Construction of ecological security pattern based on RSEI and circuit theory: a case of Guangzhou City
-
摘要:
目的 近年来城市化的高速推进使经济发展需求与生态保护矛盾日益突出,构建生态安全格局对实现人与自然和谐共生及国土空间结构优化具有重要意义。 方法 以广州市为例,采用遥感生态指数(RSEI)识别生态源地,通过最小累积阻力模型(MCR)与电路理论识别生态廊道、生态夹点及障碍点,从而构建广州市生态安全格局。 结果 研究表明:(1)1990—2020年广州市生态环境质量较好,RSEI均值从0.60下降至0.58再回升到0.60,呈“先降后升”趋势,但南、北部生境质量差距较大。(2)共识别出生态源地25个,面积共计1 511.26 km2,占广州市总面积20.33%,主要集中于研究区东北部,南部仅有3处生态源地;共提取出生态廊道50条,其中一级廊道20条,总长114.06 km,二级廊道22条,潜在廊道8条。(3)共识别出生态夹点48处,现状用地类型以林地、耕地、建设用地为主,其中面积最大为19.09 km2,位于番禺区莲花山一带,最小的夹点面积仅有0.11 km2;生态障碍点共识别出12个处,主要分布于黄埔区、从化区,土地利用现状主要为耕地及建设用地,其中面积最大为0.42 km2,位于从化区温泉东埔农庄北部,最小面积仅有900 m2;共识别出63处断裂点,主要集中于广州市中部的白云区及黄埔区。 结论 研究结果可为广州市未来城市空间格局优化及生态系统修复提供数据支撑,同时为其他超大型城市的生态安全格局构建提供参考。 Abstract:Objective In recent years, the rapid development of urbanization has made the contradiction between economic development needs and ecological protection increasingly prominent, and the construction of an ecological security pattern is of great significance for realizing the harmonious coexistence between man and nature and the optimization of the spatial structure of the national territory. Method Taking Guangzhou As an example, the ecological source sites were selected using the Remote Sensing Ecological Index (RSEI), and ecological corridors, ecological pinch points and barrier points were extracted by the Minimum Cumulative Resistance (MCR) model and circuit theory, so as to construct the ecological safety pattern of Guangzhou City. Result The results show that: (1) the ecological and environmental quality of Guangzhou from 1990 to 2020 is relatively good, with the average value of RSEI decreasing from 0.60 to 0.58 and then increasing to 0.60, showing a trend of “first decreasing and then increasing”, but the difference between the habitat quality in the south and the north is large. (2) A total of 25 ecological source sites were identified, with a total area of 1 511.26 km2, accounting for 20.33% of the total area of Guangzhou, mainly concentrated in the northeast of the study area, with only 3 ecological source sites in the south; a total of 50 ecological corridors were extracted, including 20 primary corridors with a total length of 114.06 km, 22 secondary corridors, and 8 potential corridors. (3) A total of 48 ecological pinch points were identified, with the current land use types mainly being forest land, farmland and construction land, of which the largest area is 19.09 km2, located in the area of Lianhua Mountain in Panyu District, and the smallest pinch point is only 0.11 km2 in area; a total of 12 ecological barriers were identified, mainly in Huangpu District and Conghua District, where the current land use is mainly arable land and construction land, with the largest area of 0.42 km2 located in the north of Dongpu Farm in Conghua District, and the smallest area of 900 m2; 63 fracture points were identified, mainly in Baiyun District and Huangpu District in central Guangzhou. Conclusion The research results can provide data support for the optimization of the future urban spatial pattern and ecosystem restoration in Guangzhou City, and at the same time provide a reference for the construction of the ecological security pattern of other super-large cities. -
