Radial growth of Cunninghamia lanceolata and its response to climate in Jiangleguo Forest farm
-
摘要:
目的 杉木是我国南方特有的用材树种,其具有良好的绿化效果,同时也具有较高的经济价值。本文主要对不同时间尺度上杉木径向生长动态及其与气候因子的关系展开研究,为科学经营研究区杉木提供参考依据。 方法 本研究利用径向生长测量仪对福建省将乐国有林场杉木进行了为期4年(2017年7月—2021年6月)的连续监测,对其径向生长量进行分析,确定生长季,同时进行偏相关分析及滑动相关分析探究温度、湿度、降水量等气候因子对杉木径向生长的影响。 结果 (1)杉木具有周期性的日径向改变,主要体现在3个阶段:第1个阶段是收缩,第2个阶段是恢复,第3个阶段是增长;杉木径向变化的季节动态经历了低谷期、上升期和稳定期;杉木的径向变化年际间存在差异,但径增长的时间序列和累积变化趋势基本是一致的。(2)拟合并分析杉木累积径向生长曲线可以确定福建将乐杉木的生长季为每年2—9月。(3)平均相对湿度、降雨量、最低温度和平均温度是主要的影响因子,且杉木净增量与降雨量具有显著正相关的关系,温度在适宜杉木径向生长的范围内越高越利于生长,但高于或低于这个范围均会起抑制作用;滑动相关分析结果表明随着生长季时间的变化,相关系数呈现先增加后减少的趋势。 结论 杉木径向生长与相对湿度、降水量、温度等气候因子有密切联系,因此研究杉木的径向变化特征和对气候因子的响应,为更好地规划目标树种的生存策略提供了重要的技术路径和参考模型。 Abstract:Objective Cunninghamia lanceolata is a unique timber species in southern China, which has good greening effect and also high economic value. In this article, the relationship between radial growth dynamics of Cunninghamia lanceolata and climatic factors was investigated at different time scales to provide a basis for scientific management of Cunninghamia lanceolata in the study area. Method In this study, the radial growth of Cunninghamia lanceolata trees was continuously monitored for 4 years (July 2017−June 2021) using a radial growth meter to analyze their radial growth and determine the growing seasons, while partial and sliding correlation analyses were conducted to investigate the effects of climate factors such as temperature, humidity, and precipitation on Cunninghamia lanceolata radial extension. Result (1) Cunninghamia lanceolata has periodic daily radial changes, which are mainly reflected in three stages, the first stage is contraction, the second stage is recovery, and the third stage is growth; the seasonal dynamics of radial changes in Cunninghamia lanceolata undergoes a trough period, a rise period and a stable period; there are interannual differences in radial changes in Cunninghamia lanceolata, but the time series of diameter growth and cumulative change trends are basically the same. (2) The cumulative radial growth curves of Cunninghamia lanceolata were combined to determine the growing season of Cunninghamia lanceolata in Changle, Fujian, from February to September each year. (3) The average relative humidity, rainfall, minimum temperature and average temperature were the main influencing factors, and the net increase of Cunninghamia lanceolata had a significant positive correlation with rainfall. The sliding correlation analysis showed that the correlation coefficient increased and then decreased with the change of growing season time. Conclusion The radial growth of Cunninghamia lanceolata is closely related to climate factors such as relative humidity, precipitation and temperature, therefore, studying the radial variation characteristics of Cunninghamia lanceolata and its response to climatic factors provides an important technical pathway and reference model for better planning of survival strategies for the target tree species. -
Key words:
- Cunninghamia lanceolata /
- radial growth /
- growth season /
- climate factor
-
表 1 杉木生长季日径向变化与气象因子的Pearson偏相关性
Table 1. Pearson partial correlation between daily radial variation and meteorological factors in Cunninghamia lanceolata growing season
最高温度
Maximum temperature最低温度
Minimum temperature平均温度
