高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土高原植被净初级生产力时空变化特征及驱动因子分析

宋午椰 许行 林毅雁 陈立欣

宋午椰, 许行, 林毅雁, 陈立欣. 黄土高原植被净初级生产力时空变化特征及驱动因子分析[J]. 北京林业大学学报, 2023, 45(8): 29-42. doi: 10.12171/j.1000-1522.20220381
引用本文: 宋午椰, 许行, 林毅雁, 陈立欣. 黄土高原植被净初级生产力时空变化特征及驱动因子分析[J]. 北京林业大学学报, 2023, 45(8): 29-42. doi: 10.12171/j.1000-1522.20220381
Song Wuye, Xu Hang, Lin Yiyan, Chen Lixin. Spatial and temporal variation and driving forces for the net primary productivity of vegetation on the Loess Plateau[J]. Journal of Beijing Forestry University, 2023, 45(8): 29-42. doi: 10.12171/j.1000-1522.20220381
Citation: Song Wuye, Xu Hang, Lin Yiyan, Chen Lixin. Spatial and temporal variation and driving forces for the net primary productivity of vegetation on the Loess Plateau[J]. Journal of Beijing Forestry University, 2023, 45(8): 29-42. doi: 10.12171/j.1000-1522.20220381

黄土高原植被净初级生产力时空变化特征及驱动因子分析

doi: 10.12171/j.1000-1522.20220381
基金项目: 国家重点研发计划(2022YFF1302501)
详细信息
    作者简介:

    宋午椰。主要研究方向:植被与生态遥感研究。Email:1430878918@qq.com 地址:100083 北京市海淀区清华东路 35 号北京林业大学水土保持学院

    责任作者:

    陈立欣,博士,副教授,博士生导师。主要研究方向:生态水文研究。Email:myclover17@126.com。地址:同上

  • 中图分类号: S718.55+6;Q948

Spatial and temporal variation and driving forces for the net primary productivity of vegetation on the Loess Plateau

  • 摘要:   目的  探究黄土高原地区植被净初级生产力(NPP)多年时空演变规律以及同期人类活动及自然因子对其产生的复合影响,为当地生态修复规划和实施提供参考。  方法  利用CASA模型计算并分析2001—2019年黄土高原地区植被净初级生产力及其时空分布格局,并基于地理探测器对植被NPP进行驱动因子和机制分析。  结果  (1)2001—2019年黄土高原地区植被NPP整体呈显著上升趋势,年均增加速率为5.59 g/(m2·a),显著增加的区域主要分布在黄土高原中部沟壑区以及丘陵沟壑区。基于重心模型对NPP在空间上重心的分析结果表明:黄土高原NPP重心迁移呈现出阶段性变化特征,平均NPP重心点南部的NPP增量与增速在多数年间均高于北部。不同土地利用类型中,林地的NPP均值最高。由于土地利用转移主要在耕地与草地之间相互转化,占总变化面积的75%,因此,耕地与草地NPP均值变化的线性趋势率最高。(2)地理探测器结果显示年降水量与干燥度指数是影响黄土高原地区植被NPP的主导自然因素,随后依次为土地利用类型、年均气温、坡度等。交互探测器结果表明各因子交互作用均呈现增强趋势,且对植被NPP无显著影响的因子通过与其他因子发生交互作用的方式对NPP产生显著影响。风险探测器识别的适宜植被生长的范围在不同土地利用类型中存在差异,多数地类NPP的年降水量适宜区间在500 ~ 1 000 mm之间。除未利用土地外,其他地类的NPP适宜温度区间在10 ~ 14 ℃之间。耕地NPP的适宜海拔高度区间在19.62 ~ 548.43 m之间,而其他地类在1 000 ~ 2 500 m之间。林地NPP的坡度适宜范围相对较大,不同地类最适宜的坡向不相同。  结论  黄土高原2001—2019年间植被恢复工程对生态系统NPP贡献显著,环境因子间的交互作用会增强单因子对植被NPP的影响,不同环境因子的NPP适宜累积区间在不同土地利用类型下存在差异,本研究结果为该地区实际植被恢复与管理工作提供了理论依据。

     

  • 图  1  不同因子分区空间分布及植被类型空间分布

    采用自然断点法将图A ~ F各指标数据分别分为 10 类。The natural breakpoint method is used to divide the data of each index in figures A to F into 10 categories.