Key words:
- RSEI /
- circuit theory /
- ecological security pattern /
- Guangzhou City
-
表 1 各指标计算公式
Table 1. Indicators calculation formulas
指标 Indicators 计算方法 Calculation methods NDVI ${\rm{ NDVI }} = \left( {{\rho _{{\rm{NIR}}}} - {\rho _{{\rm{red}}}}} \right)/\left( {{\rho _{{\rm{NIR}}}} + {\rho _{{\rm{red}}}}} \right)$ WET ${\rm{WE} }{ {\rm{T} }_{ {\rm{TM} } } } = 0.031\;5{\rho _{\rm{a} } } + 0.202\;1{\rho _{\rm{G} } } + 0.310\;2{\rho _{\rm{R} } } + 0.159\;4{\rho _{ {\rm{NIR} } } } - 0.680\;6{\rho _{ {\rm{SWI} }{\rm{R} }1} } - 0.610\;9{\rho _{ {\rm{SWIR} }2} }$ ${\rm{WE}}{{\rm{T}}_{{\rm{OLI}}}} = 0.151\;1{\rho _{\rm{B}}} + 0.197\;3{\rho _{\rm{G}}} + 0.328\;3{\rho _{\rm{R}}} + 0.340\;7{\rho _{{\rm{NIR }}}} - 0.711\;7{\rho _{{\rm{SWIR1 }}}} - 0.455\;9{\rho _{{\rm{SWIR2 }}}} $ LST ${\text{LST = } }{T \mathord{\left/ {\vphantom {T {\left[ {1 + \left( {\dfrac{ {\lambda {T_{\text{b} } } } }{\rho } } \right) \cdot \ln \varepsilon } \right] - 273.15} } } \right.} {\left[ {1 + \left( {\dfrac{ {\lambda {T_{\text{b} } } } }{\rho } } \right) \cdot \ln \varepsilon } \right] - 273.15} }$ NDBSI $\begin{array}{l}{\rm{IBI} } = \left\{ {2{\rho _{ {\rm{SWIR1 } } } }/\left( { {\rho _{ {\rm{SWIR1} } } } + {\rho _{ {\rm{NIR} } } } } \right) - \left[ { {\rho _{ {\rm{NIR} } } }/\left( { {\rho _{ {\rm{NIR} } } } + {\rho _{\rm{R} } } } \right) + {\rho _{\rm{G} } }/\left( { {\rho _{\rm{G} } } + {\rho _{ {\rm{SWIR1 } } } } } \right)} \right]} \right\}/\\\qquad\;\;\left\{ {2{\rho _{ {\rm{SWIR1} } } }/\left( { {\rho _{ {\rm{SWIR1 } } } } + {\rho _{ {\rm{NIR } } } } } \right) + \left[ { {\rho _{ {\rm{NIR} } } }/\left( { {\rho _{ {\rm{NIR } } } } + {\rho _{\rm{R} } } } \right) + {\rho _{\rm{G} } }/\left( { {\rho _{\rm{G} } } + {\rho _{ {\rm{SWIR1 } } } } } \right)} \right]} \right\}\end{array}$ ${\rm{SI}} = \dfrac{{\left[ {\left( {{\rho _{{\rm{SWIR1}}}} + {\rho _{\rm{R}}}} \right) - \left( {{\rho _{\rm{B}}} + {\rho _{{\rm{NIR}}}}} \right)} \right]}}{{\left[ {\left( {{\rho _{{\rm{SWIR1}}}} + {\rho _{\rm{R}}}} \right) + \left( {{\rho _{\rm{B}}} + {\rho _{{\rm{NIR}}}}} \right)} \right]}} $ ${\rm{NDBSI}} = (IBI + SI)/2 $ 注:NDVI.归一化植被指数;LST.地表温度;NDBSI.归一化土壤指数;IBI.建筑用地指数;SI.裸土指数;ρred、ρB、ρG、ρNIR、ρSWIR1、ρSWIR2分别对应TM和OLI遥感影像红外光、蓝光、绿光、红光、近红外光、短波红外1、短波红外2波段的反射率;T.热辐射强度转化的亮度温度;λ.热红外中心波长;ρ = 1.438 × 10−2 mK;ε.地表比辐射率。Notes: NDVI: Normalized difference vegetation index; LST: Land surface temperature; NDBSI: Normalized difference impervious surface index; IBI: Index-based built-up index; SI: Soil index; ρred, ρB, ρG, ρNIR, ρSWIR1, ρSWIR2 are the reflectance of the red, blue, green, short-wavelength infrared 1 (SWIR1), and SWIR2 bands of Landsat 5 TM and Landsat 8 OLI, respectively; T: Brightness temperature for conversion of thermal radiation intensity; λ: Thermal infrared central wavelength; ρ = 1.438 × 10−2 mK; ε: Land surface emissivity. 表 2 阻力因子及阻力值