Average temperature日降水量
Daily precipitation平均相对湿度
Average relative humidity最小相对湿度
Minimum relative humidity偏相关性系数
Partial correlation coefficient−0.004 −0.132* 0.11* 0.353** 0.139* 0.091 注:相关性系数*表示P < 0.05,**表示P < 0.01 -
[1] 孙晓能. 关帝山青扦径向生长与气候因子的关系[D]. 昆明: 云南大学, 2020.Sun X N. Radial growth responses of Picea wilsonii to climatic variables in Mt. Guandi, China[D]. Kunming: Yunnan University, 2020. [2] 梁鹏鸿. 我国高纬度、高海拔树木径向生长对气候变化的响应及其影响机制[J]. 北京: 北京林业大学, 2020.Liang P H. The mechanism of tree radial growth response to climate change at high latitude and alpine treeline areas[J]. Beijing: Beijing Forestry University, 2020. [3] 杨琳. 兴安落叶松林土壤温室气体通量特征及其影响因子研究[D]. 呼和浩特: 内蒙古农业大学, 2021.Yang L. Characteristics and environmental controllers of soil CO2 and CH4 fluxes of the Xing’an Larch (Larix gmelinii) forest[D]. Hohhot: Inner Mongolia Agricultural University, 2021. [4] 国颖. 气候变化背景下银杏分布预测及表型性状的环境响应机制研究[J]. 南京: 南京林业大学, 2021.Guo Y. Prediction of ginkgo distribution and research on environmental response mechanism of phenotypic traits under the climate change[J]. Nanjing: Nanjing Forestry University, 2021. [5] 樊翔. 露天矿区重建植被动态变化对气候因子的响应研究[D]. 北京: 中国地质大学(北京), 2021.Fan X. Re-established vegetation response to climate factors on surface mined land[D]. Beijing: China University of Geosciences (Beijing), 2021. [6] 乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应[J]. 应用生态学报, 2019, 30(7): 2231−2240.Qiao J J, Wang T, Pan L, et al. Response of radial gro growth to climate change in wth to climate change in Pinus massoniana at different altitudes and slopes[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2231−2240. [7] 徐贺年, 王江林, 彭小梅, 等. 青藏高原东北部祁连圆柏径向生长对不同类型干旱的响应[J]. 应用生态学报, 2022, 33(8): 2097−2104.Xu H N, Wang J L, Peng X M, et al. Responses of radial growth of Juniperus przewalskii to different droughts over the northeastern Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2097−2104. [8] van der Werf G W, Sass-Klaassen U G W, Mohren G M J. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands[J]. Dendrochronologia, 2007, 25(2): 103−112. doi: 10.1016/j.dendro.2007.03.004 [9] 张军周. 祁连山树木形成层活动及年内径向生长动态监测研究[D]. 兰州: 兰州大学, 2018.Zhang J Z. Cambial phenology and intra-annual radial growth dynamics of conifers over the Qilian Mountains[D]. Lanzhou: Lanzhou University, 2018. [10] 夏敬清, 勾晓华, 王玲玲, 等. 祁连山西部青海云杉径向生长对气候因子的响应[J]. 应用生态学报, 2021, 32(10): 3585−3593.Xia J Q, Gou X H, Wang L L, et al. Stem radial growth of Picea crassifolia in response to climatic factors in the western Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3585−3593. [11] 韦小练, 范泽鑫, Kaewmano Arisa, 等. 热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应[J]. 应用生态学报, 2021, 32(10): 3567−3575.Wei X L, Fan Z X, Kaewmano Arisa, et al. Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna, Southwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3567−3575. [12] 吴丽杰, Arisa Kaewmano, 付培立, 等. 热带季节性湿润林苦楝(Melia azedarach)径向生长季节动态及其对环境因子的响应[J]. 生态学报, 2020, 40(19): 6831−6840.Wu L J, Arisa Kaewmano, Fu P L, et al. Intra-annual radial growth of melia azedarach in a tropical moist seasonal forest and its response to environmental factors in Xishuangbanna, Southwest China[J]. Acta Ecologica Sinica, 2020, 40(19): 6831−6840. [13] 黄雅奇. 中亚热带杉木人工林径向生长及其与气象因子的关系[D]. 