• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

阔叶红松林乔木地上碳储量和碳增量对采伐强度的响应

耿燕, 赵秀海, 安黎哲

耿燕, 赵秀海, 安黎哲. 阔叶红松林乔木地上碳储量和碳增量对采伐强度的响应[J]. 北京林业大学学报, 2022, 44(10): 23-32. DOI: 10.12171/j.1000-1522.20220403
引用本文: 耿燕, 赵秀海, 安黎哲. 阔叶红松林乔木地上碳储量和碳增量对采伐强度的响应[J]. 北京林业大学学报, 2022, 44(10): 23-32. DOI: 10.12171/j.1000-1522.20220403
Geng Yan, Zhao Xiuhai, An Lizhe. Responses of tree aboveground carbon storage and carbon increment to logging intensity in a broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(10): 23-32. DOI: 10.12171/j.1000-1522.20220403
Citation: Geng Yan, Zhao Xiuhai, An Lizhe. Responses of tree aboveground carbon storage and carbon increment to logging intensity in a broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(10): 23-32. DOI: 10.12171/j.1000-1522.20220403

阔叶红松林乔木地上碳储量和碳增量对采伐强度的响应

基金项目: 国家自然科学基金项目(32171521)
详细信息
    作者简介:

    耿燕,副教授。主要研究方向:森林可持续经营、森林生态系统结构与功能。 Email:gengyan@bjfu.edu.cn 地址:100083北京市海淀区清华东路 35 号北京林业大学林学院

    责任作者:

    安黎哲,教授,博士生导师。主要研究方向:植物生态学。Email:anlizhe@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学

  • 中图分类号: S791.247

Responses of tree aboveground carbon storage and carbon increment to logging intensity in a broadleaved Korean pine forest

  • 摘要:
      目的  采伐是影响森林植被固碳能力最主要的森林管理方式之一。目前对异龄复层混交林植被碳储量和碳增量对采伐干扰的响应规律尚缺乏足够的认识。本研究旨在揭示不同强度采伐下阔叶红松林乔木地上碳储量和碳增量的动态变化,为合理选择采伐强度,促进阔叶红松林“固碳增汇”提供理论依据。
      方法  在吉林蛟河天然阔叶红松林内建立轻度(胸高断面积平均采伐强度17.3%)、中度(34.7%)、重度(51.9%)采伐以及对照(不采伐)样地,对样地内所有胸径大于1 cm的乔木进行连续监测,比较不同采伐强度下保留木、进界木、枯死木碳储量的变化,以及采伐对不同径级树木碳增量的影响,探究采伐干扰后林分碳储量恢复的一般规律和限制因素。
      结果  采伐10年后,轻度采伐样地内的乔木地上碳储量已经恢复到伐前水平并超过对照样地,而中度和重度采伐造成的碳储量损失在短期内难以恢复,分别需要约22年和44年才能恢复到伐前水平。乔木地上碳增量在4个采伐强度中有显著差异。轻度采伐使得林分碳年增量显著高于对照,而重度采伐却明显降低了碳增量的增速。这是因为尽管采伐显著提高了林分保留木和进界木的生长量,但高强度采伐造成的林内环境变化、树木受伤等增加了样地内树木的死亡率,使得净碳增量较低。采伐对小径级树木(胸径小于20 cm)的生长(碳增量)有显著的促进作用,而大径级树木(胸径大于30 cm)的碳增量在不同采伐处理之间没有显著影响。将采伐强度与碳增量进行拟合,得到采伐强度为28.4%时碳储量年增量达到最大值。
      结论  从本研究结果来看,阔叶红松林的采伐强度在15% ~ 30%是较为合理的。轻度到中度的采伐尽管在短期内会引起植被碳储量一定程度的降低,但通过对林分结构进行调整,加速了保留木和进界木的生长,使得碳增量较快。同时,胸径在20 ~ 30 cm的树木对整个林分的碳增量贡献最大,生长潜力也较大,意味着森林经营时应特别考虑保留这一径级的树木。总之,采伐强度的设定应综合考虑木材生产、生态系统恢复、森林植被碳汇功能等多种因素。
    Abstract:
      Objective  Logging is one of the most important forest management methods affecting the carbon sequestration capacity of forest vegetation. At present, there is a lack of understanding in the response of vegetation carbon storage and carbon increment in uneven aged multi-layer mixed forest to logging disturbance. The objective of this study was to reveal the dynamic changes of tree aboveground carbon storage and carbon increment of broadleaved Korean pine forest following logging of different intensities, and thus providing a theoretical basis for optimizing logging intensity to promote carbon sink potential of the broadleaved Korean pine forest.
      Method  We established four permanent sample plots in a broadleaved Korean pine forest in Jiaohe, Jilin Province of northeastern China, ranging in logging intensities from low (17.3% of basal area removed on average), medium (34.7%) to high (51.9%), together with an unlogged control sample plot. Growth, recruitment and mortality of all individual trees with DBH greater than 1 cm were documented. Changes in carbon storage due to growth, recruitment and mortality were compared among different logging intensities, as well as among tree size classes.
      Result  Tree aboveground carbon storage in the low sample plot was recovered to pre-logging level within 10 years. The accumulated carbon storage in the low logging sample plot was even greater than the control. Nevertheless, the loss of carbon storage due to logging in medium and high logging sample plots was hardly compensated by increasing tree growth within a short period, and about 22 and 44 years were needed for medium and high logging sample plots, respectively, to recover to their pre-logging levels. Net carbon storage increment differed significantly among the four treatments. Compared with control, low intensity logging promoted the annual increment of carbon storage, while medium to high logging resulted in a remarkable low rate of carbon increment. Although logging enhanced the growth of survivors and recruitment, heavy logging altered the understory environmental conditions and tended to induce mechanical damage during logging, leading to a high mortality rate and a low net increment of carbon storage. Logging favored the growth (carbon storage increment) of small-sized trees (DBH < 20 cm), whereas the carbon increment of large trees was not affected by logging operations. By plotting logging intensity against carbon increment, we found that carbon storage increment peaked at a logging intensity of 28.4%.
      Conclusion  Based on our results, a logging intensity between 15%−30% is suitable in this broadleaved Korean pine forest. Low and medium logging reduces vegetation carbon storage, but the enhanced growth and recruitment due to adjusted stand structure may accelerate carbon storage increment. Meanwhile, size class of DBH between 20 and 30 cm contributes the most to the whole stand carbon storage accumulation, indicating that we should give priority to these trees in forest management because they have great growth potential. To sum up, the determinations of logging intensity should take a variety of factors into consideration, such as wood production, ecosystem restoration and carbon sink potential of forest vegetation.
  • 图  1   各样地乔木地上生物量和碳储量在采伐后的变化

