高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GEE与Sentinel-2影像的落叶针叶林提取

王春玲 樊怡琳 庞勇 荚文

王春玲, 樊怡琳, 庞勇, 荚文. 基于GEE与Sentinel-2影像的落叶针叶林提取[J]. 北京林业大学学报, 2023, 45(8): 1-15. doi: 10.12171/j.1000-1522.20220422
引用本文: 王春玲, 樊怡琳, 庞勇, 荚文. 基于GEE与Sentinel-2影像的落叶针叶林提取[J]. 北京林业大学学报, 2023, 45(8): 1-15. doi: 10.12171/j.1000-1522.20220422
Wang Chunling, Fan Yilin, Pang Yong, Jia Wen. Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image[J]. Journal of Beijing Forestry University, 2023, 45(8): 1-15. doi: 10.12171/j.1000-1522.20220422
Citation: Wang Chunling, Fan Yilin, Pang Yong, Jia Wen. Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image[J]. Journal of Beijing Forestry University, 2023, 45(8): 1-15. doi: 10.12171/j.1000-1522.20220422

基于GEE与Sentinel-2影像的落叶针叶林提取

doi: 10.12171/j.1000-1522.20220422
基金项目: “十三五”国家重点研发计划(2017YFD0600404)
详细信息
    作者简介:

    王春玲,博士,副教授。主要研究方向:大数据技术与人工智能。Email:wangchl@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学信息学院

    责任作者:

    庞勇,博士,研究员。主要研究方向:林业遥感机理模型、激光雷达信号处理。 Email:pangy@ifrit.ac.cn 地址:100091 北京市海淀区颐和园后中国林业科学研究院资源信息研究所

  • 中图分类号: S757.3

Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image

  • 摘要:   目的  针对森林资源精细监测评价的需求,探索多时相、多特征的Sentinel-2影像在落叶针叶林识别中的应用潜力,根据落叶针叶林的物候特征构建分类模型,为大范围落叶针叶林识别提供方法参考。  方法  基于GEE平台,以黑龙江省孟家岗林场为研究区,分析不同季节落叶针叶林与其他森林之间的差异。研究使用2020年春季(5月7日和5月27日)、夏季(8月9日)和秋季(10月19日)的4景Sentinel-2影像,提取光谱特征、纹理特征和地形特征构建多特征数据集,根据特征重要性得分进行特征优选,最后使用随机森林分类器得到落叶针叶林识别的最佳模型,实现孟家岗林场落叶针叶林的精确提取。  结果  试验结果表明落叶针叶林具有明显的植被光谱特征和季相特性,多时相影像数据包含落叶针叶林更多物候期,春季和秋季的影像更有利于区分落叶针叶林与其他森林。此外,近红外、短波红外波段的光谱信息对识别落叶针叶林有较大帮助。利用 GEE平台和多时相Sentinel-2影像可以高效快速地提取植被信息,落叶针叶林提取总体精度与Kappa系数分别达到 91.20%,0.82。  结论  基于GEE平台和Sentinel-2影像构建的分类模型对落叶针叶林信息的快速提取有一定的可行性和适用性,研究结果对大面积落叶针叶林的空间位置分布提取具有一定的参考价值。

     

  • 图  1  样本分布

    Figure  1.  Sample plot distribution

    图  2  技术流程图

    Figure  2.  Technique flowchart

    图  3  森林分布

    Figure  3.  Forest distribution

    图  4  落叶针叶林分布

    Figure  4.  Deciduous coniferous forest distribution

    图  5  本文局部 Google earth影像及其对应的分类结果

    Figure  5.  Local Google earth images and their corresponding classification results of this paper

    图  6  不同特征数量的分类结果精度

    Figure  6.  Classification accuracy of different feature number

    图  7  特征重要性得分

    Figure  7.  Score of feature importance

    图  8  特征变量相关系数

    Figure  8.  Correlation coefficient of feature variables

    图  9  时间序列曲线

    Figure  9.  Time series curve

    图  10  不同时期不同地物波谱图

    Figure  10.  Spectral curves of different objects in different periods

    表  1  Sentinel-2光谱波段信息

    Table  1.   Sentinel-2 spectral band information

    波段
    Band
    描述
    Description
    中心波长
    Central
    wavelength/nm
    分辨率
    Resolution/m
    B2 蓝光 Blue light 497 10
    B3 绿光 Green light 560 10
    B4 红光 Red light 665 10
    B5 红边1 Red edge 1 704 20
    B6 红边2 Red edge 2 740 20
    B7 红边3 Red edge 3 783 20
    B8 近红外 Near-infrared(NIR) 835 10
    B8A 窄波近红外 Narrow NIR 865 20
    B11 短波红1 Short-wave infrared 1 (SWIR1) 1 614 20
    B12 短波红2 Short-wave infrared 2 (SWIR2) 2 202 20
    下载: 导出CSV

