Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究

程雯, 武晓昱, 叶尔江·拜克吐尔汉, 王娟, 赵秀海, 张春雨

程雯, 武晓昱, 叶尔江·拜克吐尔汉, 王娟, 赵秀海, 张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究[J]. 北京林业大学学报, 2024, 46(2): 28-39. DOI: 10.12171/j.1000-1522.20220428
引用本文: 程雯, 武晓昱, 叶尔江·拜克吐尔汉, 王娟, 赵秀海, 张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究[J]. 北京林业大学学报, 2024, 46(2): 28-39. DOI: 10.12171/j.1000-1522.20220428
Cheng Wen, Wu Xiaoyu, Yeerjiang Baiketuerhan, Wang Juan, Zhao Xiuhai, Zhang Chunyu. Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression[J]. Journal of Beijing Forestry University, 2024, 46(2): 28-39. DOI: 10.12171/j.1000-1522.20220428
Citation: Cheng Wen, Wu Xiaoyu, Yeerjiang Baiketuerhan, Wang Juan, Zhao Xiuhai, Zhang Chunyu. Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression[J]. Journal of Beijing Forestry University, 2024, 46(2): 28-39. DOI: 10.12171/j.1000-1522.20220428

基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究

基金项目: 国家重点研发计划重点专项(2022YFD2201004-4)。
详细信息
    作者简介:

    程雯。主要研究方向:森林生态学。Email:Chengwen17@bjfu.edu.cn 地址:100083 北京市海淀区清华东路 35 号

    责任作者:

    王娟,副教授。主要研究方向:森林生态学、繁殖生态学。Email:wangjuan@bjfu.edu.cn 地址:同上。

  • 中图分类号: S757

Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression

  • 摘要:
    目的 

    基于非线性回归和广义模型构建不同分位数回归和混合效应的树高预测方程,并对比分析非线性模型、不同分位点(τ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)模型、广义模型及非线性混合效应模型的拟合效果和预测精度,为研究林分生长和收获提供理论依据。

    方法 

    本研究以吉林蛟河地区针阔混交林的主要树种(红松、色木槭、紫椴和水曲柳)为研究对象,基于21.12 hm2样地数据,首先在11个广泛使用的树高方程基础模型中选定基础模型;其次探究林分变量对树高的影响并构建含林分变量的广义模型;最后在基础模型和广义模型的基础上,构建分位数模型,同时考虑样方效应对树高的影响,构建混合效应模型。

    结果 

    (1)各树种均以Richards模型拟合精度更高,且具有生物学意义,选定为基础模型;考虑林分变量与树高的相关性以及模型收敛性,加入优势木高建立的广义模型能显著提高拟合效果。(2)各树种均为中位数τ = 0.5时模型拟合效果最佳,且与非线性回归预测精度相近,红松、色木槭、紫椴和水曲柳最高R2值分别为0.811、0.809、0.724和0.617,广义中位数回归预测能力得到进一步提高,R2值分别为0.891、0.874、0.858和0.627。(3)混合效应模型相对其他模型能显著提高预测精度,其中基础混合模型略优于广义混合模型,4个树种R2值达到0.937、0.919、0.906和0.643,表明包含样方效应的混合模型能得到更准确更稳定的预测结果。

    结论 

    与传统方法建立的基础模型和广义模型以及两者的中位数回归模型相较,基于非线性混合效应构建的树高−胸径模型预测精度更高,其中基于基础混合效应构建的吉林蛟河地区混交林树高−胸径模型更具优越性和稳定性。

    Abstract:
    Objective 

    The aim of this study was to construct tree height equation for quantile regression and mixed-effects based on nonlinear regression and generalized models. And fitting effect and prediction accuracy of nonlinear models, different quntile models (τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), generalized models and nonlinear mixed-effects models were compared and analyzed, so as to provide theoretical basis for further study of stand growth and harvest.

    Method 

    Based on 21.12 ha sample plot data, taking the main tree species (Pinus koraiensis, Acer mono, Tilia amurensis and Fraxinus mandshurica) from coniferous and broadleaved mixed forest of Jiaohe, Jilin Province of northeastern China as the research object. And the base model was first selected from 11 widely-used tree height equations, then we explored the influence of stand variables on tree height and constructed generalized model containing stand variables. Finally, on the basis of basic model and the generalized model, the quantile model was constructed, and the mixed-effect model was established considering the impact of sample effect on tree height.