    Figure  1.  Spatial distribution of different factor zones and vegetation types

    图  2  本研究与MOD17A3模型获取的多年平均NPP 比较

    Figure  2.  Comparison of multi-year average NPP obtained from this study and the MOD17A3 model

    图  3  2001—2019年黄土高原地区NPP时空变化及分布

    Figure  3.  Temporal and spatial changes and distribution of NPP in the Loess Plateau region from 2001 to 2019

    图  4  2001—2019年黄土高原植被NPP重心分布

    Figure  4.  NPP gravity center distribution of vegetation on the Loess Plateau from 2001 to 2019

    图  5  不同土地利用类型净初级生产力

    不同小写字母表示不同地类NPP均值存在显著差异(P < 0.05),**表示通过0.05显著性检验。Different lowercase letters indicate significant differences in the mean NPP of different land use types (P < 0.05), ** means passing the 0.05 significance test.

    Figure  5.  Net primary productivity for different land use types

    图  6  2001—2018年影响因子q值变化时间序列

    Figure  6.  Time series of the changes in the q values of the impact factor from 2001 to 2018

    图  7  黄土高原植被NPP在不同环境区间下的累积分布

    黑色柱状表示最适宜区间,横坐标数字代表的分区参见图1。Black bars represent optimal ranges, the partition represented by the abscissa number is shown in Fig. 1.

    Figure  7.  Distribution of vegetation NPP accumulation in ranges of corresponding influencing factors

    表  1  影响因子交互作用类型

    Table  1.   Types of interaction between influencing factors

    交互作用类型 Type of interaction判断依据 Judgment basis
    非线性减弱 Non-linear reduction qX1X2) < Min[qX1), qX2)]
    单因子非线性减弱
    Single-factor non-linear reduction
    Min[qX1), qX2)] < qX1X2) < Max[qX1), qX2)]
    双因子增强 Two-factor enhancement qX1X2) > Max[qX1), qX2)]
    非线性增强 Non-linear enhancement qX1X2) > qX1) + qX2
    独立 Independent qX1X2) = qX1) + qX2
    注:X1X2分别表示两个不同的自变量因子,q为自变量因子X对因变量因子Y空间分异的解释力大小。Notes: X1 and X2 represent two different independent variable factors, and q represents the explanatory power of the independent variable factor X on the spatial differentiation of the dependent variable factor Y.
    下载: 导出CSV

    表  2  不同植被类型NPP值与其他模型及研究模拟值比较 g/(m2·a)

    Table  2.   Comparison of NPP values of different vegetation types in this study and other models and studies g/(m2·year)

    数据来源
    Data source
    针叶林
    Coniferous forest
    阔叶林
    Broadleaf forest
    灌丛
    Shrub
    荒漠
    Desert
    草地
    Grassland
    栽培植被
    Cultivated vegetation
    本研究 This research504580356111269363
    MOD17A3438461367126234323
    GLO_PEM492567287 14107173
    文献[40] Reference [40]476687274293399
    文献[41] Reference [41]346513371235261
    文献[42] Reference [42]382679382132405390
    下载: 导出CSV

    表  3  2000—2018年黄土高原地区土地利用转移矩阵

    Table  3.   Land-use transition matrix in the Loess Plateau from 2000 to 2018 km2