Table 2. Resistance factors and resistance values
阻力因子
Resistance factors分级标准
Classification criteria阻力值
Resistance value阻力因子
Resistance factors分级标准
Classification criteria阻力值
Resistance value归一化植被指数
NDVI0.8 ~ 1.0 1 坡度
Slope< 3° 1 0.6 ~ 0.8 2 3° ~ 8° 2 0.4 ~ 0.6 3 8° ~ 15° 3 0.2 ~ 0.4 4 15° ~ 25° 4 0.0 ~ 0.2 5 > 25° 5 土地利用类型
Land cover types森林 Forest 1 距道路距离
Distances from road> 1 500 m 1 水体、湿地 Water and wetland 2 900 ~ 1 500 m 2 灌木林 Shrub 3 500 ~ 900 m 3 草地、耕地 Grassland and cropland 4 200 ~ 500 m 4 建设用地 Construction land 5 < 200 m 5 地形起伏度
Relief< 8 m 1 距水域距离
Distance from water> 1 500 m 1 8 ~ 18 m 2 900 ~ 1 500 m 2 18 ~ 30 m 3 600 ~ 900 m 3 30 ~ 46 m 4 300 ~ 600 m 4 > 46 m 5 < 300 m 5 表 3 阻力因子权重
Table 3. Weights of resistance factors
阻力因子
Resistance factors归一化植被指数
NDVI土地利用类型
Land cover types地形起伏度
Relief坡度
Slope距道路距离
Distances from road距水域距离
Distance from water权重 Weight 0.121 0 0.288 2 0.083 2 0.107 1 0.171 9 0.228 7 表 4 1990—2020年广州市生态环境质量等级与面积统计
Table 4. Statistics of ecological quality grade and area of Guangzhou City from 1990 to 2020
RSEI等级
Grade1990年 2000年 2011年 2020年 面积
Area/km2比例
Scale/%面积
Area/km2比例
Scale/%面积
Area/km2比例
Scale/%面积
Area/km2比例
Scale/%差 Bad 870.23 12.67 893.81 13.13 1 080.65 15.85 852.97 12.44 较差 Poor 725.95 10.57 800.94 11.76 847.42 12.43 929.54 13.55 一般 Moderate 1 297.40 18.90 1 431.28 21.02 1 225.26 17.97 1124.15 16.39 良 Good 1 936.30 28.20 1 780.55 26.15 1 609.65 23.61 1729.24 25.22 优 High 2 036.18 29.66 1 902.27 27.94 2 054.00 30.13 2221.78 32.40 RSEI均值 Mean value 0.60 0.59 0.58 0.60 表 5 1990—2020年广州市各区RSEI均值统计
Table 5. Average RSEI statistics of various districts in Guangzhou City from 1990 to 2020
年份 Year 荔湾区 Liwan District 越秀区 Yuexiu District 海珠区 Haizhu District 天河区 Tianhe District 白云区 Baiyun District 黄埔区 Huangpu District 番禺区 Panyu District 花都区 Huadu District 南沙区 Nansha District 从化区 Conghua District 增城区 Zengcheng District 1990 0.38 0.17 0.43 0.43 0.57 0.52 0.57 0.56 0.74 0.68 0.93 2000 0.19 0.17 0.24 0.32 0.49 0.57 0.40 0.56 0.58 0.69 0.65 2011 0.16 0.24 0.25 0.35 0.42 0.54 0.32 0.49 0.44 0.77 0.66 2020 0.24 0.33 0.34 0.43 0.45 0.56 0.38 0.54 0.42 0.77 0.68 表 6 广州市生态夹点的分布位置
Table 6. Location of ecological pinch points in Guangzhou City
区县
District数目
Number面积
Area/km2分布位置
Location主要土地利用类型
Main land-use types越秀区
Yuexiu District1 0.37 白云山西南部景泰坑一带
The area around Jingtai Keng, southwest of Baiyun Mountain林地、草地、耕地
Forest, grassland, cropland天河区
Tianhe District1 1.37 天河区粤华路一带(如图8中点A)
Along Yuehua Road, Tianhe District (as shown at point A in Fig. 8)建设用地、林地、草地
Construction land, forest, grassland白云区
Baiyun District6 15.96 大岭顶以北、铜锣湾森林景区以西、广州白云湖公园、白云山片区
North of Daling Ding, west of Tongluo Wan Forest Scenic Area, Guangzhou Baiyun Lake Park, Baiyun Mountain林地、草地、水体
Forest, grassland, water黄埔区
Huangpu District11 21.36 凤凰湖东北部、雷公山片区、南蛇坳北部、荷包山、大岭顶、大山尾顶北部、丹水坑风景旅游区、玉树公园以北、天鹿湖森林公园西北部