    Result 

    (1) Richards was selected as base model for all tree species because of its higher fitting accuracy and biological significance. And considering the correlation between stand variables and tree height and the convergence of models, the generalized model established by adding dominant tree height can significantly improve the fitting effect. (2) All models based on the median (τ = 0.5) performed best, and the prediction accuracy was close to the nonlinear regression. The highest R2 values of Pinus koraiensis, Acer mono, Tilia amurensis and Fraxinus mandshurica were 0.811, 0.809, 0.724 and 0.617, respectively. The generalized median regression prediction ability was further improved, and R2 values were 0.891, 0.874, 0.858 and 0.627, respectively. (3) Mixed-effect models can significantly improve the prediction accuracy compared with other models, among which base mixed model was slightly better than generalized mixed model, and the R2 values of four tree species reached 0.937, 0.919, 0.906 and 0.643, respectively, indicating that mixed models including sample effect can improve the more accurate and stable prediction results.

    Conclusion 

    Compared with base model, generalized model and median regression model established by traditional methods, the height-diameter model based on nonlinear mixed-effects has higher prediction accuracy, and base mixed-effects model has superiority and stability for height-DBH model construction of mixed forests in Jiaohe, Jilin Province of northeastern China.

  • 图  1   基础混合效应模型(A1、B1、C1、D1)和广义混合效应模型(A2、B2、C2、D2)的残差分布图

    Figure  1.   Residual plots of base mixed-effect models (A1, B1, C1, D1) and generalized mixed-effect models (A2, B2, C2, D2)

    表  1   优势树种主要指标统计

    Table  1   Main indicator statistics of dominant tree species

    树种
    Tree species
    重要值
    Important value
    多度
    Abundance
    频度
    Frequency
    胸高断面积/(m2·hm−2
    Basal area/(m2·ha−1
    色木槭 Acer mono 11.42 3 071 505 87.58
    水曲柳 Fraxinus mandshurica 11.13 1 861 420 119.81
    紫椴 Tilia amurensis 9.46 1 825 472 84.91
    红松 Pinus koraiensis 8.21 1 535 411 74.72
    暴马丁香 Syringa reticulata 7.28 3 483 466 4.66
    春榆 Ulmus davidiana 6.79 2 279 446 26.94
    拧筋槭 Acer triflorum 6.51 1 474 444 41.76
    蒙古栎 Quercus mongolica 5.62 646 337 55.80
    白牛槭 Acer mandshuricum 4.67 1 492 358 15.56
    白桦 Betula platyphylla 4.44 876 249 36.81
    下载: 导出CSV

    表  2   单木树高−胸径模型拟合及检验数据

    Table  2   Fitting and testing data of individual tree height-DBH model

    数据分类
    Dataset classification
    树种
    Tree species
    样本数
    Number of
    sample
    胸径 DBH/cm 树高 Tree height/m
    平均值
    Mean
    最小值
    Min. value
    最大值
    Max. value
    标准差
    SD
    平均值
    Mean
    最小值
    Min. value
    最大值
    Max. value
    标准差
    SD
    拟合数据
    Fitting data
    红松 Pinus koraiensis 1 226 19.14 1.60 75.80 15.90 12.25 1.00 33.40 6.75
    色木槭 Acer mono 2 452 14.13 1.20 88.80 12.62 11.22 2.00 37.20 6.10
    紫椴 Tilia amurensis 1 458 19.86 1.20 70.40 13.76 14.42 1.60 32.70 6.36
    水曲柳 Fraxinus mandshurica 1 484 26.17 2.00 75.00 12.32 17.82 2.70 27.30 4.15
    检验数据
    Testing data
    红松 Pinus koraiensis 305 19.28 2.00 65.30 16.12 12.11 1.90 34.40 6.98
    色木槭 Acer mono 614 14.32 1.40 62.00 12.55 11.49 1.20 29.40 6.42
    紫椴 Tilia amurensis 364 20.12 1.70 65.80 14.60 14.45 1.80 34.00 6.68
    水曲柳 Fraxinus mandshurica 372 24.84 1.80 62.40 11.76 17.75 4.50 27.00 4.21
    下载: 导出CSV

