Effect of spatial structure of Picea asperata secondary forest on light environment in Guandi mountain
-
摘要:
目的 探究关帝山云杉次生林林分的空间结构对林内光照的影响,为了解森林内部光环境的特点及影响因素提供数据支持和理论参考。 方法 以庞泉沟国家自然保护区4 hm2固定样地为研究对象,将样地划分为100块20 m × 20 m的小样方,在2021年7—8月间,测量样方内活立木(DBH≥1 cm)的相对坐标和胸径,利用半球摄影法获取半球面林冠影像,分析得到林内光环境参数,研究样地空间结构特征和光分布特征,并对林分空间结构与林内光环境间的相关关系进行验证。 结果 (1)林冠开度(CO)和林下光照主要表现为边缘小于内部,叶面积指数(LAI)表现为边缘大于内部。林上总光照(Atot)值整体较大,各区域间差异较大,仅有13.7%的光照可以从森林上部进入到林下。(2)林木分布格局主要表现为团状分布,大小分化程度为亚优势−中庸,中庸和中庸−劣态3种状态,树种混交度为零弱度混交,中弱度混交和中强度混交3类。(3)树种的水平分布格局和CO呈显著的正相关(P < 0.05),空间隔离程度和LAI呈显著的正相关(P < 0.05),和林下直射光(Tdir)、林下总光照(Ttot)呈显著的负相关(P < 0.05)。 结论 林内光照和林分空间结构之间表现出一定的相关关系,林木的水平分布格局主要影响CO,树种间的混交程度主要影响LAI、Tdir和Ttot。 Abstract:Objective To explore the influence of the spatial structure of Picea asperata secondary forest on the lighting in the forest, and to provide data support and theoretical reference for understanding the characteristics and influencing factors of the light environment in the forest. Method Taking the 4 hm2 fixed sample plot in Pangquangou National Nature Reserve as the research object, the sample plot is divided into 100 blocks of 20 m × 20 m small quadrat. Between July and August 2021, the relative coordinates and DBH of the living trees (DBH ≥ 1 cm) in the small plot were measured, and the hemispherical canopy images were obtained by hemispherical photography. The light environment parameters in the forest were analyzed and obtained, the spatial structure characteristics and light distribution characteristics of the plot were studied, and the correlation between the spatial structure of the forest and the light environment in the forest was verified. Result (1) The canopy opening (CO) and the light under the forest mainly showed that the edge was smaller than the interior, and the leaf area index (LAI) showed that the edge was larger than the interior. The total light (Atot) value on the forest is large as a whole, and there is a large difference among regions. Only 13.7% of the light can enter from the upper part of the forest to the lower part of the forest. (2) The distribution pattern of forest trees is mainly characterized by cluster distribution. The degree of size differentiation is sub superiority-moderate, moderate and moderate-inferior. The mixed degree of tree species is zero-weak,medium-weak and medium-intensity. (3) The horizontal distribution pattern of tree species was significantly positively correlated with CO (P < 0.05), the spatial isolation degree was significantly positively correlated with Lai (P < 0.05), and was significantly negatively correlated with direct sunlight (Tdir) and total sunlight (Ttot) under the forest (P < 0.05). Conclusion There is a certain correlation between the light in the forest and the spatial structure of the forest. The horizontal distribution pattern of trees mainly affects CO, and the mixing degree among tree species mainly affects LAI, Tdir and Ttot. -
Key words:
- spatial structure /
- canopy structure /
- light in the forest /
- correlation analysis
-
图 4 林内光照参数分布热图
CO%.林冠开度;LAI.冠层叶面积指数;Atot.林上总光照;TDir.林下直射光;TDif.林下散射光;TTot.林下总光照。CO%, canopy openness; LAI, leaf area index; Atot, above total solar radiation; TDir, transmitted direct solar radiation; TDif, transmitted diffuse solar radiation; TTot, transmitted total solar radiation.
