Spatial and temporal variation and driving forces for the net primary productivity of vegetation on the Loess Plateau
-
摘要:
目的 探究黄土高原地区植被净初级生产力(NPP)多年时空演变规律以及同期人类活动及自然因子对其产生的复合影响,为当地生态修复规划和实施提供参考。 方法 利用CASA模型计算并分析2001—2019年黄土高原地区植被净初级生产力及其时空分布格局,并基于地理探测器对植被NPP进行驱动因子和机制分析。 结果 (1)2001—2019年黄土高原地区植被NPP整体呈显著上升趋势,年均增加速率为5.59 g/(m2·a),显著增加的区域主要分布在黄土高原中部沟壑区以及丘陵沟壑区。基于重心模型对NPP在空间上重心的分析结果表明:黄土高原NPP重心迁移呈现出阶段性变化特征,平均NPP重心点南部的NPP增量与增速在多数年间均高于北部。不同土地利用类型中,林地的NPP均值最高。由于土地利用转移主要在耕地与草地之间相互转化,占总变化面积的75%,因此,耕地与草地NPP均值变化的线性趋势率最高。(2)地理探测器结果显示年降水量与干燥度指数是影响黄土高原地区植被NPP的主导自然因素,随后依次为土地利用类型、年均气温、坡度等。交互探测器结果表明各因子交互作用均呈现增强趋势,且对植被NPP无显著影响的因子通过与其他因子发生交互作用的方式对NPP产生显著影响。风险探测器识别的适宜植被生长的范围在不同土地利用类型中存在差异,多数地类NPP的年降水量适宜区间在500 ~ 1 000 mm之间。除未利用土地外,其他地类的NPP适宜温度区间在10 ~ 14 ℃之间。耕地NPP的适宜海拔高度区间在19.62 ~ 548.43 m之间,而其他地类在1 000 ~ 2 500 m之间。林地NPP的坡度适宜范围相对较大,不同地类最适宜的坡向不相同。 结论 黄土高原2001—2019年间植被恢复工程对生态系统NPP贡献显著,环境因子间的交互作用会增强单因子对植被NPP的影响,不同环境因子的NPP适宜累积区间在不同土地利用类型下存在差异,本研究结果为该地区实际植被恢复与管理工作提供了理论依据。 Abstract:Objective This paper aims to explore the spatial and temporal evolution of net primary productivity (NPP) of vegetation in the Loess Plateau over many years and the combined impact of human activities and natural factors in the same period on it, so as to provide reference for the local ecological restoration planning and implementation. Method CASA model was used to calculate and analyze the NPP and its spatial and temporal distribution pattern of vegetation in the Loess Plateau from 2001 to 2019, and the driving factors and mechanisms of vegetation NPP were analyzed based on Geodetector. Result (1) The vegetation NPP in the Loess Plateau showed an overall significant increasing trend from 2001 to 2019, with an average annual increase rate of 5.59 g/(m2·year). The areas with significant increase in NPP were mainly distributed in the central gully and hilly gully areas of the Loess Plateau. The analysis of the spatial center of gravity of NPP based on the center of gravity model showed that the migration of NPP center of gravity in the Loess Plateau exhibited a periodic change feature, with the average NPP increment and growth rate in the southern part of the center of gravity being higher than in the northern part for most years. The significant NPP increased was detected mainly in the central gully area and hilly gully area of the Loess Plateau. Among different land use types, forest land had the highest mean NPP. Land use transfer was mainly transformed between cultivated land and grassland, accounting for 75% of the total change area, leading to the highest rate of linear changes in NPP. (2) The results of geographic detectors showed that annual precipitation and dryness index were the dominant natural factors affecting vegetation NPP in the Loess Plateau, followed by land use type, annual average temperature and slope. The results of the interaction detector showed that the interaction of factors was mainly bi-factor enhancement or nonlinear enhancement, and the factors that had no significant impact on vegetation NPP had a significant impact on NPP when interacting with other factors. The optimal range of vegetation NPP identified by the risk detector varied among different land use types. The optimum annual precipitation range for NPP of most land use