    表  3   林分调查因子统计表

    Table  3   Statistical table of stand description factors

    数据分类
    Dataset classification
    树种
    Tree species
    胸高断面积/(m2·hm−2
    Basal area/(m2·ha−1
    林分密度/(株·hm−2
    Stand density/(tree·ha−1
    优势木高
    Dominant tree height/m
    平均值
    Mean
    最小值
    Min.
    value
    最大值
    Max.
    value
    标准差
    SD
    平均值
    Mean
    最小值
    Min.
    value
    最大值
    Max.
    value
    标准差
    SD
    平均值
    Mean
    最小值
    Min.
    value
    最大值
    Max.
    value
    标准差
    SD
    拟合数据
    Fitting data
    红松 Pinus koraiensis 32.91 15.10 257.89 13.62 1 223.63 350 2 900 384.76 16.30 1.80 33.40 6.97
    色木槭 Acer mono 32.66 15.02 257.89 17.34 1 244.02 350 3 100 400.18 16.98 4.00 37.20 5.56
    紫椴 Tilia amurensis 34.00 15.02 257.89 14.38 1 284.93 350 2 900 387.05 19.62 3.40 34.00 4.79
    水曲柳 Fraxinus mandshurica 31.44 15.02 257.89 15.41 1 420.70 350 3 100 447.84 24.21 2.80 35.30 4.49
    检验数据
    Testing data
    红松 Pinus koraiensis 33.49 19.21 58.18 7.35 1 215.16 450 2 575 346.34 16.88 2.00 33.40 7.14
    色木槭 Acer mono 33.46 16.19 257.89 16.51 1 258.15 450 2 900 374.19 17.23 3.20 37.20 5.31
    紫椴 Tilia amurensis 33.82 15.02 257.89 16.92 1 310.16 600 2 900 412.81 19.67 6.20 34.00 5.15
    水曲柳 Fraxinus mandshurica 31.91 15.10 257.89 21.16 1 488.58 600 3 100 443.16 24.95 15.20 34.80 3.97
    下载: 导出CSV

    表  4   候选树高−胸径关系模型

    Table  4   Candidate models of tree height-DBH relation

    模型编号 Model No. 表达式 Equation 参考文献 Reference
    M1 H=1.3+β1Dβ2 [14]
    M2 H=1.3+β1[D1+D]β2 [15]
    M3 H=1.3+exp(β1+β2D+1) [16]
    M4 H=1.3+β1[1exp(β2D)] [17]
    M5 H=1.3+β1exp(β2D) [18]
    M6 H=1.3+β1[1exp(β2D)]β3 [19]
    M7 H=1.3+β1D[β2D(β3)] [20]
    M8 H=1.3+exp(β1+β2D+β3) [21]
    M9 H=1.3+β1exp[β2exp(β3D)] [22]
    M10 H=1.3+D2β1+β2D+β3D2 [23]
    M11 H=1.3+β11+β2exp(β3D) [24]
    注:H为树高预测值;D为胸径;β1β2β3为模型参数。Notes: H is the predicted tree height; D is the DBH; β1, β2 and β3 are the model parameters.
    下载: 导出CSV

    表  5   候选模型拟合与评价

    Table  5   Fitting and evaluation of candidate models

    模型
    Model
    红松 Pinus koraiensis 色木槭 Acer mono 紫椴 Tilia amurensis 水曲柳 Fraxinus mandshurica
    MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2
    M1 2.381 3.153 0.780 2.118 2.846 0.781 2.818 3.582 0.684 2.248 2.774 0.552
    M2 2.361 3.128 0.784 2.080 2.806 0.787 2.521 3.357 0.722 2.079 2.571 0.615
    M3 2.211 2.982 0.803 1.926 2.697 0.803 2.503 3.344 0.724 2.083 2.575 0.614
    M4 2.179 2.945 0.808 1.895 2.654 0.809 2.530 3.343 0.724 2.088 2.575 0.614
    M5 2.279 3.032 0.797 2.030 2.772 0.793 2.547 3.374 0.719 2.076 2.568 0.616
    M6 2.140 2.925 0.811 1.890 2.654 0.809 2.491 3.332 0.726 2.063 2.557 0.619
    M7 2.149 2.936 0.809 1.887 2.653 0.809 2.495 3.337 0.725 2.069 2.562 0.617
    M8 2.144 2.932 0.810 1.888 2.652 0.810 2.496 3.335 0.725 2.074 2.565 0.617
    M9 2.174 2.945 0.808 1.931 2.691 0.804 2.513 3.348 0.723 2.077 2.570 0.615
    M10 2.146 2.935 0.809 1.887 2.652 0.810 2.493 3.336 0.725 2.068 2.560 0.618
    M11 2.231 2.991 0.802 1.986 2.742 0.796 2.553 3.381 0.718 2.091 2.587 0.610
    注:MAE.平均绝对误差;RMSE.均方根误差;R2.决定系数。下同。Notes: MAE, mean absolute error; RMSE, root mean squared error; R2, coefficient of determination. The same below.
    下载: 导出CSV

