高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松墨天牛4龄越冬幼虫响应低温胁迫的生理适应机制

刘佳奇 赵立娟 刘磊 黄瑞芬 韩有志 张志伟 崔绍朋 高瑞贺

刘佳奇, 赵立娟, 刘磊, 黄瑞芬, 韩有志, 张志伟, 崔绍朋, 高瑞贺. 松墨天牛4龄越冬幼虫响应低温胁迫的生理适应机制[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220438
引用本文: 刘佳奇, 赵立娟, 刘磊, 黄瑞芬, 韩有志, 张志伟, 崔绍朋, 高瑞贺. 松墨天牛4龄越冬幼虫响应低温胁迫的生理适应机制[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220438
Liu Jiaqi, Zhao Lijuan, Liu Lei, Huang Ruifen, Han Youzhi, Zhang Zhiwei, Cui Shaopeng, Gao Ruihe. Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus Hope (Coleoptera: Cerambycidae) in response to low temperature stress[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220438
Citation: Liu Jiaqi, Zhao Lijuan, Liu Lei, Huang Ruifen, Han Youzhi, Zhang Zhiwei, Cui Shaopeng, Gao Ruihe. Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus Hope (Coleoptera: Cerambycidae) in response to low temperature stress[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220438

松墨天牛4龄越冬幼虫响应低温胁迫的生理适应机制

doi: 10.12171/j.1000-1522.20220438
基金项目: 山西省应用基础研究计划青年科技研究基金项目(20210302124062),山西省高等学校科技创新项目(2021L128),山西省研究生创新项目(2021Y326),中央高校基本科研业务费专项(BFUKF202119)
详细信息
    作者简介:

    刘佳奇。研究方向:林业外来有害生物防控。Email:ljq1871826510@163.com 地址:030800山西省晋中市太谷区铭贤南路1号山西农业大学林学院

    责任作者:

    高瑞贺,副教授。主要研究方向:林业外来有害生物防控。 Email:gaoruihe1989@163.com 地址:同上

  • 中图分类号: S763.7

Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus Hope (Coleoptera: Cerambycidae) in response to low temperature stress

  • 摘要:   目的  明确松墨天牛4龄越冬幼虫响应低温胁迫的生理适应机制,为松墨天牛的科学防治提供理论依据。  方法  于2021年3月中旬于江西省德兴市采集松墨天牛4龄越冬幼虫,设置25 ℃(对照)、4 ℃、0 ℃、−5 ℃、−10 ℃、−15 ℃和−20 ℃ 7个温度梯度和30 min、1 h和3 h共3个时间梯度,分别测定虫体耐寒能力、耐寒物质含量、抗氧化酶活性以及低温胁迫对中肠损伤情况。  结果  (1)在过冷却点(−9.27 ± 0.9 ℃)附近,50%致死时间约为1.9 h,99%致死时间约为2.8 d,在低于过冷却点(−15 ℃)的低温胁迫下,50%和99%致死时间约为−10 ℃低温处理下的1/3;(2)在低温胁迫处理后,4龄越冬幼虫虫体含水率变化不显著,脂肪含量和糖原含量在0 ℃处理3 h后显著下降(P < 0.05),山梨醇含量在−5 ℃处理1 h后显著上升(P < 0.05),在−20 ℃处理1 h后显著下降(P < 0.05);(3)低温胁迫处理后,抗氧化酶(SOD、POD、CAT)活性均呈显著上升趋势(P < 0.05);(4)松墨天牛4龄越冬幼虫中肠在−15 ℃处理3 h后中肠内壁分解,细胞之间出现空泡,−20 ℃处理3 h后中肠细胞破裂,细胞内容物逸散并充满整个肠腔,空泡消失。  结论  本文明确了松墨天牛4龄越冬幼虫响应低温胁迫的氧化应激生理反应,可丰富、完善松墨天牛耐寒机理研究。

     

  • 图  1  松墨天牛4龄越冬幼虫低温存活率曲线

    Figure  1.  Low temperature survival curve of the 4-age wintering larvae of M. alternatus

    图  2  低温胁迫对松墨天牛4龄越冬幼虫含水率的影响

    Figure  2.  Effect of low temperature stress on water content of the 4-age wintering larvae of M. alternatus

    图  3  低温胁迫对松墨天牛4龄越冬幼虫脂肪含量的影响

    Figure  3.  Effect of low temperature stress on fat content of the 4-age wintering larvae of M. alternatus