    项目 Item2018年 Year of 2018
    耕地
    Arable land
    林地
    Woodland
    草地
    Grassland
    水域
    Waters
    建设用地
    Construction land
    未利用土地
    Unused land
    累计
    Sum
    2000年
    Year of 2000
    耕地 Arable land 4 279.76 20 153.91 1 062.80 8 908.56 602.62 35 007.65
    林地 Woodland 2 196.75 4 103.47 154.80 789.18 303.06 7 547.26
    草地 Grassland 17 146.47 5 946.68 702.28 4 001.39 2 892.32 30 689.14
    水域 Waters 891.06 105.34 581.62 319.51 326.34 2 223.87
    建设用地 Construction land 2 119.27 82.96 487.18 62.65 35.12 2 787.18
    未利用土地 Unused land 1 538.72 402.87 5 302.89 397.08 776.59 8 418.15
    累计 Grand total 23 892.27 10 817.61 30 629.07 2 379.60 14 795.23 4 159.45 86 673.25
    下载: 导出CSV

    表  4  影响因子交互作用q

    Table  4.   q values of the interaction between the influencing factors

    指标 Index年降水量
    Annual precipitation
    年均气温
    Annual mean temperature
    海拔
    Altitude
    坡度
    Slope
    坡向
    Aspect
    干燥度
    Dryness index
    土壤水分
    Soil moisture
    土地利用
    Land use type
    年降水量 Annual precipitation0.47
    年均气温 Annual mean temperature0.58#0.26
    海拔 Altitude0.56*0.35*0.07
    坡度 Slope0.54#0.41#0.34*0.20
    坡向 Aspect0.48*0.27*0.07*0.21#0.01
    干燥度 Dryness index0.59#0.58#0.57*0.57#0.54*0.53
    土壤水分 Soil moisture0.51#0.37*0.28*0.28#0.10*0.55#0.10
    土地利用 Land use type0.60#0.44#0.41*0.41#0.28#0.64#0.35#0.27
    注:#为双因子增强,*为非线性增强。Notes: # is two-factor enhancement; * is non-linear enhancement.
    下载: 导出CSV

    表  5  不同土地利用类型各驱动因子的适宜区间

    Table  5.   Ranges of each driving factor suitable for NPP accumulation in different land use types

    指标
    Index
    年降水量
    Annual precipitation/mm
    年均气温
    Annual mean temperature/℃
    海拔
    Altitude/m
    坡度
    Slope/(°)
    坡向
    Aspect
    干燥度
    Dryness index/
    (mm·mm−1
    土壤水分
    Soil moisture/
    (m3·m−3
    耕地
    Arable land
    730.09 ~ 907.10
    (458.47)
    12.14 ~ 13.49
    (387.61)
    19.62 ~ 548.43
    (375.92)
    15.47 ~ 20.83
    (367.67)
    南向 South
    (448.87)
    0.68 ~ 0.85
    (442.01)
    0.31 ~ 0.42
    (400.90)
    林地
    Woodland
    710.25 ~ 984.59
    (475.89)
    10.84 ~ 12.14
    (458.19)
    1 393.31 ~ 1 532.39
    (430.43)
    23.43 ~ 48.42
    (445.05)
    东北向 Northeast
    (421.96)
    0.71 ~ 0.86
    (464.59)
    0.07 ~ 0.12
    (436.96)
    草地
    Grassland
    689.64 ~ 837.96
    (468.15)
    12.14 ~ 13.63
    (420.54)
    1 543.73 ~ 2 361.51
    (381.88)
    18.42 ~ 25.83
    (379.10)
    东向 East
    (267.09)
    0.69 ~ 0.82
    (429.76)
    0.11 ~ 0.15
    (369.44)
    建设用地
    Construction land
    590.32 ~ 694.06
    (364.22)
    13.09 ~ 14.57
    (323.60)
    1 061.42 ~ 1 437.18
    (323.60)
    6.51 ~ 9.14
    (334.28)
    北向 North
    (403.75)
    0.68 ~ 0.77
    (336.22)
    0.08 ~ 0.10
    (286.08)
    未利用土地
    Unused land
    334.57 ~ 409.58
    (248.68)
    5.99 ~ 8.41
    (262.41)
    1 026.37 ~ 1 274.53
    (262.75)
    2.51 ~ 6.71
    (150.19)
    无显著朝向
    No significant direction
    (127.75)
    0.41 ~ 0.62
    (299.76)
    0.10 ~ 0.15
    (150.69)
    注:括号中为指标相应的NPP均值,g/(m2·a)。Note: the average NPP of the corresponding ranges is presented in the parenthesis, g/(m2·year).
    下载: 导出CSV
  • [1] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300: 1560−1563. doi: 10.1126/science.1082750
    [2] 周伟, 刚成诚, 李建龙, 等. 1982—2010年中国草地覆盖度的时空动态及其对气候变化的响应[J]. 地理学报, 2014, 69(1): 15−30. doi: 10.11821/dlxb201401002