    表  6   树高与林分变量相关性分析

    Table  6   Correlation analysis between tree height and stand variables

    树种 Tree species因子 Factor树高
    Tree height
    胸径
    DBH
    胸高断面积
    Basal area
    林分密度
    Stand density
    优势木高
    Dominate tree height
    红松 Pinus koraiensis树高 Tree height1.000
    胸径 DBH0.855**1.000
    胸高断面积 Basal area0.0200.0401.000
    林分密度 Stand density0.0100.0060.092**1.000
    优势木高 Dominate tree height0.587**0.440**0.069*0.0181.000
    色木槭 Acer mono树高Tree height1.000
    胸径 DBH0.845**1.000
    胸高断面积 Basal area0.0310.0301.000
    林分密度 Stand density−0.284**−0.270**0.089**1.000
    优势木高 Dominate tree height0.484**0.353**0.139**−0.261**1.000
    紫椴 Tilia amurensis树高 Tree height1.000
    胸径 DBH0.776**1.000
    胸高断面积 Basal area0.068**0.064**1.000
    林分密度 Stand density−0.207**−0.200**0.105**1.000
    优势木高 Dominate tree height0.537**0.294**0.178**−0.175**1.000
    水曲柳 Fraxinus mandshurica树高Tree height1.000
    胸径 DBH0.684**1.000
    胸高断面积 Basal area0.067**0.133**1.000
    林分密度 Stand density−0.037−0.081**0.084**1.000
    优势木高 Dominate tree height0.256**0.264**−0.021**0.318**1.000
    注:** 表示两个变量在 P < 0.01 水平上显著相关,* 表示两个变量在 P < 0.05 水平上显著相关。Notes: ** means significant correlation at P < 0.01 level between two variables, * means significant correlation at P < 0.05 level between two variables.
    下载: 导出CSV

    表  7   分位数回归模型拟合精度

    Table  7   Goodness-of-fit tests for quantile regression models

    分位数 Quantile红松 Pinus koraiensis色木槭 Acer mono紫椴 Tilia amurensis水曲柳 Fraxinus mandshurica
    MAERMSER2MAERMSER2MAERMSER2MAERMSER2
    Richards2.1402.9250.8111.8902.6540.8092.4913.3320.7262.0632.5570.619
    0.13.4154.4970.7803.1034.1050.7704.0295.1660.6963.4264.1560.614
    0.22.7793.8260.7932.4603.4060.7933.1404.2380.7152.6803.3870.615
    0.32.3683.3220.8052.0812.9630.8042.7423.7910.7202.3232.9760.615
    0.42.1793.0630.8091.9242.7640.8072.5203.4930.7232.1162.6930.615
    0.52.1222.9420.8111.8732.6660.8092.4613.3740.7242.0562.5830.617
    0.62.1912.9530.8101.9182.6750.8082.5423.3630.7242.1192.5960.616
    0.72.4403.1810.8072.1612.8970.8032.8303.6300.7192.3722.8460.614
    0.82.9123.6900.7972.5773.3540.7913.3884.2680.6972.8873.4220.615
    0.94.0815.0270.7533.4514.2930.7624.6295.5190.6793.9654.5820.602
    下载: 导出CSV