types was 500−1000 mm. Except for unused land, the suitable temperature range for NPP of other land use types was between 10 and 14 ℃. The suitable altitude ranged for NPP of cultivated land and other land use types were 19.62−548.43 m and 1000−2500 m, respectively. The suitable slope range for NPP of the woodland was relatively spanned, and the suitable slope aspects varied among different land types. Conclusion The results of this study show that vegetation restoration on the Loess Plateau from 2001 to 2019 contributes significantly to ecosystem NPP. The interactions between environmental factors enhance the influence of single factors on vegetation NPP. Moreover, the optimal accumulation ranges of NPP of different environmental factors are different for varied land use types. Our study provides a theoretical basis for the vegetation restoration and management practices in this area. -
表 1 影响因子交互作用类型
Table 1. Types of interaction between influencing factors
交互作用类型 Type of interaction 判断依据 Judgment basis 非线性减弱 Non-linear reduction q(X1∩X2) < Min[q(X1), q(X2)] 单因子非线性减弱
Single-factor non-linear reductionMin[q(X1), q(X2)] < q(X1∩X2) < Max[q(X1), q(X2)] 双因子增强 Two-factor enhancement q(X1∩X2) > Max[q(X1), q(X2)] 非线性增强 Non-linear enhancement q(X1∩X2) > q(X1) + q(X2) 独立 Independent q(X1∩X2) = q(X1) + q(X2) 注:X1、X2分别表示两个不同的自变量因子,q为自变量因子X对因变量因子Y空间分异的解释力大小。Notes: X1 and X2 represent two different independent variable factors, and q represents the explanatory power of the independent variable factor X on the spatial differentiation of the dependent variable factor Y. 表 2 不同植被类型NPP值与其他模型及研究模拟值比较 g/(m2·a)
Table 2. Comparison of NPP values of different vegetation types in this study and other models and studies
g/(m2·year) 数据来源
Data source针叶林
Coniferous forest阔叶林
Broadleaf forest灌丛
Shrub荒漠
Desert草地
Grassland栽培植被
Cultivated vegetation本研究 This research 504 580 356 111 269 363 MOD17A3 438 461 367 126 234 323 GLO_PEM 492 567 287 14 107 173 文献[40] Reference [40] 476 687 274 293 399 文献[41] Reference [41] 346 513 371 235 261 文献[42] Reference [42] 382 679 382 132 405 390 表 3 2000—2018年黄土高原地区土地利用转移矩阵
Table 3. Land-use transition matrix in the Loess Plateau from 2000 to 2018
km2 项目 Item 2018年 Year of 2018 耕地
Arable land林地
Woodland草地
Grassland水域
Waters建设用地
Construction land未利用土地
Unused land累计
Sum2000年
Year of 2000耕地 Arable land 4 279.76 20 153.91 1 062.80 8 908.56 602.62 35 007.65 林地 Woodland 2 196.75 4 103.47 154.80 789.18 303.06 7 547.26 草地 Grassland 17 146.47 5 946.68 702.28 4 001.39 2 892.32 30 689.14 水域 Waters 891.06 105.34 581.62 319.51 326.34 2 223.87 建设用地 Construction land 2 119.27 82.96 487.18 62.65 35.12 2 787.18 未利用土地 Unused land 1 538.72 402.87 5 302.89 397.08 776.59 8 418.15 累计 Grand total 23 892.27 10 817.61 30 629.07 2 379.60 14 795.23 4 159.45 86 673.25 表 4 影响因子交互作用q值
Table 4. q values of the interaction between the influencing factors
指标 Index 年降水量
Annual precipitation年均气温
Annual mean temperature海拔
Altitude坡度
Slope坡向
Aspect干燥度
Dryness index土壤水分
Soil moisture土地利用
Land use type年降水量 Annual precipitation 0.47 年均气温 Annual mean temperature 0.58# 0.26 海拔 Altitude 0.56* 0.35* 0.07 坡度 Slope 0.54# 0.41# 0.34* 0.20 坡向 Aspect 0.48* 0.27* 0.07* 0.21# 0.01 干燥度 Dryness index 0.59# 0.58# 0.57* 0.57# 0.54* 0.53 土壤水分 Soil moisture 0.51# 0.37* 0.28* 0.28# 0.10* 0.55# 0.10 土地利用 Land use type 0.60# 0.44# 0.41* 0.41# 0.28# 0.64# 0.35# 0.27 注:#为双因子增强,*为非线性增强。Notes: # is two-factor enhancement; * is non-linear enhancement. 表 5 不同土地利用类型各驱动因子的适宜区间