    Zhou W, Gang C C, Li J L, et al. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982−2010[J]. Acta Geographica Sinica, 2014, 69(1): 15−30. doi: 10.11821/dlxb201401002
    [3] Raupach M R. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings[J]. Earth System Dynamics, 2013, 4(1): 31−49. doi: 10.5194/esd-4-31-2013
    [4] Nijsse F J M M, Cox P M, Huntingford C, et al. Decadal global temperature variability increases strongly with climate sensitivity[J]. Nature Climate Change, 2019, 9(8): 598−601. doi: 10.1038/s41558-019-0527-4
    [5] Kim J, Bae D. The impacts of global warming on climate zone changes over Asia based on CMIP6 projections[J/OL]. Earth and Space Science, 2021, 8(8): e2021EA001701[2022−01−03]. https://doi.org/10.1029/2021EA001701.
    [6] 仲晓春, 陈雯, 刘涛, 等. 2001—2010年中国植被NPP的时空变化及其与气候的关系[J]. 中国农业资源与区划, 2016, 37(9): 16−22. doi: 10.7621/cjarrp.1005-9121.20160904

    Zhong X C, Chen W, Liu T, et al. spatial and temporal change of vegetation net primary productivity and its relationship with climate from 2001 to 2010 in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(9): 16−22. doi: 10.7621/cjarrp.1005-9121.20160904
    [7] 徐浩杰, 杨太保. 黄河源区植被净初级生产力时空变化特征及其对气候要素的响应[J]. 资源科学, 2013, 35(10): 2024−2031.

    Xu H J, Yang T B. Spatial-temporal variation characteristics of vegetation annual NPP and responses to climatic factors in the source region of the Yellow River[J]. Resource Science, 2013, 35(10): 2024−2031.
    [8] 李燕丽, 潘贤章, 王昌昆, 等. 2000—2011年广西植被净初级生产力时空分布特征及其驱动因素[J]. 生态学报, 2014, 34(18): 5220−5228.

    Li Y L, Pan X Z, Wang C K, et al. Changes of vegetation net primary productivity and its driving factors from 2000 to 2011 in Guangxi, China[J]. Acta Ecologica Sinica, 2014, 34(18): 5220−5228.
    [9] 刘刚, 孙睿, 肖志强, 等. 2001—2014年中国植被净初级生产力时空变化及其与气象因素的关系[J]. 生态学报, 2017, 37(15): 4936−4945.

    Liu G, Sun R, Xiao Z Q, et al. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014[J]. Acta Ecologica Sinica, 2017, 37(15): 4936−4945.
    [10] 刘玉红, 张筠, 张春华, 等. 2000—2015年山东省植被净初级生产力时空变化及其对气候变化的响应[J]. 生态学杂志, 2019, 38(5): 1464−1471.

    Liu Y H, Zhang J, Zhang C H, et al. Spatial and temporal variations of vegetation net primary productivity and its responses to climate change in Shandong Province from 2000 to 2015[J]. Chinese Journal of Ecology, 2019, 38(5): 1464−1471.
    [11] Hu Z, Fan J, Zhong H, et al. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland[J]. Science in China Series D-Earth Sciences, 2017, 50(5): 754−764.
    [12] 同琳静, 刘洋洋, 王倩, 等. 西北植被净初级生产力时空变化及其驱动因素[J]. 水土保持研究, 2019, 26(4): 367−374.