Figure 4. Heat map of light parameter distribution in forest
表 1 云杉次生林乔木组成特征
Table 1. Arbor composition characteristics of Picea asperata secondary forest
树种
Species林分密度/
(株·hm−2)
Forest density/(tree·ha−1)断面积/(m2·hm−2)
Sectional area/(m2·ha−1)平均胸径
Average of DBH/cm相对频度
Relative frequency/%相对多度
Relative abundance/%相对显著度
Relative significance/%重要值
Importance valuee/%云杉 Picea asperata 652.25 34.03 23.51 27.50 73.90 73.80 58.40 华北落叶松
Larix gmelinii var. principis-rupprechtii99.25 10.21 35.13 22.30 11.30 22.10 18.60 辽东栎 Quercus mongolica 33.50 0.35 9.99 11.30 3.80 0.80 5.30 红桦 Betula albosinensis 44.00 0.35 8.38 12.40 5.00 0.80 6.00 白桦 Betula platyphylla 26.25 0.59 15.64 9.40 3.00 1.30 4.50 花楸 Sorbus alnifolia 16.50 0.11 8.17 10.20 1.90 0.20 4.10 山杨 Populus davidiana 6.25 0.45 24.74 3.60 0.70 1.00 1.80 山楂 Crataegus pinnatifida 2.75 0.01 5.21 1.90 0.30 0.00 0.80 皂柳 Salix wallichiana 0.75 0.02 16.02 0.80 0.10 0.00 0.30 山柳 Salix pseudotangii 0.50 0.02 20.33 0.30 0.10 0.00 0.10 油松 Pinus tabuliformis 0.25 0.01 19.61 0.30 0.00 0.00 0.10 表 2 林分空间结构计算公式
Table 2. Calculation formula of stand spatial structure
林分空间结构参数
Stand spatial structure parameters计算公式
Calculation formula角尺度
Angle index (Wi)Wi = $ \dfrac{1}{n}\displaystyle {\sum} _{j=1}^{n}{z}_{ij} $ 大小比数
Neighborhood comparison (Ui)Ui = $ \dfrac{1}{n}\displaystyle {\sum} _{j=1}^{n}{k}_{ij} $ 混交度
Mingling intensity (Mi)Mi = $ \dfrac{1}{n}\displaystyle {\sum} _{j=1}^{n}{v}_{ij} $ 表 3 冠层结构特征
Table 3. Canopy structure characteristics
变量
Variable平均值
Mean中位数
Median标准差
SD偏度
Skewness峰度
Kurtosis范围
Range最小值
Minimum最大值
Maximum变异系数
CV/%CO/% 11.67 11.29 2.31 3.00 13.17 16.27 8.48 24.75 19.79 LAI 2.39 2.38 0.20 −1.14 4.12 1.25 1.53 2.78 8.37 Atot/(mol∙m−2∙d−1) 28.73 28.90 3.18 −0.38 −0.29 14.50 19.06 33.56 11.07 Tdir/(mol∙m−2∙d−1) 1.61 1.52 0.65 2.35 9.66 4.68 0.51 5.19 40.37 Tdif/(mol∙m−2∙d−1) 2.32 2.25 0.54 3.63 20.78 4.41 1.50 5.91 23.28 Ttot/(mol∙m−2∙d−1) 3.93 3.82 1.10 3.03 13.74 7.82 2.04 9.86 27.99 -
[1] 惠刚盈, 赵中华, 陈明辉. 描述森林结构的重要变量[J]. 温带林业研究, 2020, 3(1): 7.Hui G Y, Zhao Z H, Chen M H. Important variables describing forest structure[J]. Journal of Temperate Forestry Research, 2020, 3(1): 7. [2] 万盼, 刘文桢, 刘瑞红, 等. 结构化经营对栎松混交林林分空间结构及稳定性的影响[J]. 林业科学, 2020, 56(4): 35−45.Wan P, Liu W Z, Liu R H, et al. Effects of structure-based forest management on stand space structure and its stability of mixed oak-pine forest[J]. Scientia Silvae Sinicae, 2020, 56(4): 35−45. [3] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27.Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. [4] 惠刚盈, Gadow K V, 胡艳波, 等. 林木分布格局类型的角尺度均值分析方法[J]. 生态学报, 2004, 24(6): 1225−1229.Hui G Y, Gadow K V, Hu Y B, et al. Characterizing forest spatial distribution pattern with the mean Value of uniform angle index[J]. Acta Ecologica Sinica, 2004, 24(6): 1225−1229. [5] 曹小玉, 李际平. 林分空间结构指标研究进展[J]. 