Table 5. Ranges of each driving factor suitable for NPP accumulation in different land use types
指标
Index年降水量
Annual precipitation/mm年均气温
Annual mean temperature/℃海拔
Altitude/m坡度
Slope/(°)坡向
Aspect干燥度
Dryness index/
(mm·mm−1)土壤水分
Soil moisture/
(m3·m−3)耕地
Arable land730.09 ~ 907.10
(458.47)12.14 ~ 13.49
(387.61)19.62 ~ 548.43
(375.92)15.47 ~ 20.83
(367.67)南向 South
(448.87)0.68 ~ 0.85
(442.01)0.31 ~ 0.42
(400.90)林地
Woodland710.25 ~ 984.59
(475.89)10.84 ~ 12.14
(458.19)1 393.31 ~ 1 532.39
(430.43)23.43 ~ 48.42
(445.05)东北向 Northeast
(421.96)0.71 ~ 0.86
(464.59)0.07 ~ 0.12
(436.96)草地
Grassland689.64 ~ 837.96
(468.15)12.14 ~ 13.63
(420.54)1 543.73 ~ 2 361.51
(381.88)18.42 ~ 25.83
(379.10)东向 East
(267.09)0.69 ~ 0.82
(429.76)0.11 ~ 0.15
(369.44)建设用地
Construction land590.32 ~ 694.06
(364.22)13.09 ~ 14.57
(323.60)1 061.42 ~ 1 437.18
(323.60)6.51 ~ 9.14
(334.28)北向 North
(403.75)0.68 ~ 0.77
(336.22)0.08 ~ 0.10
(286.08)未利用土地
Unused land334.57 ~ 409.58
(248.68)5.99 ~ 8.41
(262.41)1 026.37 ~ 1 274.53
(262.75)2.51 ~ 6.71
(150.19)无显著朝向
No significant direction
(127.75)0.41 ~ 0.62
(299.76)0.10 ~ 0.15
(150.69)注:括号中为指标相应的NPP均值,g/(m2·a)。Note: the average NPP of the corresponding ranges is presented in the parenthesis, g/(m2·year). -
[1] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300: 1560−1563. doi: 10.1126/science.1082750 [2] 周伟, 刚成诚, 李建龙, 等. 1982—2010年中国草地覆盖度的时空动态及其对气候变化的响应[J]. 地理学报, 2014, 69(1): 15−30. doi: 10.11821/dlxb201401002Zhou W, Gang C C, Li J L, et al. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982−2010[J]. Acta Geographica Sinica, 2014, 69(1): 15−30. doi: 10.11821/dlxb201401002 [3] Raupach M R. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings[J]. Earth System Dynamics, 2013, 4(1): 31−49. doi: 10.5194/esd-4-31-2013 [4] Nijsse F J M M, Cox P M, Huntingford C, et al. Decadal global temperature variability increases strongly with climate sensitivity[J]. Nature Climate Change, 2019, 9(8): 598−601. doi: 10.1038/s41558-019-0527-4 [5] Kim J, Bae D. The impacts of global warming on climate zone changes over Asia based on CMIP6 projections[J/OL]. Earth and Space Science, 2021, 8(8): e2021EA001701[2022−01−03]. https://doi.org/10.1029/2021EA001701. [6] 仲晓春, 陈雯, 刘涛, 等. 2001—2010年中国植被NPP的时空变化及其与气候的关系[J]. 中国农业资源与区划, 2016, 37(9): 16−22. doi: 10.7621/cjarrp.1005-9121.20160904Zhong X C, Chen W, Liu T, et al. spatial and temporal change of vegetation net primary productivity and its relationship with climate from 2001 to 2010 in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(9): 16−22. doi: 10.7621/cjarrp.1005-9121.20160904 [7] 徐浩杰, 杨太保. 黄河源区植被净初级生产力时空变化特征及其对气候要素的响应[J]. 资源科学, 2013, 35(10): 2024−2031.Xu H J, Yang T B. Spatial-temporal variation characteristics of vegetation annual NPP and responses to climatic factors in the source region of the Yellow River[J]. Resource Science, 2013, 35(10): 2024−2031. [8] 李燕丽, 潘贤章, 王昌昆, 等. 2000—2011年广西植被净初级生产力时空分布特征及其驱动因素[J]. 