    Tong L J, Liu Y Y, Wang Q, et al. Spatial and temporal dynamics of net primary productivity and its driving factors in northwest China[J]. Research of Soil and Water Conservation, 2019, 26(4): 367−374.
    [13] 闫妍, 覃金华, 房磊, 等. 湖南省植被净初级生产力时空动态及其与气候因素的关系[J]. 生态学杂志, 2022, 41(8): 1−13.

    Yan Y, Qin J H, Fang L, et al. Spatiotemporal dynamics of vegetation net primary productivity and its relationships with climatic factors in Hunan Province[J]. Chinese Journal of Ecology, 2022, 41(8): 1−13.
    [14] 洪辛茜, 黄勇, 孙涛. 我国西南喀斯特地区2001—2018年植被净初级生产力时空演变[J]. 生态学报, 2021, 41(24): 9836−9846.

    Hong X X, Huang Y, Sun T. Spatiotemporal evolution of vegetation net primary productivity in the karst region of southwest China from 2001 to 2018[J]. Acta Ecologica Sinica, 2021, 41(24): 9836−9846.
    [15] 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5): 938−948.

    Tian Y C, Yang T, Xu X. Temporal and spatial distribution characteristics and influencing factors of net primary productivity of vegetation in the typical estuarine basin of the Beibu Gulf[J]. Acta Ecologica Sinica, 2021, 30(5): 938−948.
    [16] 段艺芳, 任志远, 孙艺杰. 陕北植被净初级生产力人为影响定量测评与分析[J]. 中国水土保持科学, 2020, 18(5): 81−88. doi: 10.16843/j.sswc.2020.05.010

    Duan Y F, Ren Z Y, Sun Y J. Quantitative evaluation and analysis of human impact on net primary productivity of vegetation in northern Shaanxi[J]. Science of Soil and Water Conservation, 2020, 18(5): 81−88. doi: 10.16843/j.sswc.2020.05.010
    [17] Ge W, Deng L, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773: 1−11.
    [18] 杜梦洁, 郑江华, 任璇, 等. 地形对新疆昌吉州草地净初级生产力分布格局的影响[J]. 生态学报, 2018, 38(13): 4789−4799.

    Du M J, Zheng J H, Ren X, et al. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji Prefecture, Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(13): 4789−4799.
    [19] 李雨鸿, 陶苏林, 李荣平, 等. 辽宁省净初级生产力时空演变及其对地形因子的响应[J]. 气象与环境学报, 2021, 37(5): 107−112. doi: 10.3969/j.issn.1673-503X.2021.05.016

    Li Y H, Tao S L, Li R P, et al. Temporal and spatial evolution of NPP and its responses to terrain factors in Liaoning Province[J]. Journal of Meteorology and Environment, 2021, 37(5): 107−112. doi: 10.3969/j.issn.1673-503X.2021.05.016
    [20] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010

    Wang J F, Xu C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010
    [21] 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158−1167. doi: 10.16258/j.cnki.1674-5906.2021.06.006

    Wang J J, Zhao A Z, Hu X F. Spatiotemporal distribution of vegetation net primary productivity in Beijing-Tianjin-Hebei and natural driving factors[J]. Journal of Ecological Environment, 2021, 30(6): 1158−1167. doi: 10.16258/j.cnki.1674-5906.2021.06.006
    [22] 孙治娟, 谢世友. 基于地理探测器的云南省净初级生产力时空演变及因子探测[J]. 生态学杂志, 2021, 40(12): 1−16. doi: 10.13292/j.1000-4890.202111.033

    Sun Z J, Xie S Y. Spatiotemporal variation in net primary productivity and factor detection in Yunnan Province based on geodetector[J]. Chinese Journal of Ecology, 2021, 40(12): 1−16. doi: 10.13292/j.1000-4890.202111.033
    [23] 谢宝妮, 秦占飞, 王洋, 等. 黄土高原植被净初级生产力时空变化及其影响因素[J]. 农业工程学报, 2014, 30(11): 244−253. doi: 10.3969/j.issn.1002-6819.2014.11.030

    Xie B N, Qin Z F, Wang Y, et al. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 244−253. doi: 10.3969/j.issn.1002-6819.2014.11.030
    [24] 史晓亮, 杨志勇, 王馨爽, 等. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系[J]. 中国农业气象, 2016, 37(4): 445−453.