    Figure  1.   Changes of aboveground biomass and carbon storage of trees in various sample plots after harvesting

    图  2   各样地乔木地上碳储量的年净变化量及保留木、进界木、枯死木的碳储量年变化

    不同字母代表在P < 0.05水平上差异显著。下同。Different letters indicate significant differences at P < 0.05 level. The same below.

    Figure  2.   Annual net change of aboveground carbon storage of trees in various areas and annual change of carbon storage of reserved trees, recruitment and dead trees in each sample plot

    图  3   不同采伐处理下各径级树木每年的碳平均增量

    不同字母代表在P < 0.05水平上差异显著。Ⅰ:1 ≤ DBH < 10 cm;Ⅱ:10 ≤ DBH < 20 cm;Ⅲ:20 ≤ DBH < 30 cm;Ⅳ:30 ≤ DBH < 40 cm;Ⅴ:40 ≤ DBH < 50 cm;Ⅵ:DBH > 50 cm。Different letters indicate significant differences at P < 0.05 level. Ⅰ: 1 ≤ DBH < 10 cm; Ⅱ: 10 ≤ DBH < 20 cm; Ⅲ: 20 ≤ DBH < 30 cm; Ⅳ: 30 ≤ DBH < 40 cm; Ⅴ: 40 ≤ DBH < 50 cm; Ⅵ: DBH > 50 cm.

    Figure  3.   Annual increment of carbon storage of each diameter class under different logging treatments

    图  4   采伐强度与乔木地上碳储量增量的拟合关系

    Figure  4.   Relationship between logging intensity and annual increment of tree aboveground carbon storage

    图  5   不同采伐强度下乔木地上碳储量恢复模拟

    灰色区域和实线为调查期实测数据 (2011—2021),白色区域和虚线为模拟数据。 The grey areas and solid lines indicate data recorded during the experimental period (2011−2021), while white areas and dashed lines indicate extrapolated carbon storage recovery to pre-logging levels.