生态学报, 2014, 34(18): 5220−5228.Li Y L, Pan X Z, Wang C K, et al. Changes of vegetation net primary productivity and its driving factors from 2000 to 2011 in Guangxi, China[J]. Acta Ecologica Sinica, 2014, 34(18): 5220−5228. [9] 刘刚, 孙睿, 肖志强, 等. 2001—2014年中国植被净初级生产力时空变化及其与气象因素的关系[J]. 生态学报, 2017, 37(15): 4936−4945.Liu G, Sun R, Xiao Z Q, et al. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014[J]. Acta Ecologica Sinica, 2017, 37(15): 4936−4945. [10] 刘玉红, 张筠, 张春华, 等. 2000—2015年山东省植被净初级生产力时空变化及其对气候变化的响应[J]. 生态学杂志, 2019, 38(5): 1464−1471.Liu Y H, Zhang J, Zhang C H, et al. Spatial and temporal variations of vegetation net primary productivity and its responses to climate change in Shandong Province from 2000 to 2015[J]. Chinese Journal of Ecology, 2019, 38(5): 1464−1471. [11] Hu Z, Fan J, Zhong H, et al. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland[J]. Science in China Series D-Earth Sciences, 2017, 50(5): 754−764. [12] 同琳静, 刘洋洋, 王倩, 等. 西北植被净初级生产力时空变化及其驱动因素[J]. 水土保持研究, 2019, 26(4): 367−374.Tong L J, Liu Y Y, Wang Q, et al. Spatial and temporal dynamics of net primary productivity and its driving factors in northwest China[J]. Research of Soil and Water Conservation, 2019, 26(4): 367−374. [13] 闫妍, 覃金华, 房磊, 等. 湖南省植被净初级生产力时空动态及其与气候因素的关系[J]. 生态学杂志, 2022, 41(8): 1−13.Yan Y, Qin J H, Fang L, et al. Spatiotemporal dynamics of vegetation net primary productivity and its relationships with climatic factors in Hunan Province[J]. Chinese Journal of Ecology, 2022, 41(8): 1−13. [14] 洪辛茜, 黄勇, 孙涛. 我国西南喀斯特地区2001—2018年植被净初级生产力时空演变[J]. 生态学报, 2021, 41(24): 9836−9846.Hong X X, Huang Y, Sun T. Spatiotemporal evolution of vegetation net primary productivity in the karst region of southwest China from 2001 to 2018[J]. Acta Ecologica Sinica, 2021, 41(24): 9836−9846. [15] 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5): 938−948.Tian Y C, Yang T, Xu X. Temporal and spatial distribution characteristics and influencing factors of net primary productivity of vegetation in the typical estuarine basin of the Beibu Gulf[J]. Acta Ecologica Sinica, 2021, 30(5): 938−948. [16] 段艺芳, 任志远, 孙艺杰. 陕北植被净初级生产力人为影响定量测评与分析[J]. 中国水土保持科学, 2020, 18(5): 81−88. doi: 10.16843/j.sswc.2020.05.010Duan Y F, Ren Z Y, Sun Y J. Quantitative evaluation and analysis of human impact on net primary productivity of vegetation in northern Shaanxi[J]. Science of Soil and Water Conservation, 2020, 18(5): 81−88. doi: 10.16843/j.sswc.2020.05.010 [17] Ge W, Deng L, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773: 1−11. [18] 杜梦洁, 郑江华, 任璇, 等. 地形对新疆昌吉州草地净初级生产力分布格局的影响[J]. 生态学报, 2018, 38(13): 4789−4799.Du M J, Zheng J H, Ren X, et al. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji Prefecture, Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(13): 4789−4799. [19] 李雨鸿, 陶苏林, 李荣平, 等. 辽宁省净初级生产力时空演变及其对地形因子的响应[J]. 气象与环境学报, 2021, 37(5): 107−112. doi: 10.3969/j.issn.1673-503X.2021.05.016Li Y H, Tao S L, Li R P, et al. Temporal and spatial evolution of NPP and its responses to terrain factors in Liaoning Province[J]. Journal of Meteorology and Environment, 2021, 37(5): 107−112. doi: 10.3969/j.issn.1673-503X.2021.05.016 [20] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010Wang J F, Xu C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010 [21] 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158−1167. doi: 10.16258/j.cnki.1674-5906.2021.06.006Wang J J, Zhao A Z, Hu X F. Spatiotemporal distribution of vegetation net primary productivity in Beijing-Tianjin-Hebei and natural driving factors[J]. Journal of Ecological Environment, 2021, 30(6): 1158−1167. doi: 10.16258/j.cnki.1674-5906.2021.06.006 [22] 孙治娟, 谢世友. 