    图  4  低温胁迫对松墨天牛4龄越冬幼虫糖原含量的影响

    Figure  4.  Effect of low temperature stress on glucogen content of the 4-age wintering larvae of M. alternatus

    图  5  低温胁迫对松墨天牛4龄越冬幼虫山梨醇含量的影响

    Figure  5.  Effect of low temperature stress on dorbitol content of the 4-age wintering larvae of M. alternatus

    图  6  低温胁迫对松墨天牛4龄越冬幼虫SOD活性的影响

    Figure  6.  Effect of low temperature stress on SOD activity of the 4-age wintering larvae of M. alternatus

    图  7  低温胁迫对松墨天牛4龄越冬幼虫POD活性的影响

    Figure  7.  Effect of low temperature stress on POD activity of the 4-age wintering larvae of M. alternatus

    图  8  低温胁迫对松墨天牛4龄越冬幼虫CAT活性的影响

    Figure  8.  Effect of low temperature stress on CAT activity of the 4-age wintering larvae of M. alternatus

    图  9  低温胁迫对松墨天牛4龄越冬幼虫中肠组织的影响

    A、B为对照组;C、D为−15 ℃处理3 h;E、F为−20 ℃处理3 h;Mcm.中肠环肌;Pm.围食膜;Va.空泡;In.肠腔。A and B, control group; C and D, treat at −15 ℃ for 3 h; E and F, treat at −20 ℃ for 3 h; Mcm, midgut circle muscle; Pmm peritrophic; Va, vacuole; In, intestinal.

    Figure  9.  Effect of low temperature stress on midgut tissue of the 4-age wintering larvae of M. alternatus

    表  1  松墨天牛4龄越冬幼虫低温处理下50%、90%、99%致死时间

    Table  1.   50%, 90%, 99% leathal time of the 4-age wintering larvae of M. alternatus under low temperature treatment

    25 ℃4 ℃0 ℃−5 ℃−10 ℃−15 ℃−20 ℃
    50%致死时间
    50% of the leathal time/min
    15 796.9620 896.21920.23136.77114.9727.750.32
    90%致死时间
    90% of the leathal time/min
    112 571.00148 908.706 557.64974.60819.27197.762.29
    99%致死时间
    99% of the leathal time/min
    558 113.00738 271.3032 511.984 831.964 061.86980.4811.35
    下载: 导出CSV
  • [1] 杨宝君, 潘宏阳, 汤坚, 等. 松材线虫病[M]. 北京: 中国林业出版社, 2003: 7, 48.

    Yang B J, Pan H Y, Tang J, et al. Bursaphelenchus xylophilus[M]. Beijing: China Forestry Publishing House, 2003: 7, 48.
    [2] 张执中, 田恒燕, 黄旭昌, 等. 森林昆虫学[M]. 北京: 农业出版社: 1959: 324.

    Zhang Z Z, Tian H Y, Huang X C, et al. Forest entomology[M]. Beijing: Agricultural press, 1959: 324.
    [3] 华立中. 中国天牛科昆虫名录[M]. 广州: 中山大学出版社, 1982: 96.

    Hua L Z. The checklist of cerambycidae in China[M]. Guangzhou: Sun Yat-Sen University press, 1982: 96.
    [4] 王志明, 皮忠庆, 候彬. 吉林省发现松墨天牛[J]. 中国森林病虫, 2006, 25(3): 35. doi: 10.3969/j.issn.1671-0886.2006.03.015

    Wang Z M, Pi Z Q, Hou B. Discovery of Monochamus alternatus in Jilin Province[J]. Forest Pest and Disease, 2006, 25(3): 35. doi: 10.3969/j.issn.1671-0886.2006.03.015
    [5] 姜生伟, 吴昊, 李德斌, 等. 我国东北地区松材线虫灾害特征分析[J]. 中国森林病虫, 2022, 41(4): 9−15. doi: 10.19688/j.cnki.issn1671-0886.20220012