    表  2  土地覆盖产品收集情况

    Table  2.   Collection of land cover products

    产品分类 Product classification发布机构 Issuing authority数据来源 Data source产品年份 Product year
    GLC_FCS 30 中国科学院 Chinese Academy of Sciences Landsat TM/ETM+ 2000、2015、2020
    ChinaCover 中国科学院 Chinese Academy of Sciences Landsat TM/ETM+HJ-1A/B 2000、2010、2015
    下载: 导出CSV

    表  3  样本情况

    Table  3.   Sample plot situation

    类型
    Type
    训练样本
    Training sample
    验证样本
    Validation sample
    描述
    Description
    森林 Forest 230 133
    非森林 Non-forest 216 80
    落叶针叶林 Deciduous coniferous forest 150 98 实地 In the field
    88 机载高光谱 Airborne hyperion (CAF-LiCHy)
    其他森林 Other forest 163 84 实地 In the field
    88 机载高光谱 Airborne hyperion (CAF-LiCHy)
    合计 Total 759 571
    下载: 导出CSV

    表  4  光谱特征

    Table  4.   Spectral characteristics

    光谱指数
    Spectral index
    公式
    Formula
    参考文献
    Reference
    NDVI(B8 − B4)/(B8 + B4)[20]
    SAVI(B8 − B4)/(B8 + B4 + 0.5) × 1.5[21]
    EVI2.5 × (B8 − B4)/(B8 + 6.0 × B4 − 7.5 × B2 + 1.0)[22]
    RVIB8/B4[23]
    DVIB8 − B4[24]
    注:NDVI. 归一化植被指数;SAVI. 土壤调整植被指数;EVI. 增强型植被指数;RVI. 比值植被指数;DVI.差值植被指数。Notes: NDVI, normalized difference vegetation index; SAVI, soil-adjusted vegetation index; EVI, enhanced vegetation index; RVI, ratio vegetation index; DVI, difference vegetation index.
    下载: 导出CSV

    表  5  特征统计

    Table  5.   Statistic of features

    特征类型
    Feature type
    特征变量
    Feature variables
    数量
    Number
    光谱波段
    Spectral band
    B2_5,B3_5,B4_5,B5_5,B6_5,B7_5,B8_5,B8A_5,B11_5,B12_5 30
    B2_8,B3_8,B4_8,B5_8,B6_8,B7_8,B8_8,B8A_8,B11_8,B12_8
    B2_10,B3_10,B4_10,B5_10,B6_10,B7_10,B8_10,B8A_10,B11_10,B12_10
    光谱指数
    Spectral index
    NDVI_5, DVI_5, RVI_5, EVI_5, SAVI_5 15
    NDVI_8, DVI_8, RVI_8, EVI_8, SAVI_8
    NDVI_10, DVI_10, RVI_10, EVI_10, SAVI_10
    纹理特征
    Textural feature
    corr, var, idm,con,ent,asm 6
    地形特征
    Topographic feature
    海拔 Elevation ,坡度 Slope ,坡向 Aspect 3
    合计 Total 54
    注:corr. 相关性;var. 方差;idm. 逆差矩;con. 对比度;ent. 熵;asm.角二阶矩。Notes: corr, correlation; var, variance; idm, inverse different moment; con, contrast; ent, entropy; asm, angular second-order moment.
    下载: 导出CSV

    表  6  混淆矩阵

    Table  6.   Confusion matrix

    类别
    Type
    非森林
    Non-forest
    森林
    Forest
    生产精度
    Production accuracy/%
    非森林 Non-forest 75 5 93.75
    森林 Forest 3 130 97.74
    用户精度
    User accuracy/%
    96.15 96.29
    注:总精度96.20%;Kappa系数0.93。Notes: overall accuracy is 96.20%; Kappa coefficient is 0.93.
    下载: 导出CSV