    表  8   分位数模型验证评价结果

    Table  8   Quantile model validation evaluation results

    方法 Method红松 Pinus koraiensis色木槭 Acer mono紫椴 Tilia amurensis水曲柳 Fraxinus mandshurica
    RMSEMAERMSEMAERMSEMAERMSEMAE
    中位数回归 Median regression2.9632.0942.8982.0203.5402.5492.5602.050
    九分位数组合 Nine quantile combination2.9562.1182.9972.1853.5102.7612.6012.150
    五分位数组合 Five quantile combination2.9272.0952.9712.1553.5072.7582.6022.152
    三分位数组合 Triquartile combination2.9262.0922.9832.1623.5962.8512.5922.139
    下载: 导出CSV

    表  11   树高−胸径模型拟合评价统计量

    Table  11   Fitting and evaluation statistics of tree height-DBH models

    树种
    Tree species
    指标
    Index
    基础模型
    Base model
    广义模型
    Generalized
    model
    中位数回归 Median quantile regression 非线性混合效应 Nonlinear mixed-effects
    简单模型
    Simple model
    广义模型
    Generalized model
    简单模型
    Simple model
    广义模型
    Generalized model
    红松 Pinus koraiensis MAE 2.140 1.669 2.122 1.666 1.259 1.358
    RMSE 2.925 2.225 2.942 2.228 1.687 1.826
    R2 0.811 0.891 0.811 0.891 0.937 0.927
    色木槭 Acer mono MAE 1.890 1.575 1.873 1.568 1.258 1.359
    RMSE 2.654 2.159 2.666 2.166 1.740 1.875
    R2 0.809 0.875 0.809 0.874 0.919 0.906
    紫椴 Tilia amurensis MAE 2.491 1.722 2.461 1.706 1.399 1.611
    RMSE 3.332 3.379 3.374 2.401 1.955 2.235
    R2 0.726 0.860 0.724 0.858 0.906 0.877
    水曲柳 Fraxinus mandshurica MAE 2.063 2.041 2.056 2.031 2.004 2.527
    RMSE 2.557 2.524 2.583 2.536 2.478 2.038
    R2 0.619 0.629 0.617 0.627 0.643 0.629
    下载: 导出CSV

    表  9   混合效应模型验证评价结果

    Table  9   Verification and evaluation results of mixed effect model

    树种
    Tree species
    基础混合效应模型
    Base mixed-effect model
    广义混合效应模型
    Generalized mixed-effect model
    随机参数
    Random
    parameter
    AIC BIC L LRT P 随机参数
    Random
    parameter
    AIC BIC L LRT P
    红松
    Pinus koraiensis
    u1 5 619.3 5 644.8 −2 804.6 u1 5 346.9 5 377.5 −2 667.4
    u1, u2 5 643.2 5 678.9 −2 814.6 19.878 2 < 0.001 u3 5 354.2 5 384.8 −2 671.1
    u1, u3 5 350.9 5 391.8 −2 667.5 7.238 0 0.026 8
    色木槭
    Acer mono
    u2 10 966.2 10 995.2 −5 478.1 u1 10 597.5 10 632.3 −5 292.7
    u1, u2 10 962.2 11 002.9 −5 474.1 7.964 9 0.018 6 u3 10 602.8 10 637.6 −5 295.4
    u1, u3 10 594.2 10 640.6 −5 289.1 12.571 9 0.001 9
    u1, u2 10 601.4 10 647.8 −5 292.8
    紫椴
    Tilia amurensis
    u1 7 109.6 7 136.0 −3 549.8 u1 6 662.5 6 694.2 −3 325.2
    u3 6 661.8 6 693.5 −3 324.9
    u1,u3 6 665.8 6 708.0 −3 324.9 4.415 0 0.998 7
    水曲柳
    Fraxinus
    mandshurica
    u1 7 007.8 7 034.4 −3 498.9 u1 6 966.0 6 997.8 −3 477.0
    u2 7 009.0 7 035.5 −3 499.5 u3 6 964.3 6 996.1 −3 476.1
    u1, u2 7 011.8 7 049.0 −3 498.9 1.126 9 0.569 2 u1,u3 6 964.9 7 007.4 −3 474.5 3.322 9 0.189 9
    注:AIC.赤池信息准则;BIC.贝叶斯信息准则;L.对数似然值;LRT.似然比检验。Notes: AIC, Akaike information criterion; BIC, Bayesian information criterion; L, log-likelihood value; LRT, likelihood ratio test.
    下载: 导出CSV

