 郭娟, 杨弢, 殷亚方. 考古木材的吸湿性能及其内在影响机制[M] 北京: 科学出版社, 2020: 240-249. Guo J, Yang T, Yin Y F. The moisture adsorption properties and internal influence mechanism of archaeological wood[M]. Beijing: Science Press, 2020: 240−249.
-
期刊类型引用(6)
1. 冯林艳,周火艳,赵晓迪. 乌兰布和沙漠两种植物的分布格局及其变化. 南京林业大学学报(自然科学版). 2024(01): 155-160 . 百度学术
2. 曾红,徐永艳,邵琳亚,闻永慧,夏小丽,汪琼. 4种植物叶片浸提液成分分析及其对珊瑚樱种子萌发的影响. 西南林业大学学报(自然科学). 2023(04): 39-46 . 百度学术
3. 马光宗,徐高峰,杨韶松,杨云海,张付斗,温丽娜,陶琼,申时才,叶敏. 甘薯提取物对3种杂草种子萌发和幼苗生长的化感作用. 西南农业学报. 2022(06): 1295-1302 . 百度学术
4. 路文杰,佛芒芒,肖毅,王永新,杜利霞,钟华,赵祥,董宽虎. 草地植物凋落物浸提液对根际微生物碳源利用的影响. 中国草地学报. 2021(06): 35-42 . 百度学术
5. 张林媚,刘姝玲,郭彩云. 立地条件对榆林沙区樟子松嫁接红松生长的影响. 林业科技通讯. 2021(11): 32-37 . 百度学术
6. 王方琳,尉秋实,柴成武,王理德,张德魁,王昱淇,王飞,胡小柯. 沙蒿(Artemisia desertorum)浸提液对自身种子萌发与幼苗生长的化感作用. 中国沙漠. 2021(06): 21-28 . 百度学术
其他类型引用(3)