    Figure  5.   Tree aboveground carbon storage dynamics simulations of three different logging intensities

    表  1   阔叶红松林采伐样地概况

    Table  1   Site information of the broadleaved Korean pine forest

    项目 Item对照样地
    Control sample plot (CK)
    轻度采伐样地
    Low logging
    intensity sample plot (L)
    中度采伐样地
    Medium logging
    intensity sample plot (M)
    重度采伐样地
    High logging
    intensity sample plot (H)
    纬度 Latitude43°57′45″N43°57′47″N43°58′04″N43°58′23″N
    经度 Longitude127°43′53″E127°44′23″E127°44′19″E127°45′32″E
    海拔 Altitude/m453443430497
    坡度 Slope/(°)1453
    坡向 Aspect东北 Northeast东北 Northeast东北 Northeast东北 Northeast
    调查期初林分株数密度/hm2
    Number density of stand at the beginning of survey/ha
    946 ± 1501026 ± 157999 ± 1931025 ± 186
    调查期末林分株数密度/hm2
    Number density of stand at the end of survey/ha
    920 ± 141762 ± 135692 ± 158587 ± 155
    调查期初平均胸高断面积/(m2·hm−2
    Average basal area (BA) at the beginning of survey/(m2·ha−1)
    28.01 ± 2.0229.32 ± 1.4329.84 ± 2.0428.48 ± 2.41
    调查期末平均胸高断面积/(m2·hm−2
    Average basal area at the end of survey/(m2·ha−1)
    29.80 ± 2.2027.94 ± 1.6423.56 ± 3.2918.98 ± 2.51
    调查期初蓄积量/(m3·hm−2
    Stand volume at the beginning of survey/(m3·ha−1)
    199.59 ± 16.45228.31 ± 16.10233.80 ± 16.87209.25 ± 20.33
    调查期末蓄积量/(m3·hm−2
    Stand volume at the end of survey/(m3·ha−1)
    236.33 ± 18.51243.01 ± 20.41196.25 ± 16.02120.18 ± 14.56
    调查期初平均树高
    Average tree height at the beginning of survey/m
    9.75 ± 0.139.67 ± 0.119.57 ± 0.208.86 ± 0.19
    调查期末平均树高
    Average tree height at the end of survey/m
    11.77 ± 0.2512.47 ± 0.2913.56 ± 0.3311.56 ± 0.37
    调查期初平均胸径
    Average DBH at the beginning of survey/cm
    13.60 ± 0.4514.90 ± 0.3714.25 ± 0.4013.93 ± 0.33
    调查期末平均胸径
    Average DBH at the end of survey/cm
    15.52 ± 0.4616.64 ± 0.5016.97 ± 0.5715.2 ± 0.70
    平均采伐强度(胸高断面积采伐率)
    Mean logging intensity (BA removal rate)/%
    017.3 (0.38 ~ 24.71)34.7 (21.12 ~ 44.45)51.9 (40.15 ~ 72.58)
    注:括号内为20 m × 20 m样方的采伐强度变化范围(%)。Notes: ranges of logging intensity in subplots (20 m × 20 m) are shown in parentheses (%).
    下载: 导出CSV
  • [1]

    Houghton R A, Hall F, Goetz S J. Importance of biomass in the global carbon cycle[J]. Journal of Geophysical Research-Biogeosciences, 2009, 114: G00E03.

    [2]

    Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185

    [3]

    Pan Y, Birdsey R, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609

    [4] 田惠玲, 朱建华, 李宸宇, 等. 基于自然的解决方案: 林业增汇减排路径、潜力与经济性评价[J]. 气候变化研究进展, 2021, 17(2): 195−203.

    Tian H L, Zhu J H, Li C Y, et al. Nature-based solution: potential and economic benefits of carbon removal or carbon emission reduction through forestry approaches[J]. Climate Change Research, 2021, 17(2): 195−203.

    [5]

    Fang J, Guo Z, Hu H, et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth[J]. Global Change Biology, 2014, 20(6): 2019−2030. doi: 10.1111/gcb.12512

    [6] FAO. Global forest resources assessment 2020[R/OL]. [2022−10−08]. https://www.fao.org/forest-resources-assessment/2020/en/.
    [7]

    Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850−2000[J]. Tellus Series B-Chemical and Physical Meteorology, 2003, 55(2): 378−390.