    表  10   混合效应模型参数估计

    Table  10   Parameter estimates of mixed-effect models

    参数
    Parameter
    基础混合效应模型
    Base mixed-effect model
    广义混合效应模型
    Generalized mixed-effect model
    红松
    Pinus
    koraiensis
    色木槭
    Acer mono
    紫椴
    Tilia amurensis
    水曲柳
    Fraxinus
    mandshurica
    红松
    Pinus koraiensis
    色木槭
    Acer mono
    紫椴
    Tilia amurensis
    水曲柳
    Fraxinus
    mandshurica
    公式编号
    Equation No.
    (14) (15) (14) (14) (16) (17) (18) (18)
    a 21.192(0.387*** 18.626(0.251*** 19.366(0.263*** 20.021(0.190*** 9.186(0.535*** 7.776(0.467*** 4.522(0.468*** 16.513(0.523***
    b 0.065(0.004*** 0.085(0.004*** 0.100(0.005*** 0.101(0.007*** 0.071(0.004*** 0.092(0.004* 0.104(0.005*** 0.110(0.007***
    c 1.366(0.056*** 1.142(0.033*** 1.367(0.066*** 1.445(0.126*** 1.305(0.057*** 1.142(0.034*** 1.322(0.066*** 1.567(0.142***
    a1 0.577(0.024*** 0.554(0.023*** 0.715(0.022*** 0.132(0.019***
    σ2u1 14.927 2 10.920 5 11.410 7 0.201 9 2.877 0 14.850 5
    σ2u2 0.011 9
    σ2u3 0.038 0 0.001 7 0.000 4
    σu1u2 0.162 1
    σu1u3 −0.718 2
    σ2 3.637 0 3.638 8 4.908 0 6.422 3 3.811 3 3.858 9 5.275 9 6.201 5
    注:***表示在 P < 0.001 水平上显著。Note: *** means significant at P < 0.001 level.
    下载: 导出CSV

    表  12   树高−胸径模型统计检验

    Table  12   Goodness-of-fit statistics of tree height-DBH models

    树种
    Tree species
    指标
    Index
    基础模型
    Base model
    广义模型
    Generalized
    model
    中位数回归 Median quantile regression非线性混合效应 Nonlinear mixed-effects
    简单模型
    Simple model
    广义模型
    Generalized model
    简单模型
    Simple model
    广义模型
    Generalized model
    红松 Pinus koraiensisMAE2.1282.1192.0942.1631.6001.856
    RMSE2.9633.0242.9633.0632.2162.635
    色木槭 Acer monoMAE2.0181.9062.0202.0521.6201.712
    RMSE2.8672.7822.8982.9442.3412.529
    紫椴 Tilia amurensisMAE2.5711.6852.5492.6971.6091.635
    RMSE3.4712.3493.5403.7542.0582.206
    水曲柳
    Fraxinus mandshurica
    MAE2.0412.0372.0502.0512.0392.049
    RMSE2.5262.5172.5602.5612.5282.534
    下载: 导出CSV
  • [1]

    Koenker R, Bassett G. Regression quantiles[J]. Econometrica: Journal of the Econometric Society, 1978, 46(1): 33−50. doi: 10.2307/1913643

    [2] 田德超, 李凤日, 董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8): 41−46. doi: 10.3969/j.issn.1000-5382.2019.08.008

    Tian D C, Li F R, Dong L H. Potential maximum crown width prediction model of Larix olgensis by quantile regression[J]. Journal of Northeast Forestry University, 2019, 47(8): 41−46. doi: 10.3969/j.issn.1000-5382.2019.08.008

    [3]

    Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051

    [4] 高慧淋. 东北林区针叶树树冠轮廓及特征因子模拟[D]. 哈尔滨: 东北林业大学, 2017.

    Gao H L. Modelling crown profile and characteristic attributes of coniferous tree species in northeast China[D]. Harbin: Northeast Forestry University, 2017.

    [5] 赵梦草, 顾海燕. 用分位数回归建立的混交林树高生长模型[J]. 东北林业大学学报, 2020, 48(2): 24−28, 53. doi: 10.13759/j.cnki.dlxb.2020.02.005

    Zhao M C, Gu H Y. Tree height growth model of mixed forest using quantile regression[J]. Journal of Northeast Forestry University, 2020, 48(2): 24−28, 53. doi: 10.13759/j.cnki.dlxb.2020.02.005

    [6] 王君杰, 夏宛琦, 姜立春. 基于分位数回归和哑变量模型的大兴安岭兴安落叶松树高−胸径模型[J]. 中南林业科技大学学报, 2020, 40(9): 24−32, 40.