    Shi X L, Yang Z Y, Wang X S, et al. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess Plateau[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 445−453.
    [25] 王娟, 何慧娟, 董金芳, 等. 黄河流域植被净初级生产力时空特征及自然驱动因子[J]. 中国沙漠, 2021, 41(6): 213−222.

    Wang J, He H J, Dong J F, et al. Spatio-temporal distribution of vegetation net primary productivity in the Yellow River Basin in 2000−2019 and its natural driving factors[J]. Desert of China, 2021, 41(6): 213−222.
    [26] Potter C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska[J]. Ecological Modelling, 2004, 175(1): 1−24. doi: 10.1016/j.ecolmodel.2003.05.004
    [27] Yu D, Shi P, Shao H, et al. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model[J]. International Journal of Remote Sensing, 2009, 30(18): 4851−4866. doi: 10.1080/01431160802680552
    [28] Nayak R K, Patel N R, Dadhwal V K. Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model[J]. Environmental Monitoring and Assessment, 2010, 170(1−4): 195−213. doi: 10.1007/s10661-009-1226-9
    [29] Cao S, Sanchez-Azofeifa G A, Duran S M, et al. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford approach (CASA) model[J]. Environmental Research Letters, 2016, 11(7): 1−12.
    [30] Jiang Y, Guo J, Peng Q, et al. The effects of climate factors and human activities on net primary productivity in Xinjiang[J]. International Journal of Biometeorology, 2020, 64(5): 765−777. doi: 10.1007/s00484-020-01866-4
    [31] Berberoglu S, Donmez C, Cilek A. Modelling climate change impacts on regional net primary productivity in Turkey[J]. Environmental Monitoring and Assessment, 2021, 193(5): 193−242.
    [32] 赵军, 李旺平, 李飞. 黄土高原太阳总辐射气候学计算及特征分析[J]. 干旱区研究, 2008, 25(1): 53−58. doi: 10.13866/j.azr.2008.01.005

    Zhao J, Li W P, Li F. Climatological calculation and analysis of global solar radiation in the Loess Plateau[J]. Arid Area Research, 2008, 25(1): 53−58. doi: 10.13866/j.azr.2008.01.005
    [33] 高志强, 刘纪远. 中国植被净生产力的比较研究[J]. 科学通报, 2008, 53(3): 317−326.

    Gao Z Q, Liu J Y. Comparative study on net productivity of vegetation in China[J]. Chinese Science Bulletin, 2008, 53(3): 317−326.
    [34] 杜波波, 阿拉腾图娅, 包刚, 等. 基于CASA模型模拟锡林郭勒草原净初级生产力[J]. 水土保持研究, 2021, 28(5): 293−300.

    Du B B, Alatengtuya, Bao G, et al. Simulation of net primary productivity of Xilingol Grassland based on CASA model[J]. Research of Soil and Water Conservation, 2021, 28(5): 293−300.
    [35] Meng X, Mao K, Meng F, et al. A fine-resolution soil moisture dataset for China in 2002−2018[J]. Earth System Science Data, 2021, 13(7): 3239−3261. doi: 10.5194/essd-13-3239-2021
    [36] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413−424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 2007, 31(3): 413−424. doi: 10.3321/j.issn:1005-264X.2007.03.010
    [37] 刘闻, 曹明明, 邱海军. 气候变化和人类活动的水文水资源效应研究进展[J]. 水土保持通报, 2012, 32(5): 215−219, 264.