长沙: 中南林业科技大学, 2020.Huang Y Q. Radial growth of Cunninghamia lanceolata plantation in the middle sub zone and its relationship with meteorological factors[D]. Changsha: Central South University of Forestry and Technology, 2020. [14] 刘亚静, 周来, 张博, 等. 不同林龄杉木径向变化及其对气象因子的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 135−144.Liu Y J, Zhou L, Zhang B, et al. Radial variation of Cunninghamia lanceolata in different aged forests and itsresponse to meteorological factors[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(2): 135−144. [15] 刘亚静, 孙玉军, 周来. 杉木径向生长动态对气侯的响应[J]. 西北林学院学报, 2020, 35(5): 9−15.Liu Y J, Sun Y J, Zhou L. Radial growth dynamics of Cunninghamia lanceolata and its response to meteorological factors[J]. Journal of Northwest Forestry University, 2020, 35(5): 9−15. [16] 吴明钦. 福建杉木人工林树冠结构研究[D]. 北京: 北京林业大学, 2014.Wu M Q. A study on crown structure of Cunninghamia lanceolata plantation in Fujian[D]. Beijing: Beijing Forestry University, 2014. [17] 马浩然. 基于多层次分割的遥感影像面向对象森林分类[D]. 北京: 北京林业大学, 2014.Ma H R. Object-based remote sensing image classification of forest based on multi-level segmentation[D]. Beijing: Beijing Forestry University, 2014. [18] 王梦娟, 黄志群, 张冰冰, 等. 不同林龄杉木人工林土壤硝化和反硝化作用[J]. 应用生态学报, 2023, 34(1): 18−24.Wang M J, Huang Z Q, Zhang B B, et al. Soil nitrification and denitrification in Cunninghamia lanceolata plantations with different stand ages[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 18−24. [19] 孟盛旺, 杨风亭, 戴晓琴, 等. 杉木径向生长动态及其对季节性干旱的响应[J]. 应用生态学报, 2021, 32(10): 3521−3530.Meng S W, Yang F T, Dai X Q, et al. Radial growth dynamics of Chinese fir and its response to seasonal drought[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3521−3530. [20] Liu X S, Nie Y Q, Wen F. Seasonal dynamics of stem radial increment of Pinus taiwanensis Hayata and its response to environmental factors in the Lushan Mountains, Southeastern China[J]. Forest, 2018, 9(7): 387. [21] 张毅, 顾凤岐. 残差自回归模型在人工林红松树高生长规律预测中的应用[J]. 东北林业大学学报, 2021, 49(6): 76−79.Zhang Y, Gu F Q. Application of residual autoregressive model in the prediction of tree height growth law of Korean Pine plantation[J]. Journal of Northeast Forestry University, 2021, 49(6): 76−79. [22] 刘士玲, 杨保国, 姚建峰, 等. 广西红椎树干径向生长研究[J]. 华南农业大学学报, 2020, 41(5): 82−90.Liu S L, Yang B G, Yao J F, et al. Study on stem radial growth of Castanopsis hystrix in Guangxi[J]. Journal of South China Agricultural University, 2020, 41(5): 82−90. [23] 刘亚静. 杉木径向生长及其对气候因子的响应[D]. 北京: 北京林业大学, 2020.Liu Y J. Radial growth of Cunninghamia lanceolata in different forest ages and its response to climatic factors[D]. Beijing: Beijing Forestry University, 2020. [24] 张月莹, 周志勇. 树木径向生长测量仪的应用研究[J]. 林业资源管理, 2019(1): 129−135.Zhang Y Y, Zhou Z Y. Progress in the application of dendrometer[J]. Forest Resources Management, 2019(1): 129−135. [25] 郑勤莹. 帽儿山不同坡位水曲柳和红松径向生长及其对气候变化的响应[J]. 哈尔滨: 东北林业大学, 2021.Zheng Q Y. Radial growth of Fraxinus mandshurica and Pinus koraiensis on different slopes of Maoershan and their response to climate change[J]. Harbin: Northeast Forestry University, 2021. [26] 牛豪阁. 祁连山东部三种针叶树径向生长动态对气候的响应[D]. 兰州: 兰州大学, 2018.Niu G H. Intra-annual stem radial growth dynamics of three coniferous species in response to climate in the eastern Qilian Mountains[D]. Lanzhou: Lanzhou University, 2018. [27] Nikolay N, Zinaida, Alexandr M. Effect of meteorological factors on the radial growth of pine latewood in northern taiga[J]. Folia Forestalia Polonica, 2022, 64(1): 7−14. doi: 10.2478/ffp-2022-0002 [28] 贾嘉莹, 况立群, 熊风光, 等. 