    [8]

    Baccini A, Walker W, Carvalho L, et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss[J]. Science, 2017, 358: 230−233. doi: 10.1126/science.aam5962

    [9]

    Nepstad D, Verssimo A, Alencar A, et al. Large-scale impoverishment of Amazonian forests by logging and fire[J]. Nature, 1999, 398: 505−508. doi: 10.1038/19066

    [10]

    Siegert F, Ruecker G, Hinrichs A, et al. Increased damage from fires in logged forests during droughts caused by El Nino[J]. Nature, 2001, 414: 437−440. doi: 10.1038/35106547

    [11]

    Darrigo M R, Venticinque E M, Maes dos Santos F A. Effects of reduced impact logging on the forest regeneration in the central Amazonia[J]. Forest Ecology and Management, 2016, 360: 52−59. doi: 10.1016/j.foreco.2015.10.012

    [12]

    Hu J, Herbohn J, Chazdon R L, et al. Long-term growth responses of three Flindersia species to different thinning intensities after selective logging of a tropical rainforest[J]. Forest Ecology and Management, 2020, 476: 118442. doi: 10.1016/j.foreco.2020.118442

    [13]

    Albani M, Medvigy D, Hurtt G C, et al. The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink[J]. Global Change Biology, 2006, 12(12): 2370−2390. doi: 10.1111/j.1365-2486.2006.01254.x

    [14]

    Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363−1375. doi: 10.1016/j.foreco.2009.12.029

    [15]

    Vesterdal L, Dalsgaard M, Felby C, et al. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands[J]. Forest Ecology and Management, 1995, 77: 1−10. doi: 10.1016/0378-1127(95)03579-Y

    [16]

    Powers M, Kolka R, Palik B, et al. Long-term management impacts on carbon storage in Lake States forests[J]. Forest Ecology and Management, 2011, 262(3): 424−431. doi: 10.1016/j.foreco.2011.04.008

    [17] 牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山“栽针保阔”红松林植被碳储量影响[J]. 植物研究, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017

    Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017

    [18]

    Zhang K, Xu X, Wang Q, et al. Biomass, and carbon and nitrogen pools in a subtropical evergreen broad-leaved forest in eastern China[J]. Journal of Forest Research, 2010, 15(4): 274−282. doi: 10.1007/s10310-009-0175-z

    [19]

    Liu X, Trogisch S, He J S, et al. Tree species richness increases ecosystem carbon storage in subtropical forests[J]. Proceedings of the Royal Society B-Biological Sciences, 2018, 285: 20181240. doi: 10.1098/rspb.2018.1240

    [20]

    Poorter L, van der Sande M T, Thompson J, et al. Diversity enhances carbon storage in tropical forests[J]. Global Ecology and Biogeography, 2015, 24(11): 1314−1328. doi: 10.1111/geb.12364

    [21]

    Zeng Z, Wang S, Zhang C, et al. Carbon storage in evergreen broad-leaf forests in mid-subtropical region of China at four succession stages[J]. Journal of Forestry Research, 2013, 24(4): 677−682. doi: 10.1007/s11676-013-0404-3

    [22]

    Chen L, Wang S, Wang Q. Ecosystem carbon stocks in a forest chronosequence in Hunan Province, South China[J]. Plant and Soil, 2016, 409(1−2): 217−228. doi: 10.1007/s11104-016-2950-x

    [23]

    Biber P, Borges J G, Moshammer R, et al. How sensitive are ecosystem services in European forest landscapes to silvicultural treatment?[J]. Forests, 2015, 6(5): 1666−1695.

    [24]

    Pretzsch H, Zenner E K. Toward managing mixed-species stands: from parametrization to prescription[J]. Forest Ecosystems, 2017, 4: 19. doi: 10.1186/s40663-017-0105-z

    [25] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980.

    Wu Z Y. Vegetation of China[M]. Beijing: Science Press, 1980.

    [26]

    Dai L, Zhao F, Shao G, et al. China’s classification-based forest management: procedures, problems, and prospects[J]. Environmental Management, 2009, 43(6): 1162−1173. doi: 10.1007/s00267-008-9229-9

    [27] 于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434. doi: 10.13287/j.1001-9332.201905.004

    Yu D P, Zhou W M, Zhou L, et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434. doi: 10.13287/j.1001-9332.201905.004

    [28] 张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1−18. doi: 10.13332/j.1000-1522.20190219

    Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement[J]. Journal of Beijing Forestry University, 2019, 41(5): 1−18. doi: 10.13332/j.1000-1522.20190219

    [29]

    Liu Y, Blanco J A, Wei X H, et al. Determining suitable selection cutting intensities based on long-term observations on aboveground forest carbon, growth, and stand structure in Changbai Mountain, Northeast China[J]. Scandinavian Journal of Forest Research, 2014, 29(5): 436−454. doi: 10.1080/02827581.2014.919352