林业资源管理, 2016(4): 65−73.Cao X Y, Li J P. Research progress on indicators of the stand spatial structure[J]. Forest Resources Management, 2016(4): 65−73. [6] 惠刚盈. 角尺度: 一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 39−44.Hui G Y. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 39−44. [7] 惠刚盈, Gadow K V, Albert Matthias. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1): 4−9.Hui G Y, Gadow K V, Albert M. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 4−9. [8] 宋子炜, 郭小平, 赵廷宁, 等. 北京市顺义区公路绿化植物群落的光环境特性[J]. 生态学报, 2008, 28(8): 3779−3788.Song Z W, Guo X P, Zhao T N, et al. A comparison of light environmental characteristics for road greening plants communities in Beijing Shunyi District[J]. Acta Ecologica Sinica, 2008, 28(8): 3779−3788. [9] 邱建丽, 李意德, 陈德祥, 等. 森林冠层结构的生态学研究现状与展望[J]. 广东林业科技, 2008(1): 75−82.Qiu J L, Li Y D, Chen D X, et al. The research progress and the significance of canopy structure in forest ecology[J]. Guangdong Forestry Science and Technology, 2008(1): 75−82. [10] Bongers F. Methods to assess tropical rain forest canopy structure: an overview[J]. Plant Ecology, 2001, 153(1/2): 263−277. doi: 10.1023/A:1017555605618 [11] Rissanen K, Martin-Guay M O, Riopel-Bouvier A S, et al. Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy[J/OL]. Agricultural and Forest Meteorology, 2019, 278: 107655[2022−10−19]. https://doi.org/10.1016/j.agrformet.2019.107655. [12] Majasalmi T, Rautiainen M. The impact of tree canopy structure on understory variation in a boreal forest[J]. Forest Ecology and Management, 2020, 466(C): 缺页码或者补充网址. [13] 李德志, 臧润国. 森林冠层结构与功能及其时空变化研究进展[J]. 世界林业研究, 2004, 17(3): 12−16. doi: 10.3969/j.issn.1001-4241.2004.03.003Li D Z, Zang R G. The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes[J]. World Forestry Research, 2004, 17(3): 12−16. doi: 10.3969/j.issn.1001-4241.2004.03.003 [14] 郑芬, 李兆佳, 邱治军, 等. 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响[J]. 生态学报, 2020, 40(13): 4516−4527.Zhen F, Li Z J, Qiu Z J, et al. Effect of understory light on functional traits of evergreen broad-leaved forest saplings in Nanling Mountains, Guangdong Province[J]. Acta Ecologica Sinica, 2020, 40(13): 4516−4527. [15] 卢训令, 丁圣彦, 游莉, 等. 伏牛山自然保护区森林冠层结构对林下植被特征的影响[J]. 生态学报, 2013, 33(15): 4715−4723. doi: 10.5846/stxb201205120699Lu X L, Ding S Y, You L, et al. Effects of forest canopy structure on understory vegetation characteristics of Funiu Mountain Nature Reserve[J]. Acta Ecologica Sinica, 2013, 33(15): 4715−4723. doi: 10.5846/stxb201205120699 [16] 贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布[J]. 应用生态学报, 2020, 31(6): 1916−1922.He D N, Yang H, Wen J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1916−1922. [17] Wan P, He R R. Canopy structure and understory light characteristics of a natural Quercus aliena var. acuteserrata forest in China northwest: influence of different forest management methods[J/OL]. Ecological Engineering, 2020, 153: 105901[2022−09−16]. https://doi.org/10.1016/j.ecoleng.2020.105901. [18] 石君杰, 陈忠震, 王广海, 等. 