    Jiang S W, Wu H, Li D B, et al. Analysis on disaster characteristics of pine wood nematode in Northeast China[J]. Forest Pest and Disease, 2022, 41(4): 9−15. doi: 10.19688/j.cnki.issn1671-0886.20220012
    [6] Overgaard J, Gerber L, Andersen M K. Osmoregulatory capacity at low temperature is critical for insect cold tolerance[J]. Current Opinion in Insect Science, 2021, 47: 38−45. doi: 10.1016/j.cois.2021.02.015
    [7] Cubillos C, Cáceres J C, Villablanca C, et al. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae)[J]. Journal of Thermal Biology, 2018, 74: 133−139. doi: 10.1016/j.jtherbio.2018.03.018
    [8] Cdonald J R, Head J, Bale J S, et al. Cold tolerance, overwintering and establishment potential of Thrips palmi[J]. Physiol Entomol, 2000, 25(6): 159−166.
    [9] 景晓红, 康乐. 昆虫耐寒性研究[J]. 生态学报, 2002, 22(12): 2202−2207. doi: 10.3321/j.issn:1000-0933.2002.12.026

    Jing X H, Le K. Research progress in insect cold hardines[J]. Acta Ecologica Sinica, 2002, 22(12): 2202−2207. doi: 10.3321/j.issn:1000-0933.2002.12.026
    [10] Sinclair B J, Alvarado L E C, Ferguson L V. An invitation to measure insect cold tolerance: methods, approaches, and workflow[J]. Journal of Thermal Biology, 2015, 53: 180−197. doi: 10.1016/j.jtherbio.2015.11.003
    [11] Jikumaru S, Togashi K. Temperature effects on the transmission of Bursaphelenchus xylophilus (Nemata: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Journal of nematology, 2000, 32(1): 110.
    [12] Salt R W. Principles of insect cold-hardiness[J]. Annual review of entomology, 1961, 6(1): 55−74. doi: 10.1146/annurev.en.06.010161.000415
    [13] Teets N M, Denlinger D L. Physiological mechanisms of seasonal and rapid cold-hardening in insects[J]. Physiological Entomology, 2013, 38(2): 105−116. doi: 10.1111/phen.12019
    [14] 李鸿波. 入侵害虫西花蓟马对温度胁迫的响应[D]. 扬州: 扬州大学, 2013.

    Li H B. Response to thermal steress in Westernflower Therips, Fronkliniella occidetalls[D]. Yangzhou: Yangzhou University, 2013.
    [15] 吴江林. 棕榈科植物入侵害虫枣椰扁潜甲对环境温度的适应性[D]. 福州: 福建农林大学, 2019.

    Wu J L. Adaptability to environmental temperature of invasive insect pest Wallacea dactyliferae on the palmaes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [16] Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches[J]. Free Radical Biology and Medicine, 2000, 28(9): 1405−1420. doi: 10.1016/S0891-5849(00)00215-X
    [17] 刘井兰, 于建飞, 吴进才, 等. 昆虫活性氧代谢[J]. 昆虫知识, 2006, 43(6): 752−756.

    Liu J L, Yv J F, Wu J C, et al. Active oxygen metabolism in insects[J]. Chinese Bulletin of Entomology, 2006, 43(6): 752−756.
    [18] Fridovich I. Oxygen is toxic![J]. Bioscience, 1977, 27(7): 462−466. doi: 10.2307/1297527
    [19] 张耀洲, 钱元骏. 关于高低温处理蚕对家蚕浓核病毒(DNV)敏感机制的研究[J]. 江苏蚕业, 1990(4): 1−4.

    Zhang Y Z, Qian Y J. The study of sensitivity mechanism of silkworm to densovirus (DNV) under high and low temperature treatment[J]. Jiangsu Sericulture, 1990(4): 1−4.
    [20] 张青, 涂永勤, 刘怀, 等. 温度胁迫对小金蝠蛾幼虫抗氧化酶活性的影响[J]. 环境昆虫学报, 2016, 38(1): 47−53.

    Zhang Q, Tu Y Q, Liu H, et al. Effects of temperature stress on antioxidant enzymes in Hepialus xiaojinensis (Lepidoptera: Hepialidae) larva[J]. Journal of Environmental Entomology, 2016, 38(1): 47−53.
    [21] 王娟. 华山松大小蠹幼虫耐寒生化与分子机制[D]. 杨凌: 西北农林科技大学, 2017.

    Wang J. Biochemicaland molecular mechanism of Chinese White Pine Beetlelarvae (Dendroctonus armandi) to Cold Tolerance[D]. Yanglin: Northwest Agricultural and Forest University, 2017.
    [22] Fields P G, Fleurat-Lessard F, Lavenseau L, et al. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera)[J]. Journal of Insect Physiology, 1998, 44(10): 955−965. doi: 10.1016/S0022-1910(98)00055-9
    [23] Michaud M R, Denlinger D L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison[J]. Journal of Comparative Physiology, 2007, 177(7): 753−763.
    [24] Overgaard J, Malmendal A, Sørensen J G, et al. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster[J]. Journal of Insect Physiology, 2007, 53(12): 1218−1232.
    [25] 余培旺. 武夷山风景区松墨天牛种群动态的研究[J]. 武夷科学, 2008, 24: 123−130.