    Wang J J, Xia W Q, Jiang L C. Height-diameter models for Larix gmelinii in Daxing’ anling based on quantile regression and dummy variable model[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 24−32, 40.

    [7]

    Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008

    [8] 佟艺玟, 陈东升, 冯健, 等. 基于线性分位数混合效应的辽东山区红松冠幅模型[J]. 应用生态学报, 2022, 33(9): 2321−2330. doi: 10.13287/j.1001-9332.202209.002

    Tong Y W, Chen D S, Feng J, et al. Crown width model for planted Korean pine in eastern Liaoning mountains based on mixed effect linear quantile[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2321−2330. doi: 10.13287/j.1001-9332.202209.002

    [9]

    Zhang X F, Fu L Y, Sharma R P, et al. A nonlinear mixed-effects height-diameter model with interaction effects of stand density and site index for Larix olgensis in Northeast China[J]. Forests, 2021, 12(11): 1460. doi: 10.3390/f12111460

    [10] 燕云飞, 王君杰, 姜立春. 基于混合效应模型的人工红松枝下高模型研建[J]. 北京林业大学学报, 2020, 42(9): 28−36. doi: 10.12171/j.1000-1522.20190366

    Yan Y F, Wang J J, Jiang L C. Construction of the height to crown base mixed model for Korean pine[J]. Journal of Beijing Forestry University, 2020, 42(9): 28−36. doi: 10.12171/j.1000-1522.20190366

    [11]

    Schmidt M, Kiviste A, Gadow K. A spatially explicit height-diameter model for Scots pine in Estonia[J]. European Journal of Forest Research, 2011, 130(2): 303−315. doi: 10.1007/s10342-010-0434-8

    [12] 曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011, 24(3): 285−291. doi: 10.13275/j.cnki.lykxyj.2011.03.011

    Zeng W S, Tang S Z, Xia Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single-tree biomass equations in Guizhou[J]. Forestry Research, 2011, 24(3): 285−291. doi: 10.13275/j.cnki.lykxyj.2011.03.011

    [13]

    Temesgen H, Zhang C H, Zhao X H. Modelling tree height-diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China[J]. Forest Ecology and Management, 2014, 316: 78−89. doi: 10.1016/j.foreco.2013.07.035

    [14]

    Stage A R. Prediction of height increment for models of forest growth[M/OL]. Ogden: Intermountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1975 [2022−05−19]. https://doi.org/10.5962/bhl.title.69034.

    [15]

    Curtis R. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967, 13(4): 365−375.

    [16]

    Wykoff W R, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R/OL]. Gen. Tech. Rep. INT-GTR-133. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1982: 112. https://doi.org/10.2737/INT-GTR-133.

    [17]

    Meyer H A. A mathematical expression for height curves[J]. Journal of Forestry, 1940, 38(5): 415−420.

    [18]

    Schumacher F X. New growth curve and its application to timber-yield studies[J]. Journal of Forestry, 1939, 37: 819−820.

    [19]

    Richards F J. Aflexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10(2): 290−300. doi: 10.1093/jxb/10.2.290

    [20]

    Sibbesen E. Some new equations to describe phosphate sorption by soils[J]. Journal of Soil Science, 1981, 32(1): 67−74. doi: 10.1111/j.1365-2389.1981.tb01686.x

    [21]

    Ratkowsky D A. Handbook of non-linear regression[M]. New York: Marcel and Dekker, 1990: 120.

    [22]

    Winsor C P. The gompertz curve as a growth curve[J]. PNAS, 1932, 18(1): 1−8. doi: 10.1073/pnas.18.1.1

    [23]

    Prodan M. Growth functions in: forest biometrics[M]. Oxford: Pergamon Press, 1968.

    [24]

    Pearl R, Reed L J. On the rate of growth of the population of United States since 1790 and its mathematical representation[M]//Smith D P, Keyfitz N. Mathematical demography: selected papers. Berlin: Springer, 1977: 341−347.