基于持久同调的复杂脑网络动态演化分析[J]. 波谱学杂志, 2021, 38(1): 80−91.Jia J Y, Kuang L Q, Xiong F G, et al. Analysis of dynamic evolution of complex brain networks based on persistent homology[J]. Journal of Spectroscopy, 2021, 38(1): 80−91. [29] 王艺涵, 赵从举, 周雯雯, 等. 桉树树干径向生长日变化及其对环境因子的响应[J]. 天津师范大学学报(自然科学版), 2017, 37(6): 31−36.Wang Y H, Zhao C J, Zhou W W, et al. Diurnal variation in stem radial growth of Eucalyptus robusta and its response to environmental factors[J]. Journal of Tianjing Normal University (Natural Science Edition), 2017, 37(6): 31−36. [30] 敬文茂, 赵维俊, 马剑, 等. 祁连山排露沟流域青海云杉径向生长对气象因子的32响应[J]. 甘肃农业大学学报, 2022, 57(2): 111−117.Jing W M, Zhao W J, Ma J, et al. The growth in stem diameter of Picea crassifolia and its response to meteorological factors in Pailugou basin, Qilian Mountain[J]. Journal of Gansu Agricultural University, 2022, 57(2): 111−117. [31] Krepkowski J, Brauning A, Gebrekirstos A, et al. Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia[J]. Trees, 2011, 25(1): 59−70. doi: 10.1007/s00468-010-0460-7 [32] 张雨, 苏旭, 刘玉萍, 等. 沙鞭PvDREB基因克隆与表达特异性分析[J]. 西北植物学报, 2023, 43(2): 202−210.Zhang Y, Su X, Liu Y P, et al. Cloning and expression characteristics of Pv DREB gene in Psammochloa villosa (Poaceae)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(2): 202−210. [33] 李夏榕. 林分与气候因子对京郊道路林毛白杨径向生长的影响[D]. 北京: 北京林业大学, 2021.Li X R. Effect of stand factor and climate change on the radial growth of Populus tomentosa in road shelter forest in suburban, Beijing[D]. Beijing: Beijing Forestry University, 2021. [34] 肖瑞晗. 寒温带兴安落叶松林生态系统氮转化及运移特征[D]. 哈尔滨: 东北林业大学, 2022.Xiao R H. Nitrogen transformation and transport characteristics of Larix gmelini forest ecosystem in cold-temperate area of Daxing’an Mountains[D]. Harbin: Northeast Forestry University, 2022. [35] Beedlow P A, Henry L E, Tingey D T, et al. The importance of seasonal temperature and moisture patterns on growth of douglasfir in western Oregon, USA[J]. Agricultural and Forest Meteorology, 2013, 269(10): 174−185. [36] Zhang Q, Lyu L X, Wang Y. Patterns of daily stem growth in different tree species in a warm-temperate forest in northern China[J]. Dendrochronologia, 2022, 72(1): 1436−1440. [37] 张辉, 颜耀, 胡亚楠, 等. 基于树轮气候相关分析法的杉木径向生长与气候因子关系[J]. 福建农林大学学报(自然科学版), 2020, 49(1): 59−66.Zhang H, Yan Y, Hu Y N, et al. Analysis on the relationship between radial growth of Cunninghamia lanceolata and climatic factors based on tree-ring climate correlation[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(1): 59−66. [38] 马菁. 六盘山华北落叶松多时间尺度树干径向生长的环境响应[D]. 北京: 北京林业大学, 2020.Ma J. Environmental response of radial growth of Larix principis-rupprechtii trees at multiple time scales in Liupan Mountains[D]. Beijing: Beijing Forestry University, 2020. [39] Svenja D, Roland P, Jorg L. Contrasting growth response of evergreen and deciduous arctic-alpine shrub species to climate variability[J]. Ecosphere, 2021, 12(8): 1−22. [40] Shi J, Cookke R, Li J, et al. Unprecedented January julywarming recorded in a 178-year tree ring width chronology in the Dabie Mountains, southeastern China[J]. Palaeogeography Palaeo Climatology Palaeoecology, 2013, 381/382: 92−97. doi: 10.1016/j.palaeo.2013.04.018 -