    表  7  机载高光谱数据验证样本混淆矩阵

    Table  7.   CAF-LiCHy validation of sample confusion matrix

    类别
    Type
    其他森林
    Other forest
    落叶针叶林
    Deciduous coniferous forest
    生产精度
    Production accuracy/%
    其他森林
    Other forest
    78 6 92.85
    落叶针叶林
    Deciduous coniferous forest
    11 75 87.20
    用户精度
    User accuracy/%
    87.64 92.59
    注:总精度90.00%;Kappa系数0.80。Notes: overall accuracy is 90%; Kappa coefficient is 0.80.
    下载: 导出CSV

    表  8  实地验证样本混淆矩阵

    Table  8.   Field validation of sample confusion matrix

    类别
    Type
    其他森林
    Other forest
    落叶针叶林
    Deciduous coniferous forest
    生产精度
    Production accuracy/%
    其他森林
    Other forest
    78 6 92.85
    落叶针叶林
    Deciduous coniferous forest
    10 88 89.79
    用户精度
    User accuracy/%
    88.86 93.61
    注:总精度91.20%;Kappa系数0.82。Notes: overall accuracy is 91.20%; Kappa coefficient is 0.82.
    下载: 导出CSV
  • [1] 周以良. 中国的几种植被类型(Ⅵ)落叶针叶林[J]. 生物学通报, 1988(5): 6−10.

    Zhou Y L. Several types of vegetation in China (Ⅵ) deciduous coniferous forest[J]. Bulletin of Biology, 1988(5): 6−10.
    [2] 刘旭升, 张晓丽. 森林植被遥感分类研究进展与对策[J]. 林业资源管理, 2004(1): 61−64.

    Liu X S, Zhang X L. Research advances and counter measures of remote sensing classification of forest vegetation[J]. Forest Resources Management, 2004(1): 61−64.
    [3] Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 325−340. doi: 10.1016/j.isprsjprs.2018.07.017
    [4] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18−27. doi: 10.1016/j.rse.2017.06.031
    [5] 李斌, 李崇贵, 李煜. 基于Sentinel-2数据的塞罕坝机械林场落叶松人工林提取[J]. 林业资源管理, 2021(2): 117−123.

    Li B, Li C G, Li Y. Research on larch extraction in Saihanba Mechanical Forest Farm based on Sentinel-2 data[J]. Forest Resources Management, 2021(2): 117−123.
    [6] Immitzer M, Vuolo F, Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe[J/OL]. Remote Sensing, 2016, 8(3): 166[2023−01−22]. https://doi.org/10.3390/rs8030166.
    [7] Persson M, Lindberg E, Reese H. Tree species classification with multi-temporal Sentinel-2 data[J/OL]. Remote Sensing, 2018, 10(11): 1794[2023−01−02]. https://doi.org/10.3390/rs10111794.
    [8] 姚茂林, 江洪, 张丽玉. 基于Sentinel-2影像红边光谱指数与特征优选的竹林提取研究[J]. 海南大学学报(自然科学版), 2022, 40(4): 373−381.

    Yao M L, Jiang H, Zhang L Y. Bamboo information extraction from Sentinel-2 image based on improved spectral indices and random forest Gini index[J]. Natural Science Journal of Hainan University, 2022, 40(4): 373−381.
    [9] Immitzer M, Neuwirth M, Böck S, et al. Optimal input features for tree species classification in central Europe based on multi-temporal Sentinel-2 data[J/OL]. Remote Sensing, 2019, 11(22): 2599[2023−01−02]. https://doi.org/10.3390/rs11222599.
    [10] Grabska E, Frantz D, Ostapowicz K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians[J/OL]. Remote Sensing of Environment, 2020, 251: 112103[2023−01−23]. https://doi.org/10.1016/j.rse.2020.112103.
    [11] 郑杨, 董利虎, 李凤日. 黑龙江省红松人工林枝条分布数量模拟[J]. 应用生态学报, 2016, 27(7): 2172−2180.

    Zheng Y, Dong L H, Li F R. Branch quantity distribution simulation for Pinus koraiensis plantation in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2172−2180.
    [12] Shoko C, Mutanga O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 32−40. doi: 10.1016/j.isprsjprs.2017.04.016
    [13] 吴炳方, 苑全治, 颜长珍, 等. 21世纪前十年的中国土地覆盖变化[J]. 第四纪研究, 2014, 34(4): 723−731.