    Yv P W. Study on the Population dynamics of Monochamus alternatus in Wuyishan Scenery Region[J]. Wuyi Science Journal, 2008, 24: 123−130.
    [26] 南俊科, 杨越翔, 张玲华, 等. 松墨天牛在秦巴林区不同寄主上的危害规律[J]. 环境昆虫学报, 2021, 43(6): 1376−1388.

    Nan J K, Yang Y X, Zhang L H, et al. The damage of Monochamus alternatus on different host pine species in Qinling-Daba Mountains[J]. Journal of Environmental Entomology, 2021, 43(6): 1376−1388.
    [27] 孔维娜. 入侵种松材线虫的关键传媒−松墨天牛的耐寒性[D]. 晋中: 山西农业大学, 2005.

    Kong W N. Cold Hardiness of Monochamus alternatus, as the key vector of invasive nematode, Bursaphelenchus xylophilus[D]. Jinzhong: Shanxi Agricultural University, 2005.
    [28] Ma R, Hao S, Tian J, et al. Seasonal variation in cold-hardiness of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Environmental Entomology, 2006, 35(4): 881−886. doi: 10.1603/0046-225X-35.4.881
    [29] Tian J, Hao S G, Kong W N, et al. Cold tolerance and cold hardening strategy of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Insect Science, 2008, 15(4): 307−316. doi: 10.1111/j.1744-7917.2008.00215.x
    [30] 时鹏. 我国不同地理种群松墨天牛的低温耐受性及其适生区分布[D]. 北京: 北京林业大学, 2018.

    Shi P. Tolerance to Temperature Stress of Monochamus alternatus and Its Potential Suitable Distributions in China[D]. Beijing: Beijing Forest University, 2018.
    [31] 陈俊贤, 周娇, 魏洪义, 等. 冷驯化对松墨天牛幼虫脂代谢的影响[J]. 昆虫学报, 2021, 64(12): 1433−1443.

    Cheng J X, Zhou J, Wei H Y, et al. Effects of cold acclimation on lipid metabolism in Monochamus alternatus (Coleoptera: Cerambycidae) larvae[J]. Acta Entomologica Sinica, 2021, 64(12): 1433−1443.
    [32] Cai Z, Chen J, Cheng J, et al. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress[J]. Journal of Insect Science, 2017, 17(6): 113.
    [33] 李慧, 何玄玉, 陶蓉, 等. 松墨天牛小热激蛋白基因的克隆、表达谱及对温度胁迫的响应[J]. 昆虫学报, 2018, 61(7): 749−760.

    Li H, He X Y, Tao R, et al. cDNA cloning and expression profiling of small heat shock protein genesand their response to temperature stress in Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Acta Entomologica Sinica, 2018, 61(7): 749−760.
    [34] Zhang B, Zhao L, Ning J, et al. miR-31-5p regulates cold acclimation of the wood-boring beetle Monochamus alternatus via ascaroside signaling[J]. BMC biology, 2020, 18(1): 1−17. doi: 10.1186/s12915-019-0728-3
    [35] Li H, Li S, Chen J, et al. A heat shock 70kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera: Cerambycidae): quantification, localization, and functional analysis[J]. BMC genomics, 2022, 23(1): 1−13. doi: 10.1186/s12864-021-08243-4
    [36] 董亚新, 裴佳禾, 邵钰莹, 等. 红脂大小蠹幼虫和成虫耐寒能力及耐寒物质的研究[J]. 环境昆虫学报, 2021, 43(4): 978−985.

    Dong Y X, Pei J H, Shao Y Y, et al. Cold tolerance and cold tolerant substances of larva and adult of Dendroctonus valens LeConte[J]. Journal of Environmental Entomology, 2021, 43(4): 978−985.
    [37] 邓彩萍, 闫喜中, 刘红霞, 等. 球孢白僵菌侵染光肩星天牛幼虫的扫描电镜及组织病理观察[J]. 林业科学, 2012, 48(3): 105−109.