Northeast of Fenghuang Lake, Leigong Mountain, north of Nansheao, Hebao Mountain, Daling Ding, north of Dashanwei Ding, Danshuikeng Scenic Tourism Area, north of Yushu Park, northwest of Tianlu Lake Forest Park建设用地、林地
Construction land, forest番禺区
Panyu District6 50.5 莲花山片区(如图8中点B)、岭南印象园沿岸、大夫山、滴水岩
Lianhua Mountain (e.g. Point B in Fig. 8), along the Lingnan Impression Park, Dafu Mountain, Dishuiyan Forest Park建设用地、水体、林地
Construction land, water, forest花都区
Huadu District8 22.49 牙鹰山北部、盘古王公园、广州天科生产基地西部、秀全公园、科达工业园片区、强兴农趣园、广州民航职业技术学院(花都赤坭校区)南部、竹底窝村西部
North of Yaying Mountain, Pangu Wang Park, West of Guangzhou Tianke Production Base, Xiuquan Park, Keda Industrial Park, Qiangxing Agricultural Interest Park, South of Guangzhou Civil Aviation College (Huadu Chini Campus), West of Zhudiwo Village林地、建设用地
Forest, construction land南沙区
Nansha District4 2.25 小虎山西部、大山乸森林公园、黄山鲁森林公园东北部
West of Xiaohu Mountain, Dashanhu Forest Park, northeast of Huangshanlu Forest Park林地、建设用地
Forest, construction land从化区
Conghua District4 2.04 从化区高龙围东部、黄迳村西部、下新村北部、火村东部
East of Gaolong Wei, West of Huangjing Village, North of Xiaxin Village, East of Huo Village林地、草地、耕地
Forest, grassland, cropland增城区
Zengcheng District7 11.22 赶牛凹南部(如图8中点C)、刘家村东部、东西境森林公园东部、元吓村南部、紫荆体育公园、广州市天韵机械设备有限公司北部、新城公园一带 South of Ganniu Ao (e.g. point C in Fig. 8), east of Liujia Village, east of Dongxijing Forest Park, south of Yuanjiao Village, Zijing Sports Park, north of Guangzhou Tianyun Machinery Equipment Corporation, Xincheng Park 林地、草地、耕地
Forest, grassland, cropland荔湾区
Liwan District0 0 海珠区
Haizhu District0 0 表 7 广州市生态障碍点的分布位置
Table 7. Location of ecological barrier points in Guangzhou City
区县
Districts数目
Numbers面积
Area/km2分布位置
Location主要土地利用类型
Main land-use types黄埔区
Huangpu District5 1.53 大山尾顶南部(如图9中点A)、凤凰顶南部、柯木塱塘石三街一带、水尾村一带、贤江公园西部
South of Dashanwei Ding (as point A in Fig. 9), South of Fenghuang Ding, Tang Shi 3rd Street in Kemu Long, Shuiwei Village, West of Xianjiang Park建设用地、耕地
Construction land, cropland花都区
Huadu District2 0.62 王子岭中药种植基地东部、万氏养生度假胜地东部
East of Wangziling Chinese medicine plantation base and east of Wans health resort耕地、林地
Cropland, forest从化区
Conghua District4 1.06 苏桂街一带、何迳头村西部、温泉东埔农庄北部(如图9中点B)、大江里村
Sugui Street, west of He Jingtou Village, north of Wenquan Dongpu Farm (see point B in Fig. 9), Da Jiangli Village耕地、建设用地
Cropland, construction land增城区
Zengcheng District1 0.35 元吓村北部(如图9中点C)
North of Yuanjiao Village (as point C in Fig. 9)耕地、建设用地
Cropland, construction land荔湾区
Liwan District0 0 海珠区
Haizhu District0 0 越秀区
Yuexiu District0 0 天河区
Tianhe District0 0 白云区
Baiyun District0 0 番禺区
Panyu District0 0 南沙区
Nansha District0 0 -