    Liu W, Cao M M, Qiu H J. Progress of hydrology and water resources effects caused by climate change and human activities[J]. Bulletin of Soil and Water Conservation, 2012, 32(5): 215−219, 264.
    [38] 陈晓杰, 张长城, 张金亭, 等. 基于CASA模型的植被净初级生产力时空演变格局及其影响因素: 以湖北省为例[J]. 水土保持研究, 2022, 29(3): 253−261. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203034

    Chen X J, Zhang C C, Zhang J T, et al. Analysis of the spatiotemporal evolution patterns of vegetation net primary productivity and its influencing factors based on CASA model: a case study of Hubei Province[J]. Research of Soil and Water Conservation, 2022, 29(3): 253−261. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203034
    [39] 贺倩, 杨雪琴, 戴晓爱. 2010—2015年三江源地区植被净初级生产力变化特征及影响因素分析[J]. 长江科学院院报, 2020, 37(5): 59−66.

    He Q, Yang X Q, Dai X A. Variation characteristics and influence factors of netprimary productivity of vegetation in the Three-River headwaters region from 2010 to 2015[J]. Journal of Changjiang River Scientific Research Institute, 2020, 37(5): 59−66.
    [40] 周夏飞, 马国霞, 曹国志, 等. 2001—2013年黄土高原植被净初级生产力时空变化及其归因[J]. 安徽农业科学, 2017, 45(14): 48−53. doi: 10.3969/j.issn.0517-6611.2017.14.019

    Zhou X F, Ma G X, Cao G Z, et al. Spatiotemporal change and associated driving forces of vegetation net primary productivity in the Loess Plateau during 2001−2013[J]. Journal of Anhui Agricultural Sciences, 2017, 45(14): 48−53. doi: 10.3969/j.issn.0517-6611.2017.14.019
    [41] 刘铮. 黄土高原植被净初级生产力的时空动态及气候驱动因素研究[D]. 杨凌: 西北农林科技大学, 2021.

    Liu Z. Temporal and spatial dynamics of vegetation net primary productivity and its climate driving factors analysis in the Loess Plateau of China [D]. Yangling: Northwest Agricultural and Forestry University, 2021.
    [42] 石志华, 刘梦云, 吴健利, 等. 基于CASA模型的陕西省植被净初级生产力时空分析[J]. 水土保持通报, 2016, 36(1): 206−211, 345. doi: 10.13961/j.cnki.stbctb.2016.01.037

    Shi Z H, Liu M Y, Wu J L, et al. Spatial-temporal analysis of vegetation net primary productivity in Shaanxi Province based on CASA model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 206−211, 345. doi: 10.13961/j.cnki.stbctb.2016.01.037
    [43] 刘忠阳, 李梦夏, 李军玲, 等. 河南省植被净初级生产力变化特征及其对气候变化的响应[J]. 河南农业大学学报, 2021, 55(1): 141−151, 163. doi: 10.16445/j.cnki.1000-2340.20210122.001

    Liu Z Y, Li M X, Li J L, et al. Change characteristics of net primary productivity of vegetation in Henan Province and its response to climate change[J]. Journal of Henan Agricultural University, 2021, 55(1): 141−151, 163. doi: 10.16445/j.cnki.1000-2340.20210122.001
    [44] 侯青青, 裴婷婷, 陈英, 等. 1986—2019年黄土高原干旱变化特征及趋势[J]. 应用生态学报, 2021, 32(2): 649−660. doi: 10.13287/j.1001-9332.202102.012

    Hou Q Q, Pei T T, Chen Y, et al. Variations of drought and its trend in the Loess Plateau from 1986 to 2019[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 649−660. doi: 10.13287/j.1001-9332.202102.012
    [45] 王宇航, 赵鸣飞, 康慕谊, 等. 黄土高原地区NDVI与气候因子空间尺度依存性及非平稳性研究[J]. 地理研究, 2016, 35(3): 493−503. doi: 10.11821/dlyj201603008

    Wang Y H, Zhao M F, Kang M Y, et al. Spatial scale-dependent and non-stationarity relationships between NDVI and climatic factors in the Loess Plateau[J]. Geographical Research, 2016, 35(3): 493−503. doi: 10.11821/dlyj201603008
    [46] 王婧姝, 毕如田, 贺鹏, 等. 气候变化下黄土高原植被生长期NDVI动态变化特征[J]. 生态学杂志, 2023, 42(1): 1−13. doi: 10.13292/j.1000-4890.202301.014