    Deng C P, Yan X Z, Liu H X, et al. Pathological observation of Anoplophora glabripennis larva infected by Beauveria bassiana by using SEM and light microscope[J]. Scientia Silvae Sinicae, 2012, 48(3): 105−109.
    [38] Estay S A, Lima M, Bozinovic F. The role of temperature variability on insect performance and population dynamics in a warming world[J]. Oikos, 2014, 123(2): 131−140. doi: 10.1111/j.1600-0706.2013.00607.x
    [39] 史彩华, 胡静荣, 李传仁, 等. 环境胁迫下昆虫的耐寒适应机制研究进展[J]. 植物保护, 2016, 42(6): 21−28.

    Shi C H, Hu J R, Li C R, et al. Research progress in the cold tolerance mechanism of insects under environmental stress[J]. Plant Protection, 2016, 42(6): 21−28.
    [40] 冯宇倩. 光肩星天牛幼虫的耐寒性及其适应机制[D]. 北京: 北京林业大学, 2017.

    Feng Y Q. Cold hardiness and adaptive mechanism of the Anoplophora glabripennis Larva[D]. Beijing: Beijing Forest University, 2017.
    [41] 冯宇倩, 李文博, 骆有庆, 等. 红缘天牛越冬幼虫耐寒性研究[J]. 西北农业学报, 2015, 24(12): 175−180.

    Feng Y Q, Li W B, Luo Y Q, et al. Cold-hardiness of overwintering Asias halodendri Larvae[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(12): 175−180.
    [42] 李珏闻. 青杨脊虎天牛的温度胁迫耐受性及在中国的适生分布区[D]. 北京: 北京林业大学, 2014.

    Li Y W. Tolerance to Temperature Stresses of Grey Tiger Longicorn Beetle (Xylotrechus rusticus L.) and Its Potential Range in China[D]. Beijing: Beijing Forest University, 2014.
    [43] Bale J S. Insect cold hardiness: A matter of life and death[J]. European Journal of Entomology, 1996, 93(3): 369−382.
    [44] 韩瑞东, 孙绪艮, 许永玉, 等. 赤松毛虫越冬幼虫生化物质变化与抗寒性的关系[J]. 生态学报, 2005, 25(6): 1352−1356.

    Han R D, Sun X G, Xv Y Y, et al. The biochemical mechanism of cold-hardiness in overwintering larva of Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae)[J]. Acta Ecologica Sinica, 2005, 25(6): 1352−1356.
    [45] 朱昱翰, 李庆, 杨刚, 等. 低温和光周期对西藏飞蝗体内物质的影响[J]. 应用生态学报, 2016, 27(2): 629−633.

    Zhu Y H, Li Q, Yang G, et al. Influence of low temperature and photoperiod on the substances in Locusta moigratoria tibetensis[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 629−633.
    [46] 李秀璋, 刘欣, 李玉玲. 温度对玉树蝠蛾幼虫糖代谢的影响[J]. 应用昆虫学报, 2021, 58(6): 1295−1304.

    Li X Z, Liu X, Li Y L. Effect of temperature on the glycometabolism of Hepialus yushuensis larvae[J]. Journal of Environmental Entomology, 2021, 58(6): 1295−1304.
    [47] Joanisse D R, Storey K B. Oxidative stress and antioxidants in stress and recovery of cold-hardy insects[J]. Insect Biochemistry and Molecular Biology, 1998, 28(1): 23−30. doi: 10.1016/S0965-1748(97)00070-2
    [48] 付雪莲. 茶淡黄刺蛾生物学特性及在温度胁迫下抗氧化反应研究[D]. 雅安: 四川农业大学, 2017.

    Fu X L. Study on biological characteristics and antioxidant systems to temperature stress of Darna trima (Moore)[D]. Ya’an: Sichuan Agricultural University, 2017.
    [49] 杨伟克, 唐芬芬, 刘增虎, 等. 高温和低温条件下琥珀蚕血淋巴SOD及CAT活性的变化[J]. 江苏农业科学, 2017, 45(1): 153−155.

    Yang W K, Tang F F, Liu Z H, et al. Changes in the activity of Antheraea assamensis hemolymph SOD and CAT under high and low temperature conditions[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 153−155.
    [50] 陈豪, 梁革梅, 邹朗云, 等. 昆虫抗寒性的研究进展[J]. 植物保护, 2010, 36(2): 18−24.

    Chen H, Liang G M, Zou L Y, et al. Research progresses in the cold hardiness of insects[J]. Plant Protection, 2010, 36(2): 18−24.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-06-01
  • 录用日期:  2023-08-11
  • 网络出版日期:  2023-08-16

目录

    /

    返回文章
    返回