    Wu B F, Yuan Q Z, Yan C Z, et al. Land cover changes of China from 2000 to 2010[J]. Quaternary Sciences, 2014, 34(4): 723−731.
    [14] 吴炳方. 中华人民共和国土地覆被地图集(1∶1 000 000)[M]. 北京: 中国地图出版社, 2017.

    Wu B F. Land cover atlas of the People’s Republic of China (1∶1 000 000)[M]. Beijing: China Cartographic Publishing House, 2017.
    [15] Zhang X, Liu L, Chen X, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J/OL]. Remote Sensing, 2019, 11(9): 1056[2023−01−02]. https://doi.org/10.3390/rs11091056.
    [16] Zhang X, Liu L, Chen X, et al. GLC_FCS30: Global Land-Cover product with fine classification system at 30m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753−2776. doi: 10.5194/essd-13-2753-2021
    [17] 庞勇, 蒙诗栎, 史锴源, 等. 中国天然林保护工程区森林覆盖遥感监测[J]. 生态学报, 2021, 41(13): 5080−5092.

    Pang Y, Meng S L, Shi K Y, et al. Forest coverage monitoring in the Natural Forest Protection Project area of China[J]. Acta Ecologica Sinica, 2021, 41(13): 5080−5092.
    [18] Pang Y, Li Z, Ju H, et al. LiCHy: the CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system[J/OL]. Remote Sensing, 2016, 8(5): 398[2023−01−02]. https://doi.org/10.3390/rs8050398.
    [19] 池毓锋, 赖日文, 余莉莉, 等. 基于Landsat 8 OLI数据的树种类型分布提取[J]. 自然资源学报, 2017, 32(7): 1193−1203.

    Chi Y F, Lai R W, Yu L L, et al. Extracting tree species distribution with Landsat 8 OLI data[J]. Journal of Natural Resources, 2017, 32(7): 1193−1203.
    [20] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
    [21] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295−309. doi: 10.1016/0034-4257(88)90106-X
    [22] 董灵波, 梁凯富, 张一帆,等. 基于Landsat 8时间序列数据的翠岗林场森林类型划分[J]. 应用生态学报, 2022, 33(9): 2339−2346.

    Dong L B, Liang K F, Zhang Y F, et al. Classification of forest types in Cuigang Forest Farm based on time series data of Landsat 8[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2339−2346.
    [23] 尹芬, 丁美青. 运用 ENVI 实现 SPOT-5 卫星影像的 RVI 提取[J]. 测绘与空间地理信息, 2016, 39(1): 47−48.

    Yin F, Ding M Q. RVI extraction of SPOT-5 satellite images using ENVI[J]. Geomatics & Spatial Information Technology, 2016, 39(1): 47−48.
    [24] 周晓双. 基于高光谱的稻麦叶面积指数监测研究[D]. 南京: 南京农业大学, 2015.

    Zhou X S. Monitoring leaf area index in rice and wheat with hyperspectral remote sensing[D]. Nanjing: Nanjing Agricultural University, 2015.
    [25] 李智峰, 朱谷昌, 董泰锋. 基于灰度共生矩阵的图像纹理特征地物分类应用[J]. 地质与勘探, 2011, 47(3): 456−461.

    Li Z F, Zhu G C, Dong T F. Application of GLCM-based texture features to remote sensing image classification[J]. Geology and Exploration, 2011, 47(3): 456−461.
    [26] Huang D, Xu S, Sun J, et al. Accuracy assessment model for classification result of remote sensing image based on spatial sampling[J/OL]. Journal of Applied Remote Sensing, 2017, 11(4): 046023[2023−01−02]. https://doi.org/10.1117/1.JRS.11.046023.
    [27] Qu L, Chen Z, Li M, et al. Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google earth engine[J/OL]. Remote Sensing, 2021, 13(3): 453[2023−01−02]. https://doi.org/10.3390/rs13030453.
    [28] Hill R A, Wilson A K, George M, et al. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data[J]. Applied Vegetation Science, 2010, 13(1): 86−99. doi: 10.1111/j.1654-109X.2009.01053.x
    [29] Nelson M. Evaluating multitemporal sentinel-2 data for forest mapping using random forest[J/OL]. Environmental Science, Mathematics, 2017[2023−01−02]. https://core.ac.uk/display/132537655.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  22
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-22
  • 修回日期:  2022-11-07
  • 网络出版日期:  2023-07-19
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回