基于地理探测器的云南省净初级生产力时空演变及因子探测[J]. 生态学杂志, 2021, 40(12): 1−16. doi: 10.13292/j.1000-4890.202111.033Sun Z J, Xie S Y. Spatiotemporal variation in net primary productivity and factor detection in Yunnan Province based on geodetector[J]. Chinese Journal of Ecology, 2021, 40(12): 1−16. doi: 10.13292/j.1000-4890.202111.033 [23] 谢宝妮, 秦占飞, 王洋, 等. 黄土高原植被净初级生产力时空变化及其影响因素[J]. 农业工程学报, 2014, 30(11): 244−253. doi: 10.3969/j.issn.1002-6819.2014.11.030Xie B N, Qin Z F, Wang Y, et al. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 244−253. doi: 10.3969/j.issn.1002-6819.2014.11.030 [24] 史晓亮, 杨志勇, 王馨爽, 等. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系[J]. 中国农业气象, 2016, 37(4): 445−453.Shi X L, Yang Z Y, Wang X S, et al. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess Plateau[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 445−453. [25] 王娟, 何慧娟, 董金芳, 等. 黄河流域植被净初级生产力时空特征及自然驱动因子[J]. 中国沙漠, 2021, 41(6): 213−222.Wang J, He H J, Dong J F, et al. Spatio-temporal distribution of vegetation net primary productivity in the Yellow River Basin in 2000−2019 and its natural driving factors[J]. Desert of China, 2021, 41(6): 213−222. [26] Potter C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska[J]. Ecological Modelling, 2004, 175(1): 1−24. doi: 10.1016/j.ecolmodel.2003.05.004 [27] Yu D, Shi P, Shao H, et al. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model[J]. International Journal of Remote Sensing, 2009, 30(18): 4851−4866. doi: 10.1080/01431160802680552 [28] Nayak R K, Patel N R, Dadhwal V K. Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model[J]. Environmental Monitoring and Assessment, 2010, 170(1−4): 195−213. doi: 10.1007/s10661-009-1226-9 [29] Cao S, Sanchez-Azofeifa G A, Duran S M, et al. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford approach (CASA) model[J]. Environmental Research Letters, 2016, 11(7): 1−12. [30] Jiang Y, Guo J, Peng Q, et al. The effects of climate factors and human activities on net primary productivity in Xinjiang[J]. International Journal of Biometeorology, 2020, 64(5): 765−777. doi: 10.1007/s00484-020-01866-4 [31] Berberoglu S, Donmez C, Cilek A. Modelling climate change impacts on regional net primary productivity in Turkey[J]. Environmental Monitoring and Assessment, 2021, 193(5): 193−242. [32] 赵军, 李旺平, 李飞. 黄土高原太阳总辐射气候学计算及特征分析[J]. 干旱区研究, 2008, 25(1): 53−58. doi: 10.13866/j.azr.2008.01.005Zhao J, Li W P, Li F. Climatological calculation and analysis of global solar radiation in the Loess Plateau[J]. Arid Area Research, 2008, 25(1): 53−58. doi: 10.13866/j.azr.2008.01.005 [33] 高志强, 刘纪远. 中国植被净生产力的比较研究[J]. 科学通报, 2008, 53(3): 317−326.Gao Z Q, Liu J Y. Comparative study on net productivity of vegetation in China[J]. Chinese Science Bulletin, 2008, 53(3): 317−326. [34] 杜波波, 阿拉腾图娅, 包刚, 等. 基于CASA模型模拟锡林郭勒草原净初级生产力[J]. 