[1] 史芳宁, 刘世梁, 安毅, 等. 城市化背景下景观破碎化及连接度动态变化研究: 以昆明市为例[J]. 生态学报, 2020, 40(10): 3303−3314.Shi F N, Liu S L, An Y, et al. Changes of landscape fragmentation and connectivity with urbanization: a case study of Kunming City[J]. Acta Ecologica Sinica, 2020, 40(10): 3303−3314. [2] 王夏晖, 何军, 牟雪洁, 等. 中国生态保护修复20年: 回顾与展望[J]. 中国环境管理, 2021, 13(5): 85−92.Wang X H, He J, Mou X J, et al. 20 years of ecological protection and restoration in China: review and prospect[J]. Chinese Journal of Environmental Management, 2021, 13(5): 85−92. [3] 苏冲, 董建权, 马志刚, 等. 基于生态安全格局的山水林田湖草生态保护修复优先区识别: 以四川省华蓥山区为例[J]. 生态学报, 2019, 39(23): 8948−8956.Su C, Dong J Q, Ma Z G, et al. Identifying priority areas for ecological protection and restoration of mountains-rivers-forests-farmlands-lakes-grasslands based on ecological security patterns: a case study in Huaying Mountain, Sichuan Province[J]. Acta Ecologica Sinica, 2019, 39(23): 8948−8956. [4] 曹宇, 王嘉怡, 李国煜. 国土空间生态修复: 概念思辨与理论认知[J]. 中国土地科学, 2019, 33(7): 1−10.Cao Y, Wang J Y, Li G Y. Ecological Restoration for Territorial Space: Basic Concepts and Foundations[J]. China Land Science, 2019, 33(7): 1−10. [5] 付凤杰, 刘珍环, 刘海. 基于生态安全格局的国土空间生态修复关键区域识别: 以贺州市为例[J]. 生态学报, 2021, 41(9): 3406−3414.Fu F J, Liu Z H, Liu H. Identifying key areas of ecosystem restoration for territorial space based on ecological security pattern: a case study in Hezhou City[J]. Acta Ecologica Sinica, 2021, 41(9): 3406−3414. [6] Yu K. Security patterns and surface model in landscape ecological planning[J]. Landscape & Urban Planning, 1996, 36(1): 1−17. [7] 彭建, 赵会娟, 刘焱序, 等. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 2017, 36(3): 407−419.Peng J, Zhao H J, Liu Y X, et al. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 2017, 36(3): 407−419. [8] 王正伟, 王宏卫, 杨胜天, 等. 基于生态系统服务功能的新疆绿洲生态安全格局识别及优化策略: 以拜城县为例[J]. 生态学报, 2022, 42(1): 91−104.Wang Z W, Wang H W, Yang S T, et al. Identification and optimization strategy of ecological security pattern of Oasis in Xinjiang based on ecosystem service function: taking Baicheng County as an example[J]. Acta Ecologica Sinica, 2022, 42(1): 91−104. [9] 李怡, 赵小敏, 郭熙, 等. 基于InVEST和MCR模型的南方山地丘陵区生态保护红线优化[J]. 自然资源学报, 2021, 36(11): 2980−2994. doi: 10.31497/zrzyxb.20211119Li Y, Zhao X M, Guo X, et al. Optimization of ecological red line in the hilly region of Southern China based on INVEST and MCR model[J]. Journal of Natural Resources, 2021, 36(11): 2980−2994. doi: 10.31497/zrzyxb.20211119 [10] 张守法, 李翅, 赵凯茜. 基于生态网络构建的贵阳市绿地景观格局优化研究[J]. 中国园林, 2022, 38(5): 68−73.Zhang S F, Li C, Zhao K X. Green space landscape layout optimization of Guiyang based on ecological network construction[J]. Chinese Landscape Architecture, 2022, 38(5): 68−73. [11] 韦家怡, 李铖, 吴志峰, 等. 粤港澳大湾区生态安全格局及重要生态廊道识别[J]. 生态环境学报, 2022, 31(4): 652−662.Wei J Y, Li C, Wu Z F, et al. Identifying ecological security patterns and prioritizing ecological corridors in the Guangdong-Hong Kong-Macao greater bay area[J]. Ecology and Environment Sciences, 2022, 31(4): 652−662. [12] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853−7862.Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853−7862. [13] 秦子博, 玄锦, 黄柳菁, 等. 基于MSPA和MCR模型的海岛型城市生态网络构建: 以福建省平潭岛为例[J]. 水土保持研究, 2023, 30(2): 303−311.Qin Z B, Xuan J, Huang L J, et al. Ecological net work construction of sea: island city based on MSPA and MCR model[J]. Research of Soil and Water Conservation, 2023, 30(2): 303−311. [14] Gao J, Du F, Zuo L, et al. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern[J]. Landscape Ecology, 2020: 1−21. [15] 赵宇豪, 罗宇航, 易腾云, 等. 基于生态系统服务供需匹配的深圳市生态安全格局构建[J]. 应用生态学报, 2022, 33(9): 2475−2484.Zhao Y H, Luo Y H, Yi T Y, et al. Constructing an ecological security pattern in Shenzhen, China, by matching the supply and demand of ecosystem services[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2475−2484. [16] 宋利利, 秦明周. 整合电路理论的生态廊道及其重要性识别[J]. 应用生态学报, 2016, 27(10): 3344−3352.Song L L, Qin M Z. Identification of ecological corridors and its importance by integrating circuit theory[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3344−3352. [17] 刘阳, 欧小杨, 郑曦. 整合绿地结构与功能性连接分析的城市生物多样性保护规划[J]. 风景园林, 2022, 29(1): 26−33.Liu Y, Ou X Y, Zheng X. Urban biodiversity conservation planning integrating green space structural and functional connection analysis urban biodiversity conservation planning integrating green space structural and functional connection analysis[J]. Landscape Architecture, 2022, 29(1): 26−33. [18] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5): 889−897.Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5): 889−897. [19] Song C, Bo H, You S. Comparison of three time-series NDVI reconstruction methods based on TIMESAT[C]// Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. IEEE, 2012. [20] Crist E P. A TM Tasseled Cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17(3): 301−306. doi: 10.1016/0034-4257(85)90102-6 [21] Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14): 4269−4276. doi: 10.1080/01431160802039957 [22] Sobrino J A, JC Jiménez-Muoz, Paolini L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment, 2004, 90(4): 434−440. doi: 10.1016/j.rse.2004.02.003 [23] 杨天荣, 匡文慧, 刘卫东, 等. 基于生态安全格局的关中城市群生态空间结构优化布局[J]. 地理研究, 2017, 36(3): 441−452.Yang T R, Kuang W H, Liu W D, et al. Optimizing the layout of eco-spatial structure in Guanzhong urban agglomeration based on the ecological security pattern[J]. Geographical Research, 2017, 36(3): 441−452. [24] 魏伟. 基于CLUE-S和MCR模型的石羊河流域土地利用空间优化配置研究[D]. 兰州: 兰州大学, 2018.Wei W. Land use optimal allocation based on CLUE-S and MCR model in Shiyang River Basin[D]. Lanzhou: Lanzhou University, 2018. [25] 韦宝婧, 苏杰, 胡希军, 等. 基于“HY-LM”的生态廊道与生态节点综合识别研究[J]. 生态学报, 2022, 42(7): 2995−3009.Wei B J, Su J, Hu X J, et al. Comprehensive identification of eco-corridors and eco-nodes based on principle of hydrological analysis and Linkage Mapper[J]. Acta Ecologica Sinica, 2022, 42(7): 2995−3009. [26] 周敏, 齐增湘, 吕婧玮, 等. 废弃工矿区生态修复潜力分析: 以水口山镇为例[J]. 西北林学院学报, 2021, 36(4): 273−281.Zhou M, Qi Z X, Lv J W, et al. Ecological restoration potential of abandoned industrial and mining areas: a case study of Shuikoushan Township[J]. Journal of Northwest Forestry University, 2021, 36(4): 273−281. [27] 叶玉瑶, 苏泳娴, 张虹鸥, 等. 生态阻力面模型构建及其在城市扩展模拟中的应用[J]. 