间伐对杨桦次生林冠层结构及林下光照的影响[J]. 应用生态学报, 2019, 30(6): 1956−1964.Shi J J, Chen Z Z, Wang G H, et al. Impacts of thinning on canopy structure and understory light in secondary poplar-birch forests[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1956−1964. [19] Zhu J, Matsuzaki T, Lee F, et al. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest[J]. Forest Ecology and Management, 2003, 182(1): 339−354. [20] Nicotra A B, Chazdon R L, Iriarte S V B. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests[J]. Ecology, 1999, 80(6): 1908−1926. doi: 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2 [21] 黄润霞, 贾小容, 刘婷, 等. 亚热带生态公益林冠层结构与林下辐射动态[J]. 西北林学院学报, 2020, 35(1): 28−36.Huang R X, Jia X R, Liu T, et al. Canopy Structure and Understory Radiation Dynamisc of Subtropical Ecological Public Welfare Forest[J]. Journal of Northwest Forestry University, 2020, 35(1): 28−36. [22] 崔佳玉, 曾焕忱, 王永强, 等. 银瓶山自然保护区阔叶林冠层结构与辐射消减效应[J]. 西北林学院学报, 2015, 30(4): 45−49.Cui J Y, Zeng H C, Wang Y Q, et al. Canopy Structure and Radiation Attenuation Effects of Broad-leaved Forest in Yinpingshan Nationa Nature Reserve[J]. Journal of Northwest Forestry University, 2015, 30(4): 45−49. [23] 贾小容, 苏志尧, 区余端, 等. 三种人工林分的冠层结构参数与林下光照条件[J]. 广西植物, 2011, 31(4): 473−478.Jia X R, Su Z Y, Ou Y D, et al. Canopy structural parameters and understory light regimes of 3 artificial forest stands in South China[J]. Guihaia, 2011, 31(4): 473−478. [24] 方怡然, 潘澜, 薛立. 冰雪灾害后的杉木人工林冠层结构与林下光照及土壤生化特性的关系[J]. 生态环境学报, 2018, 27(4): 609−616.Fang Y R, Pan L, Xue L. Relationships between canopy structure and understory light and soil biochemical property in a Cunninghamia lanceolata stand suffering from ice-snow damage[J]. Journal of Eco-Environment, 2018, 27(4): 609−616. [25] 叶冬梅, 徐明锋, 蒋谦才, 等. 不同林型对林下光照和辐射消减的影响[J]. 湖南林业科技, 2016, 43(5): 40−46.Ye D M, Xu M F, Jiang Q C, et al. Effects of different forest types on understory light and radiation reduction[J]. Hunan Forestry Science & Technology, 2016, 43(5): 40−46. [26] 解丹丹, 苏志尧. 石门台亚热带森林不同演替阶段冠层结构与林下光照特征[J]. 许昌学院学报, 2018, 37(6): 10−14.Xie D D, Su Z Y. Characteristics of canopy structure and understory light in subtropical forest community at different successional stages in Shimentai Nature Reserve[J]. Journal of Xuchang University, 2018, 37(6): 10−14. [27] 和敬渊, 王新杰, 郭韦韦, 等. 金沟岭林场两种天然起源的杨桦次生林空间结构特征[J]. 东北林业大学学报, 2020, 48(9): 1−7.He J Y, Wang X J, Guo W W et al. Spatial structure of two natural origin poplar-birch secondary forests in Jingouling Forest Farm[J]. Journal of Northeast Forestry University, 2020, 48(9): 1−7. [28] 刘月, 许丽颖, 王玉娇, 等. 紫椴次生林枯立木与活立木数量及空间结构特征分析[J]. 