    [30]

    Wu Z, Su D, Niu L, et al. Effects of logging intensity on structure and composition of a broadleaf-Korean pine mixed forest on Changbai Mountains, northeast China[J]. Chinese Geographical Science, 2016, 26(1): 59−67. doi: 10.1007/s11769-015-0785-7

    [31] 魏龙鑫, 耿燕, 崔可达, 等. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642−655. doi: 10.17521/cjpe.2021.0454

    Wei L X, Geng Y, Cui K D, et al. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest[J]. Chinese Journal of Plant Ecology, 2022, 46(6): 642−655. doi: 10.17521/cjpe.2021.0454

    [32] 何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2018.

    He H J. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broad-leaved mixed forests in Jiaohe, Jilin Province [D]. Beijing: Beijing Forestry University, 2018.

    [33]

    Prado-Junior J A, Schiavini I, Vale V, et al. Conservative species drive biomass productivity in tropical dry forests[J]. Journal of Ecology, 2016, 104(3): 817−827. doi: 10.1111/1365-2745.12543

    [34]

    Mazzei L, Sist P, Ruschel A, et al. Above-ground biomass dynamics after reduced-impact logging in the Eastern Amazon[J]. Forest Ecology and Management, 2010, 259(3): 367−373. doi: 10.1016/j.foreco.2009.10.031

    [35]

    de Avila A L, Schwartz G, Ruschel A R, et al. Recruitment, growth and recovery of commercial tree species over 30 years following logging and thinning in a tropical rain forest[J]. Forest Ecology and Management, 2017, 385: 225−235. doi: 10.1016/j.foreco.2016.11.039

    [36]

    Schwartz G, Gustavo P C, Marielos L, et al. Mid-term effects of reduced-impact logging on the regeneration of seven tree commercial species in the Eastern Amazon[J]. Forest Ecology and Management, 2012, 274: 116−125. doi: 10.1016/j.foreco.2012.02.028

    [37] 牟长城, 卢慧翠, 包旭, 等. 采伐干扰对大兴安岭落叶松−苔草沼泽植被碳储量的影响[J]. 生态学报, 2013, 33(17): 5286−5298. doi: 10.5846/stxb201206240888

    Mu C C, Lu H C, Bao X, et al. Effects of selective cutting on vegetation carbon storage of boreal Larix gmelinii-Carex schmidtii forested wetlands in Daxing’anling, China[J]. Acta Ecologica Sinica, 2013, 33(17): 5286−5298. doi: 10.5846/stxb201206240888

    [38]

    Geng Y, Yue Q, Zhang C, et al. Dynamics and drivers of aboveground biomass accumulation during recovery from selective harvesting in an uneven-aged forest[J]. European Journal of Forest Research, 2021, 140(5): 1163−1178. doi: 10.1007/s10342-021-01394-9

    [39]

    Poorter L, van der Sande M, Arets E, et al. Biodiversity and climate determine the functioning of Neotropical forests[J]. Global Ecology and Biogeography, 2017, 26(12): 1423−1434. doi: 10.1111/geb.12668

    [40]

    Sist P, Nguyen-Thé N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990−1996)[J]. Forest Ecology and Management, 2002, 165: 85−103. doi: 10.1016/S0378-1127(01)00649-1

    [41]

    de Avila A L, Ruschel A R, de Carvalho J O P, et al. Medium-term dynamics of tree species composition in response to silvicultural intervention intensities in a tropical rain forest[J]. Biological Conservation, 2015, 191: 577−586. doi: 10.1016/j.biocon.2015.08.004

    [42]

    Yosi C K, Keenan R J, Fox J C. Forest dynamics after selective timber harvesting in Papua New Guinea[J]. Forest Ecology and Management, 2011, 262(6): 895−905. doi: 10.1016/j.foreco.2011.06.007

    [43]

    Komatsu H, Katayama A, Hirose S, et al. Reduction in soil water availability and tree transpiration in a forest with pedestrian trampling[J]. Agricultural and Forest Meteorology, 2007, 146(1−2): 107−114. doi: 10.1016/j.agrformet.2007.04.014

    [44]

    Startsev A D, McNabb D H. Skidder traffic effects on water retention, pore-size distribution, and van Genuchten Parameters of boreal forest soils[J]. Soil Science Society of America Journal, 2001, 65: 224−231. doi: 10.2136/sssaj2001.651224x

    [45]