水土保持研究, 2021, 28(5): 293−300.Du B B, Alatengtuya, Bao G, et al. Simulation of net primary productivity of Xilingol Grassland based on CASA model[J]. Research of Soil and Water Conservation, 2021, 28(5): 293−300. [35] Meng X, Mao K, Meng F, et al. A fine-resolution soil moisture dataset for China in 2002−2018[J]. Earth System Science Data, 2021, 13(7): 3239−3261. doi: 10.5194/essd-13-3239-2021 [36] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413−424. doi: 10.3321/j.issn:1005-264X.2007.03.010Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 2007, 31(3): 413−424. doi: 10.3321/j.issn:1005-264X.2007.03.010 [37] 刘闻, 曹明明, 邱海军. 气候变化和人类活动的水文水资源效应研究进展[J]. 水土保持通报, 2012, 32(5): 215−219, 264.Liu W, Cao M M, Qiu H J. Progress of hydrology and water resources effects caused by climate change and human activities[J]. Bulletin of Soil and Water Conservation, 2012, 32(5): 215−219, 264. [38] 陈晓杰, 张长城, 张金亭, 等. 基于CASA模型的植被净初级生产力时空演变格局及其影响因素: 以湖北省为例[J]. 水土保持研究, 2022, 29(3): 253−261. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203034Chen X J, Zhang C C, Zhang J T, et al. Analysis of the spatiotemporal evolution patterns of vegetation net primary productivity and its influencing factors based on CASA model: a case study of Hubei Province[J]. Research of Soil and Water Conservation, 2022, 29(3): 253−261. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203034 [39] 贺倩, 杨雪琴, 戴晓爱. 2010—2015年三江源地区植被净初级生产力变化特征及影响因素分析[J]. 长江科学院院报, 2020, 37(5): 59−66.He Q, Yang X Q, Dai X A. Variation characteristics and influence factors of netprimary productivity of vegetation in the Three-River headwaters region from 2010 to 2015[J]. Journal of Changjiang River Scientific Research Institute, 2020, 37(5): 59−66. [40] 周夏飞, 马国霞, 曹国志, 等. 2001—2013年黄土高原植被净初级生产力时空变化及其归因[J]. 安徽农业科学, 2017, 45(14): 48−53. doi: 10.3969/j.issn.0517-6611.2017.14.019Zhou X F, Ma G X, Cao G Z, et al. Spatiotemporal change and associated driving forces of vegetation net primary productivity in the Loess Plateau during 2001−2013[J]. Journal of Anhui Agricultural Sciences, 2017, 45(14): 48−53. doi: 10.3969/j.issn.0517-6611.2017.14.019 [41] 刘铮. 黄土高原植被净初级生产力的时空动态及气候驱动因素研究[D]. 杨凌: 西北农林科技大学, 2021.Liu Z. Temporal and spatial dynamics of vegetation net primary productivity and its climate driving factors analysis in the Loess Plateau of China [D]. Yangling: Northwest Agricultural and Forestry University, 2021. [42] 石志华, 刘梦云, 吴健利, 等. 基于CASA模型的陕西省植被净初级生产力时空分析[J]. 水土保持通报, 2016, 36(1): 206−211, 345. doi: 10.13961/j.cnki.stbctb.2016.01.037Shi Z H, Liu M Y, Wu J L, et al. Spatial-temporal analysis of vegetation net primary productivity in Shaanxi Province based on CASA model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 206−211, 345. doi: 10.13961/j.cnki.stbctb.2016.01.037 [43] 刘忠阳, 李梦夏, 李军玲, 等. 河南省植被净初级生产力变化特征及其对气候变化的响应[J]. 河南农业大学学报, 2021, 55(1): 141−151, 163. doi: 10.16445/j.cnki.1000-2340.20210122.001Liu Z Y, Li M X, Li J L, et al. Change characteristics of net primary productivity of vegetation in Henan Province and its response to climate change[J]. Journal of Henan Agricultural University, 2021, 55(1): 141−151, 163. doi: 10.16445/j.cnki.1000-2340.20210122.001 [44] 侯青青, 裴婷婷, 陈英, 等. 1986—2019年黄土高原干旱变化特征及趋势[J]. 应用生态学报, 2021, 32(2): 649−660. doi: 10.13287/j.1001-9332.202102.012Hou Q Q, Pei T T, Chen Y, et al. Variations of drought and its trend in the Loess Plateau from 1986 to 2019[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 649−660. doi: 10.13287/j.1001-9332.202102.012 [45] 王宇航, 赵鸣飞, 康慕谊, 等. 