    [25]

    Zhang L, Bi H, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070

    [26]

    Mehtätalo L, Gregoire T G, Burkhart H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics: the Official Journal of the International Environmetrics Society, 2008, 19(5): 529−548.

    [27] 辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2): 1−8.

    Xin S D, Jiang L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forsetry University, 2020, 42(2): 1−8.

    [28]

    Ma A Y, Miao Z, Xie L F, et al. Crown width prediction for Larix olgensis plantations in Northeast China based on nonlinear mixed-effects model and quantile regression[J]. Trees, 2022, 36(6): 1761−1776. doi: 10.1007/s00468-022-02326-9

    [29]

    Ciceu A, Garcia-Duro J, Seceleanu I, et al. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands[J/OL]. Forest Ecology and Management, 2020, 477 [2020−08−20]. https://doi.org/10.1016/j.foreco.2020.118507.

    [30]

    Huang S, Price D, Titus S J. Development of ecoregion-based height-diameter models for white spruce in boreal forests[J]. Forest Ecology and Management, 2000, 129(3): 139−141.

    [31] 臧 颢, 雷相东, 张会儒. 红松树高−胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8−16.

    Zang H, Lei X D, Zhang H R. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8−16.

    [32] 王君杰, 姜立春. 基于线性分位数组合的兴安落叶松冠幅预测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 161−170.

    Wang J J, Jiang L C. Predicting crown width for Larix gmelinii based on linear quantiles groups[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 161−170.

    [33] 高慧淋, 董利虎, 李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11): 3420−3426.

    Gao H L, Dong L H, Li F R. Maximum density-size line for Larix olgensis plantations based on quantile regression[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3420−3426.

    [34] 王君杰, 姜立春. 利用分位数组合预测兴安落叶松枝下高[J]. 北京林业大学学报, 2021, 43(3): 9−17.

    Wang J J, Jiang L C. Predicting height to crown base for Larix gmelinii using quantile groups[J]. Journal of Beijing Forestry University, 2021, 43(3): 9−17.

    [35]

    Özçelik R, Diamantopoulou M J, Trincado G, et al. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey[J]. Computers and Electronics in Agriculture, 2019, 162: 773−782. doi: 10.1016/j.compag.2019.05.033

    [36]

    Xu H, Sun Y J, Wang X J, et al. Height-diameter models of Chinese fir ( Cunninghamia lanceolata) based on nonlinear mixed effects models in Southeast China[J]. Advance Journal of Food Science and Technology, 2014, 6(4): 445−452. doi: 10.19026/ajfst.6.53

    [37]

    Cui K D, Wu X Y, Zhang C Y, et al. Estimating height-diameter relations for structure groups in the natural forests of Northeastern China[J/OL]. Forest Ecology and Management, 2022, 519 [2022−06−09]. https://doi.org/10.1016/j.foreco.2022.120298.

    [38] 王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30−36.

    Wang D Z, Zhang D Y, Zhang Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2016, 52(1): 30−36.

    [39] 陈 浩, 罗 扬. 马尾松树高−胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439−448.

    Chen H, Luo Y. Construction of nonlinear mixed effect height-diameter model for Pinus massoniana[J]. Journal of Forest and Environment, 2021, 41(4): 439−448.

    [40] 周晏平, 雷泽勇, 赵国军, 等. 沙地樟子松不同树高−胸径模型比较分析[J]. 华南农业大学学报, 2019, 40(3): 75−91.

    Zhou Y P, Lei Z Y, Zhao G J, et al. Comparing different height-diameter models of Pinus sylvestris var. mongolica in sandy land[J]. Journal of South China Agricultural University, 2019, 40(3): 75−91.

    [41]

    Zang H, Lei X D, Zeng W S. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022

  • 期刊类型引用(2)

    1. 苏岫,王祥,宋德瑞,李飞,杨正先,张浩. 基于改进光谱角法的红树林高分遥感分类方法研究. 海洋环境科学. 2021(04): 639-646 . 百度学术
    2. 陈冀岱,牛树奎. 多时相高分辨率遥感影像的森林可燃物分类和变化分析. 北京林业大学学报. 2018(12): 38-48 . 本站查看

    其他类型引用(3)

图(1)  /  表(12)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  115
  • PDF下载量:  90
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-04
  • 录用日期:  2023-12-17
  • 网络出版日期:  2023-12-20
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回