    Silva D L F, Luiz F, Schwartz G, et al. Growth, mortality, and recruitment of tree species in an Amazonian rainforest over 13 years of reduced impact logging[J]. Forest Ecology and Management, 2018, 430: 150−156. doi: 10.1016/j.foreco.2018.08.024

    [46]

    Sheil D, Eastaugh C S, Vlamet M, et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses[J]. Functional Ecology, 2017, 31(3): 568−581. doi: 10.1111/1365-2435.12775

    [47]

    Hartmann H, Messier C. Interannual variation in competitive interactions from natural and anthropogenic disturbances in a temperate forest tree species: implications for ecological interpretation[J]. Forest Ecology and Management, 2011, 261(11): 1936−1944. doi: 10.1016/j.foreco.2011.02.018

    [48]

    Bose A K, Wagner R G, Weiskittel A R, et al. Effect magnitudes of operational-scale partial harvesting on residual tree growth and mortality of ten major tree species in Maine USA[J]. Forest Ecology and Management, 2021, 484: 118953. doi: 10.1016/j.foreco.2021.118953

    [49] 陈永富, 乔婷, 雷渊才, 等. 采伐对海南霸王岭热带山地雨林乔木碳储量影响初步研究[J]. 林业科学研究, 2013, 26(3): 337−343. doi: 10.3969/j.issn.1001-1498.2013.03.012

    Chen Y F, Qiao T, Lei Y C, et al. Analysis on early stage trees carbon storage change of tropical montane rain forest in Bawangling of Hainan Island[J]. Forest Research, 2013, 26(3): 337−343. doi: 10.3969/j.issn.1001-1498.2013.03.012

    [50] 胡艳波, 惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006, 19(1): 1−8. doi: 10.3321/j.issn:1001-1498.2006.01.001

    Hu Y B, Hui G Y. A discussion on forest management method optimizing forest spatial structure[J]. Forest Research, 2006, 19(1): 1−8. doi: 10.3321/j.issn:1001-1498.2006.01.001

    [51] 蒋有绪. 国际森林可持续经营的标准与指标体系研制的进展[J]. 世界林业研究, 1997, 10(2): 9−14. doi: 10.13348/j.cnki.sjlyyj.1997.02.002

    Jiang Y X. International progress in study of criteria and indicators of sustainable forest management[J]. World Forestry Research, 1997, 10(2): 9−14. doi: 10.13348/j.cnki.sjlyyj.1997.02.002

    [52] 齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303

    Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303

    [53] 刘魏魏, 王效科, 逯非, 等. 造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响[J]. 生态学报, 2016, 36(8): 2113−2122.

    Liu W W, Wang X K, Lu F, et al. Influence of afforestation, reforestation, forest logging, climate change, CO2 concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem[J]. Acta Ecologica Sinica, 2016, 36(8): 2113−2122.

  • 期刊类型引用(12)

    1. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
    2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 . 百度学术
    3. 冯健,张金博,杨圆圆,杜超群,徐柏松,曹颖,姚飞. 基于生长性状和SSR遗传多样性分析的红松第二代优树选择研究. 西南林业大学学报(自然科学). 2024(04): 1-7 . 百度学术
    4. 胡勐鸿,吕寻,戴小芬,李宗德,李万峰. 日本落叶松无性系种子园和优树半同胞家系苗期比较. 东北林业大学学报. 2024(12): 10-17 . 百度学术
    5. 向华,向文明,向明. 我国用材林优树选择技术研究进展. 湖南林业科技. 2021(02): 89-96 . 百度学术
    6. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 . 百度学术
    7. 邓乐平,黄婷,王哲,吴惠姗,李晓华,廖仿炎,李义良,郭文冰,赵奋成. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择. 林业与环境科学. 2020(04): 1-7 . 百度学术
    8. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 . 百度学术
    9. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 . 百度学术
    10. 金星,于忠峰,苗海伟,于国斌,朱瑞,张丽杰. 辽宁地区油松花粉形态及生活力的测定. 分子植物育种. 2019(15): 5115-5119 . 百度学术
    11. 康向阳. 关于林木育种策略的思考. 北京林业大学学报. 2019(12): 15-22 . 本站查看
    12. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看

    其他类型引用(4)

图(5)  /  表(1)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  159
  • PDF下载量:  130
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-10-11
  • 录用日期:  2022-10-12
  • 网络出版日期:  2022-10-14
  • 发布日期:  2022-10-24

目录

    /

    返回文章
    返回