黄土高原地区NDVI与气候因子空间尺度依存性及非平稳性研究[J]. 地理研究, 2016, 35(3): 493−503. doi: 10.11821/dlyj201603008Wang Y H, Zhao M F, Kang M Y, et al. Spatial scale-dependent and non-stationarity relationships between NDVI and climatic factors in the Loess Plateau[J]. Geographical Research, 2016, 35(3): 493−503. doi: 10.11821/dlyj201603008 [46] 王婧姝, 毕如田, 贺鹏, 等. 气候变化下黄土高原植被生长期NDVI动态变化特征[J]. 生态学杂志, 2023, 42(1): 1−13. doi: 10.13292/j.1000-4890.202301.014Wang J S, Bi R T, He P, et al. Dynamic characteristics of NDVI during main growth seasons in the Chinese Loess Plateau affect by climate change[J]. Chinese Journal of Ecology, 2023, 42(1): 1−13. doi: 10.13292/j.1000-4890.202301.014 [47] 孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5): 1200−1214. doi: 10.11821/dlyj020190399Sun R, Chen S H, Su H B. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200−1214. doi: 10.11821/dlyj020190399 [48] 孙倩倩, 刘超, 郑蓓君. 基于ICEEMDAN方法的黄土高原植被覆盖变化及其对气候变化的响应[J]. 应用生态学报, 2021, 32(6): 2129−2137. doi: 10.13287/j.1001-9332.202106.011Sun Q Q, Liu C, Zheng B J. Vegetation cover change and its response to climate change on the Loess Plateau, Northwest China based on ICEEMDAN method[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2129−2137. doi: 10.13287/j.1001-9332.202106.011 [49] 顾朝军, 穆兴民, 高鹏, 等. 1961—2014年黄土高原地区降水和气温时间变化特征研究[J]. 干旱区资源与环境, 2017, 31(3): 136−143.Gu C J, Mu X M, Gao P, et al. Characteristics of temporal variation in precipitation and temperature in the Loess Plateau from 1961 to 2014[J]. Journal of Arid Land Resources and Environment, 2017, 31(3): 136−143. [50] 张鹏飞, 赵广举, 穆兴民, 等. 渭河流域蒸发皿蒸发量时空变化与驱动因素[J]. 干旱区研究, 2019, 36(4): 973−979. doi: 10.13866/j.azr.2019.04.22Zhang P F, Zhao G J, Mu X M, et al. Spatiotemporal variation and driving factors of pan evaporation in the Weihe River Basin[J]. Arid Zone Research, 2019, 36(4): 973−979. doi: 10.13866/j.azr.2019.04.22 [51] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255−1268. doi: 10.11821/xb201209010Mu S J, Li J L, Chen Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001−2010[J]. Acta Geographica Sinica, 2012, 67(9): 1255−1268. doi: 10.11821/xb201209010 [52] 李晶, 刘乾龙, 刘鹏宇. 1998—2018年呼伦贝尔市植被覆盖度时空变化及驱动力分析[J]. 生态学报, 2022, 42(1): 220−235.Li J, Liu Q L, Liu P Y. Spatio-temporal changes and driving forces of fraction of vegetation coverage in Hulunbuir (1998−2018)[J]. Acta Ecologica Sinica, 2022, 42(1): 220−235. [53] 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8): 2530−2540. doi: 10.13292/j.1000-4890.202108.022Zhang H, Li M, Song J Y, et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detector[J]. Chinese Journal of Ecology, 2021, 40(8): 2530−2540. doi: 10.13292/j.1000-4890.202108.022 [54] 张佑铭, 郎梦凡, 刘梦云, 等. 土地利用转变与海拔高度协同作用黄土高原植被固碳变化特征[J]. 生态学报, 2022, 42(10): 3897−3908.Zhang Y M, Lang M F, Liu M Y, et al. Vegetation carbon sequestration in the Loess Plateau under the synergistic effects of land cover change and elevations[J]. Acta Ecologica Sinica, 2022, 42(10): 3897−3908. [55] 同英杰, 文彦君, 张翀. 2003—2017年陕西省NDVI时空变化及其影响因素[J]. 水土保持通报, 2020, 40(3): 155−162, 169, 325.Tong Y J, Wen Y J, Zhang C. Spatiotemporal variation of NDVI and its influence factors in Shaanxi Province during 2003−2017[J]. Bulletin of Soil and Water Conservation, 2020, 40(3): 155−162, 169, 325. -