地理学报, 2014, 69(4): 485−496.Ye Y Y, Su Y X, Zhang H O, et al. Ecological resistance surface model and its application in urban expansion simulations[J]. Acta Geographica Sinica, 2014, 69(4): 485−496. [28] 吕剑成, 周磊, 洪武扬, 等. 城市土地生态适宜性分区划分研究: 以常州市武进区为例[J]. 长江流域资源与环境, 2015, 24(9): 1560−1567.Lv J C, Zhou L, Hong WY, et al. Zoning division research of urban land ecological suitability: a case of Wujin District, Changzhou City[J]. Resources and Environment in the Yangtze Basin, 2015, 24(9): 1560−1567. [29] 汤峰, 王力, 张蓬涛, 等. 基于生态保护红线和生态网络的县域生态安全格局构建[J]. 农业工程学报, 2020, 36(9): 263−272.Tang F, Wang L, Zhang P T, et al. Construction of county-level ecological security pattern based on ecological protection red line and network in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 263−272. [30] 曹秀凤, 刘兆顺, 李淑杰, 等. 基于生态安全格局的国土空间生态修复关键区域识别: 以吉林省松原市为例[J]. 中国环境科学, 2022, 42(6): 2779−2787.Cao X F, Liu Z S, Li S J, et al. Identification of key areas of ecological protection and restoration based on the pattern of ecological security: a case of Songyuan City, Jilin Province[J]. China Environmental Science, 2022, 42(6): 2779−2787. [31] 邓兴栋, 韩文超, 霍子文. 基于人地和谐的国土空间治理框架: 以广州市为例[J]. 城市规划学刊, 2022(2): 47−53.Deng X D, Han W C, Huo Z W. Framework of territorial space governance based on the perspective of humanearth harmony: the case of Guangzhou City[J]. Urban Planning Forum, 2022(2): 47−53. [32] 薛强, 路路, 牛韧, 等. 基于地质灾害敏感性的生态安全格局关键区识别与修复: 以济南市为例[J]. 生态学报, 2021, 41(22): 9050−9063.Xue Q, Lu L, Niu R, et al. Identification and restoration of key areas of ecological security pattern based on sensitivity to geological disasters: A case study of Jinan City[J]. Acta Ecologica Sinica, 2021, 41(22): 9050−9063. [33] 朱琪, 袁泉, 于大炮, 等. 基于电路理论的东北森林带生态安全网络构建[J]. 生态学杂志, 2021, 40(11): 3463−3473.Zhu Q, Yuan Q, Yu D P, et al. Construction of ecological security network of Northeast China forest belt based on the cir-cuit theory[J]. Chinese Journal of Ecology, 2021, 40(11): 3463−3473. [34] 蒋思敏, 张青年, 陶华超. 广州市绿地生态网络的构建与评价[J]. 中山大学学报(自然科学版), 2016, 55(4): 162−170.Jiang S M, Zhang Q N, Tao H C. Construction and evaluation of green space ecological network in Guangzhou[J]. Journal of Sun Yat-sen University (Natural Science Edition), 2016, 55(4): 162−170. [35] 彭建, 郭小楠, 胡熠娜, 等. 基于地质灾害敏感性的山地生态安全格局构建: 以云南省玉溪市为例[J]. 应用生态学报, 2017, 28(2): 627−635.Peng J, Guo X N, Hu Y N, et al. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: a case study in Yuxi City, Yunnan Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 627−635. [36] 杨志广, 蒋志云, 郭程轩, 等. 基于形态空间格局分析和最小累积阻力模型的广州市生态网络构建[J]. 应用生态学报, 2018, 29(10): 3367−3376.Yang Z G, Jiang Z Y, Guo C X, et al. Construction of ecological network using morphological spatial pattern analysis and minimal cumulative resistance models in Guangzhou City, China[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3367−3376. [37] 张剑波. 广州陆域生物多样性生态安全格局构建研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.Zhang J B. Research on the construction of ecological security pattern of biodiversity in the land area of Guangzhou[D]. Harbin: Harbin Institute of Technology, 2016. -