    Wang J S, Bi R T, He P, et al. Dynamic characteristics of NDVI during main growth seasons in the Chinese Loess Plateau affect by climate change[J]. Chinese Journal of Ecology, 2023, 42(1): 1−13. doi: 10.13292/j.1000-4890.202301.014
    [47] 孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5): 1200−1214. doi: 10.11821/dlyj020190399

    Sun R, Chen S H, Su H B. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200−1214. doi: 10.11821/dlyj020190399
    [48] 孙倩倩, 刘超, 郑蓓君. 基于ICEEMDAN方法的黄土高原植被覆盖变化及其对气候变化的响应[J]. 应用生态学报, 2021, 32(6): 2129−2137. doi: 10.13287/j.1001-9332.202106.011

    Sun Q Q, Liu C, Zheng B J. Vegetation cover change and its response to climate change on the Loess Plateau, Northwest China based on ICEEMDAN method[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2129−2137. doi: 10.13287/j.1001-9332.202106.011
    [49] 顾朝军, 穆兴民, 高鹏, 等. 1961—2014年黄土高原地区降水和气温时间变化特征研究[J]. 干旱区资源与环境, 2017, 31(3): 136−143.

    Gu C J, Mu X M, Gao P, et al. Characteristics of temporal variation in precipitation and temperature in the Loess Plateau from 1961 to 2014[J]. Journal of Arid Land Resources and Environment, 2017, 31(3): 136−143.
    [50] 张鹏飞, 赵广举, 穆兴民, 等. 渭河流域蒸发皿蒸发量时空变化与驱动因素[J]. 干旱区研究, 2019, 36(4): 973−979. doi: 10.13866/j.azr.2019.04.22

    Zhang P F, Zhao G J, Mu X M, et al. Spatiotemporal variation and driving factors of pan evaporation in the Weihe River Basin[J]. Arid Zone Research, 2019, 36(4): 973−979. doi: 10.13866/j.azr.2019.04.22
    [51] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255−1268. doi: 10.11821/xb201209010

    Mu S J, Li J L, Chen Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001−2010[J]. Acta Geographica Sinica, 2012, 67(9): 1255−1268. doi: 10.11821/xb201209010
    [52] 李晶, 刘乾龙, 刘鹏宇. 1998—2018年呼伦贝尔市植被覆盖度时空变化及驱动力分析[J]. 生态学报, 2022, 42(1): 220−235.

    Li J, Liu Q L, Liu P Y. Spatio-temporal changes and driving forces of fraction of vegetation coverage in Hulunbuir (1998−2018)[J]. Acta Ecologica Sinica, 2022, 42(1): 220−235.
    [53] 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8): 2530−2540. doi: 10.13292/j.1000-4890.202108.022

    Zhang H, Li M, Song J Y, et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detector[J]. Chinese Journal of Ecology, 2021, 40(8): 2530−2540. doi: 10.13292/j.1000-4890.202108.022
    [54] 张佑铭, 郎梦凡, 刘梦云, 等. 土地利用转变与海拔高度协同作用黄土高原植被固碳变化特征[J]. 生态学报, 2022, 42(10): 3897−3908.

    Zhang Y M, Lang M F, Liu M Y, et al. Vegetation carbon sequestration in the Loess Plateau under the synergistic effects of land cover change and elevations[J]. Acta Ecologica Sinica, 2022, 42(10): 3897−3908.
    [55] 同英杰, 文彦君, 张翀. 2003—2017年陕西省NDVI时空变化及其影响因素[J]. 水土保持通报, 2020, 40(3): 155−162, 169, 325.

    Tong Y J, Wen Y J, Zhang C. Spatiotemporal variation of NDVI and its influence factors in Shaanxi Province during 2003−2017[J]. Bulletin of Soil and Water Conservation, 2020, 40(3): 155−162, 169, 325.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  28
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2023-02-05
  • 网络出版日期:  2023-07-25
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回