北京林业大学学报, 2020, 42(6): 68−79.Liu Y, Xu L Y, Wang Y J, et al. Characteristics analysis of quantity and spatial structure of standing liveand dead trees in Tilia amurensis secondary forest on the west slope of Zhangguang-cailing, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 68−79. [29] Wan P, Zhang G, Wang H, et al. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China[J]. Ecological Informatics, 2019, 50: 86−94. doi: 10.1016/j.ecoinf.2019.01.007 [30] 闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性[J]. 生态学报, 2010, 30(9): 2311−2321.Yan H B, Han Y Z, Yang X Q, et al. Spatial distribution patterns and associations of tree species in typical natural secondary mountain forest communities of Northern China[J]. Acta Ecologica Sinica, 2010, 30(9): 2311−2321. [31] 胡理乐, 朱教君, 李俊生, 等. 林窗内光照强度的测量方法[J]. 生态学报, 2009, 29(9): 5056−5065.Hu L L, Zhu J J, Li J S, et al. Reviews on methods of measuring light intensities within forest gaps[J]. Acta Ecologica Sinica, 2009, 29(9): 5056−5065. [32] 区余端, 苏志尧. 粤北山地常绿阔叶林自然干扰后冠层结构与林下光照动态[J]. 生态学报, 2012, 32(18): 5637−5645. doi: 10.5846/stxb201108191221Ou Y D, Su Z Y. Dynamics of canopy structure and understory light in montane evergreen broadleaved forest following a natural disturbance in North Guangdong[J]. Acta Ecologica Sinica, 2012, 32(18): 5637−5645. doi: 10.5846/stxb201108191221 [33] 张彦雷, 康峰峰, 韩海荣, 等. 太岳山油松人工林冠下光环境特征与冠层结构[J]. 南京林业大学学报(自然科学版), 2014, 38(2): 169−174.Zhang Y L, Kang F F, Han H R, et al. Measurement and analysis on understory light environment and canopy structure of Pinus tabulaeformis plantation in the Taiyue Mountain[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(2): 169−174. [34] 陈厦, 桑卫国. 暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态[J]. 植物生态学报, 2007, 31(3): 431−436. doi: 10.3321/j.issn:1005-264X.2007.03.012Chen S, Sang W G. Dynamics of leaf aera index and canopy openness for three forest communities in the warm temperate zone of China[J]. Journal of Plant Ecology, 2007, 31(3): 431−436. doi: 10.3321/j.issn:1005-264X.2007.03.012 [35] 张金屯, 柴宝峰, 邱扬, 等. 晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化[J]. 生物多样性, 2000, 8(4): 378−384.Zhang J T, Chai B F, Qiu Y, et al. Changes in species diversity in the succession of plant communities of abandoned land in Luliang Mountain, western Shanxi[J]. Chinese Biodiversity, 2000, 8(4): 378−384. [36] 丁圣彦, 卢训令, 李昊民. 天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较[J]. 生态学报, 2005, 25(11): 70−75.Ding S Y, Lu X L, Li H M. A comparison of light environmental characteristics for evergreen broad-leaved forest communities from different successional stages in Tiantong National Forest Park[J]. Acta Ecologica Sinica, 2005, 25(11): 70−75. [37] 陈高, 代力民, 周莉. 受干扰长白山阔叶红松林林分组成及冠层结构特征[J]. 生态学杂志, 2004, 23(5): 116−120.Chen G, Dai L M, Zhou L. Structure of stand and canopy characteristics of disturbed communities of broadleaved Pinus koraiensis forest in Changbai Mountain[J]. Chinese Journal of Ecology, 2004, 23(5): 116−120. -